A method and apparatus to remove a block effect and a ring effect appearing in a compression-coded image is disclosed. The present invention is especially applicable to an image compression-coded at a low bit rate. In particular, the present invention includes a variety of masks for the removal of the block/ring effect. Thus, one mask is select for a pixel to be filtered. Moreover, candidate pixels to be averaged with the pixel to be filtered is selected from the pixels of the selected mask to better maintain the details of the image, and a weight is applied to improve the calculation speed of the averaging operation. More particularly, the masks according to the present invention have longer tabs toward adjacent blocks at boundaries of the given block to remove the block and ring effect. In the method, a pixel of an image is filtered according to a filtering methodology. The filtering methodology includes more than one comparison, and each comparison compares a respective determined value and a respective threshold. Each respective determined value may be based on a respective difference value, and each respective difference value may be based on a different difference. At least one the difference values may be based on the pixel being filtered and another pixel.
|
0. 21. A method of filtering an image, comprising:
filtering a pixel of an image according to a filtering methodology, the filtering methodology including more than one comparison, each comparison comparing a respective determined value and a respective threshold, each respective determined value being based on a respective difference value, and more than one of the respective difference values being based on the pixel being filtered and another pixel.
0. 1. A filtering method for a pixel P of a block B in a reconstructed image, comprising:
selecting one of a plurality of filtering masks based upon a position of said pixel P in said block B; and
averaging said pixel P and candidate pixels within the selected filtering mask.
0. 2. A method of
0. 3. A method of
0. 4. A method of
0. 5. A method of
0. 6. A method of
δ=k×q where k is a constant and q is a quantization step interval of said block B.
0. 7. A method of
0. 8. A method of
0. 9. A method of
0. 10. A filtering apparatus to filter a pixel P of a block B in a reconstructed image, comprising:
a filtering masking unit selecting one of a plurality filtering masks based upon a position of said pixel P in said block B; and
an averaging unit averaging said pixel P and candidate pixels within the selected mask.
0. 11. An apparatus of
0. 12. An apparatus of
a filtering mask in which eight tabs are selected from the 3×3 mask form, discarding one corner tab;
a filtering mask in which more tabs are selected in a vertical direction than a horizontal direction, and more vertical lower tabs are selected than vertical upper tabs;
a filtering mask in which more tabs are selected in the vertical direction than the horizontal direction, and move vertical upper tabs are selected than vertical lower tabs;
a filtering mask in which more tabs are selected in the horizontal direction than the vertical direction, and more horizontal left tabs are selected than horizontal right tabs; and
a filtering mask in which more tabs are selected in the horizontal direction than the vertical direction, and more horizontal right tabs are selected than horizontal left tabs.
0. 13. An apparatus of
0. 14. An apparatus of
a comparison unit selecting a pixel within the selected mask Pm as a candidate pixel if the value of the pixel Pm meets a predetermined condition.
0. 15. An apparatus of
0. 16. An apparatus of
δ=k×q where k is a constant and q is a quantization step interval of said block B.
0. 17. An apparatus of
0. 18. An apparatus of
0. 19. An apparatus of
0. 20. A coding and decoding method comprising:
a discrete cosine transform (DCT) unit performing a DCT operation with respect to divided blocks of an image to generate DCT coefficients;
a quantization unit quantizing the DCT coefficients and transmitting the DCT coefficients in a form of a bit stream through a transmission channel;
a dequantization unit dequantizing the DCT coefficients received through the transmission channel;
an inverse DCT unit performing an inverse DCT operation with respect to the dequantized DCT coefficients to form a reconstructed image, and
a filtering process unit filtering each pixel of each block of the reconstructed image by selecting one of a plurality of filtering masks based upon a position of said pixel in said block; and averaging said pixel and candidate pixels within the selected filtering mask.
0. 22. The method of
0. 23. The method of
0. 24. The method of
0. 25. The method of
0. 26. The method of
0. 27. The method of
0. 28. The method of
0. 29. The method of
0. 30. The method of
0. 31. The method of
0. 32. The method of
0. 33. The method of
0. 34. The method of
0. 35. The method of
0. 36. The method of
0. 37. The method of
0. 38. The method of
|
In claims invention. Many alternatives, modifications, and variations will be apparent to those skilled in the art.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5283646, | Apr 09 1992 | Polycom, Inc | Quantizer control method and apparatus |
5488570, | Nov 24 1993 | Intel Corporation | Encoding and decoding video signals using adaptive filter switching criteria |
5563813, | Jun 01 1994 | Industrial Technology Research Institute | Area/time-efficient motion estimation micro core |
5611000, | Feb 22 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Spline-based image registration |
5748795, | Feb 07 1995 | Canon Kabushiki Kaisha | Image decoder using adjustable filtering |
5790131, | May 15 1996 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System and method for lossy compression of data with output file size control |
5878166, | Dec 26 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Field frame macroblock encoding decision |
5940536, | Sep 05 1995 | Matsushita Electric Industrial Co., Ltd. | Ringing detector and filter |
6041145, | Nov 02 1995 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Device and method for smoothing picture signal, device and method for encoding picture and device and method for decoding picture |
6058210, | Sep 15 1997 | Xerox Corporation | Using encoding cost data for segmentation of compressed image sequences |
6108455, | May 29 1998 | STMicroelectronics, Inc. | Non-linear image filter for filtering noise |
6178205, | Dec 12 1997 | Cisco Technology, Inc | Video postfiltering with motion-compensated temporal filtering and/or spatial-adaptive filtering |
6195632, | Nov 25 1998 | Panasonic Intellectual Property Corporation of America | Extracting formant-based source-filter data for coding and synthesis employing cost function and inverse filtering |
6226050, | Apr 04 1997 | SAMSUNG ELECTRONICS CO , LTD | Signal adaptive filtering method for reducing ringing noise and signal adaptive filter |
6259823, | Feb 15 1997 | SAMSUNG ELECTRONICS CO,, LTD | Signal adaptive filtering method and signal adaptive filter for reducing blocking effect and ringing noise |
6385245, | Sep 23 1997 | NXP B V | Motion estimation and motion-compensated interpolition |
6529638, | Feb 01 1999 | RAKUTEN, INC | Block boundary artifact reduction for block-based image compression |
6535643, | Nov 03 1998 | LG Electronics Inc. | Method for recovering compressed motion picture for eliminating blocking artifacts and ring effects and apparatus therefor |
6631162, | Jul 16 1997 | SAMSUNG ELECTRONICS CO , LTD | Signal adaptive filtering method, signal adaptive filter and computer readable medium for storing program therefor |
6665346, | Aug 01 1998 | SAMSUNG ELECTRONICS CO , LTD ; Korea Advanced Institute of Science and Technology | Loop-filtering method for image data and apparatus therefor |
20050147319, | |||
20050201633, | |||
JP1070719, | |||
JP9326024, | |||
WO9904497, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 11 2005 | LG Electronics Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 21 2008 | ASPN: Payor Number Assigned. |
Jul 14 2010 | RMPN: Payer Number De-assigned. |
Jul 15 2010 | ASPN: Payor Number Assigned. |
Date | Maintenance Schedule |
Mar 25 2011 | 4 years fee payment window open |
Sep 25 2011 | 6 months grace period start (w surcharge) |
Mar 25 2012 | patent expiry (for year 4) |
Mar 25 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 25 2015 | 8 years fee payment window open |
Sep 25 2015 | 6 months grace period start (w surcharge) |
Mar 25 2016 | patent expiry (for year 8) |
Mar 25 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 25 2019 | 12 years fee payment window open |
Sep 25 2019 | 6 months grace period start (w surcharge) |
Mar 25 2020 | patent expiry (for year 12) |
Mar 25 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |