A routing system of call connection and call routing for radio telephone communications system including cellular radio systems wherein the mobiles transmit on channels in a first band, and the bases transmit on channels in a second band. The routes are selectable from more than one possible route to a desired destination using routing tables to permit different destinations for different calls selectively based on telephone number indications. The system includes multiple blind nodes that do not support direct base to mobile communication. The blind nodes transmitting in the band used for transmission by the mobiles, and nodes receive in the band used for receiving by the mobiles such that the system performs in a limited number of bands of frequencies.
|
0. 17. A directional node for use in a radio communications system including a plurality of individual nodes capable of distribution arbitrarily relative to each other, each said node including transmitting apparatus for transmitting radio signals to other said nodes, receiving apparatus for receiving radio signals from other said nodes, switching apparatus for establishing a radio link with another said node in said system, and an autonomous routing computer for using said radio signals received from other said nodes to select a radio link with one of said other nodes, said autonomous routing computers in said individual nodes assembling said selected radio links between a plurality of nodes into a radio communication route between an originating node and a destination node, wherein:
said directional node comprises at least one of (i) directional transmitting apparatus for transmitting directional radio signals associated with respective different directions and (ii) directional receiving apparatus for associating received radio signals with respective different directions from which they are received; and
a said autonomous routing computer selects a said radio link including said directional node using a said radio signal received from said directional transmitting apparatus or received by said directional receiving apparatus.
0. 3. A radio communications system including a plurality of individual nodes capable of distribution arbitrarily relative to each other, each said node comprising:
transmitting apparatus for transmitting radio signals to other said nodes and receiving apparatus for receiving said radio signals from other said nodes;
switching apparatus for establishing a radio link with another said node in said system; and
an autonomous routing computer for using said radio signals received from other said nodes to select a radio link with one of said other nodes, said autonomous routing computers in said individual nodes assembling said selected radio links between a plurality of nodes into a radio communication route between an originating node and a destination node,
wherein:
at least one of said nodes is a directional node including at least one of (i) directional transmitting apparatus for transmitting directional radio signals associated with respective different directions and (ii) directional receiving apparatus for associating received radio signals with respective different directions from which they are received; and
a said autonomous routing computer selects a said radio link including said directional node using a said radio signal received from said directional transmitting apparatus or received by said directional receiving apparatus.
0. 36. A radio communications system including a plurality of individual nodes capable of distribution arbitrarily relative to each other, each said node comprising:
transmitting apparatus for transmitting radio signals to other said nodes and receiving apparatus for receiving said radio signals from other said nodes;
switching apparatus for establishing a radio link with another said node in said system; and
an autonomous routing computer for using an actual radio parameter of said radio signals received from other said nodes to select a radio link with one of said other nodes, said autonomous routing computers in said individual nodes assembling said selected radio links between a plurality of nodes into a radio communication route between an originating node and a destination node,
wherein:
at least one of said nodes is a directional node including at least one of (i) directional transmitting apparatus for transmitting directional radio signals associated with respective different directions and (ii) directional receiving apparatus for associating received radio signals with respective different directions from which they are received; and
a said autonomous routing computer selects a said radio link including said directional node using said actual radio parameter of a said radio signal received from said directional transmitting apparatus or received by said directional receiving apparatus.
0. 46. A radio communications system including a plurality of individual nodes capable of distribution arbitrarily relative to each other, each said node comprising:
transmitting apparatus for transmitting radio signals to other said nodes and receiving apparatus for receiving said radio signals from other said nodes;
switching apparatus for establishing a radio link with another said node in said system;
detecting apparatus for detecting the strength of said radio signals received from said other nodes; and
an autonomous routing computer for using the strength of said radio signals received from other said nodes to select a radio link with one of said other nodes, said autonomous routing computers in said individual nodes assembling said selected radio links into a radio communication route between an originating node and a destination node,
wherein:
at least one of said nodes is a directional node including at least one of (i) directional transmitting apparatus for transmitting directional radio signals associated with respective different directions and (ii) directional receiving apparatus for associating said radio signals with respective different directions from which they are received; and
a said autonomous routing computer selects a said radio link including said directional node depending on the strength of a said radio signal received from said directional transmitting apparatus or received by said directional receiving apparatus.
0. 55. A radio communications system including a plurality of individual nodes capable of distribution arbitrarily relative to each other, each said node comprising:
transmitting apparatus for transmitting radio signals to other said nodes and receiving apparatus for receiving said radio signals from other said nodes;
detecting apparatus for detecting the quality of said radio signals received from said other nodes;
switching apparatus for establishing a radio link with another said node in said system; and
an autonomous routing computer for using said radio signals received from other said nodes to select a radio link with one of said other nodes, said autonomous routing computers in said individual nodes assembling said selected radio links into a radio communication route between an originating node and a destination node,
wherein:
each said link of said radio communication route comprises a radio signal of a higher quality than the worst quality said radio signal comprising any said radio link within any other potential radio communication route between said originating node and said destination node;
at least one of said nodes is a directional node including at least one of (i) directional transmitting apparatus for transmitting directional radio signals associated with respective different directions and (ii) directional receiving apparatus for associating received radio signals with respective different directions from which they are received; and
a said autonomous routing computer selects a said radio link including said directional node depending on the quality of a said radio signal received from said directional transmitting apparatus or received by said directional receiving apparatus.
0. 1. In multi-node, multi-remote radio telephone systems, a method of call connection and call routing between said multiple nodes comprising:
a) using destination number designations and routing tables to select different routes for different calls;
b) utilizing directional or beam antennae for communications between said nodes;
c) providing a first set of beams from a first node, and providing a second set of beams from a second node, a beam from the first node and a beam from the second node comprising a pair;
d) measuring the signal strengths created by pairs of beams; and
e) selecting a beam pair between different nodes with the highest signal strength, for communications by eliminating beam pairs that have the weaker signals,
whereby the multi-nodes comprise base sites, repeaters, and exchanges,
wherein the exchanges may be from different radio telephone systems.
0. 2. In a multi-node, multi-remote radio telephone communications system including cellular radio systems wherein the mobiles transmit in a first band and receive in a second band, and the base transmit in said second band and receive in said first band, a routing system of call connection and call routing comprising the following;
a) routing tables to permit different destinations for different calls selectively based on telephone number indications;
b) multiple blind nodes, each of which comprises a combination of a repeater and routing tables, said blind nodes using said routing tables to selectively communicate with base sites required to establish the selected routes;
c) said blind nodes transmitting in the band used for transmission by the mobiles;
d) said blind nodes receiving in the band used for receiving by the mobiles; and
e) each said selected route comprising a path that alternates between blind nodes and bases;
whereby the entire system performs in a limited number of bands of frequencies.
0. 4. A system as in
0. 5. A system as in
said radio signals have routing messages;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in each said node selects a said routing message associated with a preferred said radio link using a parameter of said routing messages and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 6. A system as in
0. 7. A system as in
0. 8. A system as in
0. 9. A system as in
0. 10. A system as in
0. 11. A system as in
0. 12. A system as in
0. 13. A system as in
a first said directional node with a said directional transmitting apparatus including a plurality of directional transmitting antennas; and
a second said directional node with a said directional receiving apparatus including a plurality of directional receiving antennas,
wherein said autonomous routing computers in said first and second directional nodes select a said radio link using one of said transmitting antennas and one of said receiving antennas.
0. 14. A system as in
said radio signals have routing messages;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in each said node selects a said routing message associated with a preferred said radio link using a parameter of said routing messages and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 15. A system as in
0. 16. A system as in
0. 18. A directional node as in
0. 19. A directional node as in
said radio signals have routing messages;
said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in said node selects a said routing message associated with a preferred said radio link using a parameter of said routing messages and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 20. A directional node as in
0. 21. A directional node as in
0. 22. A directional node as in
0. 23. A directional node as in
0. 24. A directional node as in
0. 25. A directional node as in
said radio signals have routing messages including said signal strength;
said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in said node selects a said routing message associated with a preferred said radio link using said signal strength and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 26. A directional node as in
0. 27. A directional node as in
0. 28. A directional node as in
0. 29. A directional node as in
said radio signals have routing messages;
said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in said node selects a said routing message associated with a preferred said radio link using a parameter of said routing messages and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 30. A directional node as in
0. 31. A directional node as in
0. 32. A directional node as in
0. 33. A directional node as in
said radio signals have routing messages;
said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in said node selects a said routing message associated with a preferred said radio link using a parameter of said routing messages and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 34. A directional node as in
0. 35. A directional node as in
0. 37. A system as in
0. 38. A system as in
a first said directional node with a said directional transmitting apparatus including a plurality of directional transmitting antennas; and
a second said directional node with a said directional receiving apparatus including a plurality of directional receiving antennas,
wherein said autonomous routing computers in said first and second directional nodes select a said radio link using one of said transmitting antennas and one of said receiving antennas.
0. 39. A system as in
0. 40. A system as in
at least some of said radio signals have associated routing messages including said actual radio parameter;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in each said node selects a said routing message associated with a preferred said radio link using said actual radio parameter and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 41. A system as in
0. 42. A system as in
0. 43. A system as in
at least some of said radio signals have associated routing messages including said actual radio parameter;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in each said node selects a said routing message associated with a preferred said radio link using said actual radio parameter and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 44. A system as in
0. 45. A system as in
0. 47. A system as in
0. 48. A system as in
at least some of said radio signals have associated routing messages including said strength of said radio signal;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in each said node selects a said routing message associated with a preferred said radio link using said strength of said radio signal and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 49. A system as in
0. 50. A system as in
0. 51. A system as in
a first said directional node with a said directional transmitting apparatus including a plurality of directional transmitting antennas; and
a second said directional node with a said directional receiving apparatus including a plurality of directional receiving antennas,
wherein said autonomous routing computers in said first and second directional nodes select said radio links using one of said transmitting antennas and one of said receiving antennas.
0. 52. A system as in
at least some of said radio signals have associated routing messages including said strength of said radio signal;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in said node selects a said routing message associated with a preferred said radio link using said strength of said radio signal and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 53. A system as in
0. 54. A system as in
0. 56. A system as in
0. 57. A system as in
at least some of said radio signals have associated routing messages including said quality;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in each said node selects a said routing message associated with a preferred said radio link using said quality and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 58. A system as in
0. 59. A system as in
0. 60. A system as in
a first said directional node with a said directional transmitting apparatus including a plurality of directional transmitting antennas; and
a second said directional node with a said directional receiving apparatus including a plurality of directional receiving antennas,
wherein said autonomous routing computers in said first and second directional nodes select said radio links using one of said transmitting antennas and one of said receiving antennas.
0. 61. A system as in
at least some of said radio signals have associated routing messages including said quality;
each said node includes a storage device for storing said routing messages received from other said nodes;
said autonomous routing computer in each said node selects a said routing message associated with a preferred said radio link using said quality and uses said selected routing message to produce a new routing message for retransmission by said transmitting apparatus; and
said autonomous routing computers in said nodes assemble said preferred radio links into said radio communication route.
0. 62. A system as in
0. 63. A system as in
|
This is a continuation of application Ser. No. 10/833,279, filed Apr. 27, 2004, for reissue of U.S. Pat. No. 6,459,899, issued Oct. 1, 2002, on application Ser. No. 09/383,227, filed Aug. 26, 1999, which claims benefit of provisional application No. 60/100,074, filed Sep. 14, 1998. This is also the parent of a continuation reissue application filed Oct. 31, 2007, and accorded application Ser. No. 11/982,295.
The present application claims the priority date of U.S. Provisional Patent Application Serial No. 60/100074 filed on Sep. 14, 1998 in the name of Jerry R. Schloemer.
This application discloses improvements to U.S. Pat. No. 5,793,842 issued to Jerry R. Schloemer and Leo J. Aubel, U.S. Pat. No. 5,793,842 is incorporated herein by specific reference thereto. While the entire patent '842 is incorporated herein by reference, FIGS. 1-11 and the associated description are particularly pertinent to this invention. In U.S. Pat. No. 5,793,842 a method of connecting a call to a desired one of several drops (destinations) was disclosed. An originating mobile unit contacts an originating base site to set up a call. The originating base site then routes the call towards the desired destination. Included in this patent were the steps of combining route segments (links) between nodes (base sites) to make a longer route that would connect an initializing base thru one or more nodes to a desired drop or exchange dependent upon the final call destination. Then, when a call is originated, the routing tables present in the nodes would route the call to the desired destination thru one or more nodes. Signal to interference tests were used to assign interference free channels in both the mobile to base and base to base communications. Because the routing literature, refers to nodes, and the cellular radio literature refers to base sites, and the functionality of the two technologies is combined, the terms “base” and “node” will be used to refer to the same functional piece of equipment.
The invention herein describes a system and method of wireless call routing between various cell sites such that the optimum route back to one of several exchanges is chosen. Novel systems and methods of node design, antennae selection, and switching to selected drops are described.
The foregoing features and advantages of the present invention will be apparent from the following more particular description of the invention. The accompanying drawings, listed herein below, are useful in explaining the invention.
FIG. 5. Shows the concept of a blind node routing communications in the same bank back to a central switch; and
In a large metropolitan area such as the Chicago, Ill. area, the inventive features described herein below can be combined in a single system to enhance the total system operation. For example, if a non resident long distance carrier owned the radio cellular system described, the combinations might be beneficial. In those few sites that are located near the long distance carrier's long distance switch, the base sites would be equipped with the relay closures as described below to minimize the number of calls that were routed thru the local telephone company. In sites located in the close in towns where considerable traffic was anticipated, the radio routing features as described in U.S. Pat. No. 5,793842 would be utilized in conjunction with the method of utilizing and assigning directional antennas to improve spectrum efficiency. In sites located in the far towns were radio congestion is not a problem, spectrum could be allocated to the routing function, and blind nodes would be utilized. An example of a user located in Deerfield, Ill. trying to contact a land line user located near Round Lake, Ill. is shown in FIG. 6. Only some of the cell sites are shown in the FIG. 6.
In land line telephony the present trend is to replace conventional relay closures and dedicated lines by packets of data that are routed along common lines. In the application of the invention described herein below, the inventive concepts can be utilized to support packet data.
Refer to
Refer to
In a preferred embodiment of the invention, routes are created automatically as disclosed in referenced patent U.S. Pat. No. 5,793,842. In the referenced patent the system includes multiple nodes and links between the nodes that are combined into routes that route calls to a desired drop. In another embodiment of the system explained herein, the base site uses tables are manually loaded into the base site computer that will control the routing destination. This alternate embodiment does not utilize multiple links thru multiple nodes, but just routes calls from a base site to a desired drop based on the desired exchange. In one utilization of this concept, wire lines are used from the base site back to the various drops. A combination of both wire (land) lines and radio can also use these concepts to build a operational system.
Many cellular systems are built to a so-called the AMPS standard. The AMPS standard comprises a series of precise protocols such that different manufacturers products will work together in a common manner. In AMPS systems, various base sites are given a limited number of radios that transmit and receive only on specific paired frequencies. Whereas a total cellular system might have hundreds of paired radio channels, a given base site might have only 30 different radios. Each of these 30 different radios transmits and receives on a specific frequency pair that is carefully chosen to avoid co-channel interference with adjacent cell sites; each of these 30 radios was hard wired back to a switch which utilizes a circuit that supported a duplex conversation. The switch contains the logic to connect the radios into the land line telephone system, record information for billing purposes, and also control handoff. For explanation purposes consider a simple system with only two drops. These drops correspond to the switches in a conventional AMPS cellular system. Consequently, there is a need for 30 duplex circuits leaving the base site going to the first drop and another 30 circuits going to the second drop.
A method of connecting any of these 30 different radios to any of the 60 different output circuits would be to install a switching matrix of size 30 by 60 which might involve up to 1800 relays, or else an expensive computerized switching machine to handle up to 30 simultaneous duplex audio transfers. A computer/switching system at each base site that stores routing tables, that controls the routing decisions, and also controls the actual connections back to the various drops could be used.
Refer to
In the inventive system there is a signaling channel and when a call is being set up, the various messages are sent over the air thru the signaling channel, and then this signaling channel is routed directly back to the cellular switch. The present invention routes the signaling channel thru the base site computer. The base site computer does not alter the contents of the signaling messages, but only records the call destination for the remote user. The base site computer brings the signaling message into its memory. The base computer then compares the call destination (area code and exchange) with a pre-stored table in the computer to determine the drop that should handle the call. Then the computer retransmits the signaling message to the desired drop. In the simple case of a two drop system, there is a single relay that can switch the output of the computer to the signaling circuit of either drop.
Each of the 30 circuits from the radios in the base site goes to a single relay (30 relays in total) that will send the call along to the desired drop. In
In some instances the drops choose the next available radio in sequence to handle the call. However, most systems have a method of monitoring before assignment, and when it is desired to install a system without modification of the drop logic, one could easily indicate by various means that the channel was noisy, if it were being used by the alternate drop, etc. For a further explanation of the inventive concept, refer first to
Refer to
The foregoing leaves the matrix switching apparatus in the drop, and permits a selection of drops by simple connect and disconnect switching hardware at the node.
The present invention includes another important improvement to the concepts disclosed in U.S. Pat. No. 5,793,842. The improvement relates to the method of choosing antennas for base to base communications. Base to base radio paths in a cellular system typically have good propagation characteristics. It is known that the insertion of obstructions in the path of a radio signal cause significant shadows that greatly reduce the received signal strength. In many instances it is very difficult to transmit radio signals thru tall buildings and around the curvature of the earth. Refer to
It is also known in cellular radio that using sectoring antennas at base sites to direct signals to and from mobiles accomplishes two important things. The first is that the desired signal level is increased which offers better communication. The second is that spectrum efficiency is improved in that antennas only radiate in one direction, and consequently, radio waves are spread in only one direction. The method described herein below uses actual signal strength measurements to assign antenna patterns.
In the method of radio routing described herein, advantages of better signal quality and also better spectrum utilization occur when directional antennas are added to the base sites to help the radio routing function between base sites. In this embodiment, six different antennas, each of sixty degrees are mounted to improve the radio routing function. Each antenna has specific radios attached directly to the antenna. The initial routing tables explained in referenced U.S. Pat. No. 5,793,842, are modified to take into account these different antennas. For example, table II in Col 8 which is reproduced below is modified as will be explained.
TABLE II
Time Slot No.
User of Slot
1
L001 (Located in Round Lake)
2
L002 (Schaumburg)
3
L003 (Evanston)
4
L004 (Glenview)
5
L005 (Lisle)
6
L006 (Libertyville)
.
.
.
.
.
.
27
L027 (Antioch)
.
.
.
.
.
.
1001
1001 (Peoria node)
.
.
.
.
.
.
1133
1133 (Lincolnshire node)
1188
1188 (Libertyville node)
The Lincolnshire site, #1133, depicted above becomes six different sites in the routing process as follows:
The Libertyville site, #1188, becomes six different sites in the routing process, as follows:
Table II has base site numbers and corresponding time slots, the table is now expanded to include 6 different time slots for the Lincolnshire site, and 6 different time slots for the Libertyville site. (If the Grays Lake site had only two 180 degree antennas, that it would have only two time slots for its use)
Consequently, when the Libertyville site transmits on the first antenna, it is transmitting in its first time slot. When the Libertyville site transmits of the second antenna, it is transmitting in its second time slot. When the Lincolnshire site listens to the various time slots, it listens on all of its directional antennas. (Actual physical locations and compass directions are not utilized.) Consequently, there are a total of 36 different possible links between Libertyville and Lincolnshire that could be utilized if Lincolnshire desired to contact Libertyville to route a call. These 36 different possibilities are added to the table at the Lincolnshire site, as the Lincolnshire site listens to Libertyville. In fact, a northern pointing Libertyville site, might not even be heard by the southern pointing Lincolnshire site. In fact, a western pointing Lincolnshire site might not hear an eastern pointing Libertyville site.
Consequently, in real world operation, the Lincolnshire site might only hear 14 of the possible 36 combinations, and might only record these 14 into its initial routing table. Refer to
Following is a more specific representation of a portion of the transmissions made by the Libertyville node as previously shown in and Table XII of U.S. Pat. No. 5,793,842 as shown below.
TABLE XII
1188
Land node number
546
Prefix
3
Links
32
Signal Strength
The first line in the following table represents the transmission from the first sectoring antenna, the second line represents the transmission from the second sectoring antenna. The third, fourth, fifth, and sixth lines are also respectively from the third, fourth, fifth, and sixth sectoring antenna.
NEW TABLE XXX
Node
Prefix
Links
Signal Strength
1188-A
546
3
42
1188-B
546
3
42
1188-C
546
3
42
1188-D
546
3
42
1188-E
546
3
42
1188-F
546
3
42
Referring to Table XII, the weakest signal strength in the route to 546 was 32 Db over threshold. However, because of increased antenna gain in both the transmitting and receiving antennas along the various links to Round Lake exchange 546, the minimum signal strength is now 42 Db.
Now, the Lincolnshire node receives each of the above six transmission at six different antennas. The following table is for the receiving antenna at node 1133-A. However, because the receiving antenna 1133-A points in a north northeasterly direction that is not directed towards the Libertyville node, only one signal is heard. This signal bounced off building and came from 1188-B. It is a very weak signal
NEW TABLE XXXI
Node
Prefix
Links
Signal Strength
New Sig. Str.
1188-B
546
3
42
12
Following are the signals received at node 1133-B which points in an easterly direction. Because 1133-B pointed in an easterly direction, it did not receive any signal good signals, but did receive a very weak signal from both 1188-B and 1188-C.
NEW TABLE XXXII
Node
Prefix
Links
Signal Strength
New Sig. Str.
1188-B
546
3
42
8
1188-C
546
3
42
5
The results at 1133-C, 1133-D not shown here, were also primarily weak signals. However, we now show the received signals at 1133-E which is an antenna that is pointing somewhat in the direction of the Libertyville node.
TABLE XXXIII
Node
Prefix
Links
Signal Strength
New Sig. Str.
1188-A
546
3
42
5
1188-B
546
3
42
52
1188-C
546
3
42
50
1188-D
546
3
42
18
1188-E
546
3
42
2
The results from the receiving antenna 1133-F were as follows.
TABLE XXXIV
Node
Prefix
Links
Signal Strength
New Sig. Str.
1188-A
546
3
42
5
1188-B
546
3
42
40
1188-C
546
3
42
38
1188-D
546
3
42
9
Before any other calculations are made, the node at Lincolnshire, node 1133 immediately goes thru the above tables for each receiving antenna, and leaves only the choice with the best received signal strength from all of the tables. Antenna 1133-E received the strongest transmission from site 1188-B as noted in the above tables at 52 Db over threshold. Consequently, only this transmission is carried forward as follows:
TABLE XXIV
Node
Prefix
Links
Signal Strength
New Sig. Str.
Antenna
1188-B
546
3
42
52
1133-E
Additional calculations are performed as explained previously to finish the routing calculations. It was the intent above only to show how directional antennas are added into the system. Later, when Lincolnshire node number 1133 desires to contact Libertyville node number 1188 to place an actual call, Lincolnshire will know which antenna to use for transmission, and it will know which antenna to contact at the Libertyville site.
The aforementioned process of utilizing 60 degree antennas will enhance spectrum utilization by about a factor of six. Only small sectors are illuminated when creating usable links for a specific conversation. In the dynamic channel assignment process that occurs when setting up an actual call, the reduced interference received from remote conversations will enhance the number of usable channels. The desired signal strength is enhanced because of the directional antennas, and the undesired signal is decreased because the base sites are perhaps using antennas that do not point towards the base site in question.
A further optional improvement can be added for even greater spectrum utilization. Steerable arrays are well known. Such arrays create narrow beams by utilizing a series of small antennas to which the phases of the signals are adjusted. When Lincolnshire and Libertyville are in communication, this additional known technology will focus both the transmitting and receiving beams less than 60 degrees to further enhance spectrum efficiency and further enhance signal to noise performance.
U.S. Pat. No. 5,793,842 discloses a system where multiple bands are utilized to perform the different types of communication. For example, base to mobile communications occur in the traditional mobile to base bands, and node to node communications can occur in the new Multipoint bands. In large metropolitan areas where it is desired to maximize the amount of mobile to base communication, such a band allocation is very desirable. However, a novel re-arrangement of the existing base (node) to mobile channels and existing mobile to base (node) channels provides an improvement which is more practical in sparsely populated areas and in third would countries.
The invention described herein can be utilized in various ways, and the following three applications disclose alternate methods of band allocation.
Highly congested cellular systems such as systems in Chicago, Miami, etc. etc. Low density applications of cellular radio as found in Idaho, Nebraska, etc. etc. Third world countries where cellular is used instead of land line phone systems.
In highly congested cellular systems such as one finds in Chicago, Miami, and other high populated places, spectrum for node to mobile and mobile to node will be highly utilized, and the band utilization methods suggested in this embodiment will have limited application. However, for new systems in Chicago and Miami, the methods suggested in this embodiment would have value until usage to grew to a congested amount. For systems designed for the third world, the spectrum load will not be significant, and the methods of this embodiment will be useful. For systems designed for low density applications, the spectrum load will not be significant, and the methods of this embodiment will be useful.
One of the technical problems that is solved in cellular radio is the problem of permitting the mobile unit to both talk and listen simultaneously. This same problem is encountered at the base site. Part of the solution to this problem lies in the method of band assignment to cellular radio. Cellular radio systems are divided into two different bands, and these bands are not next to each other. It is this band separation that permits the delicate receiver to operate in the presence of a booming, in comparison, transmitter. If the transmitter and receiver were close to each other in frequency, the problems of duplex operation would increase, and the cost would also increase.
To utilize the existing cellular bands to perform the repeater function in an attractive alternative, but one that must be approached under the limitation that at any one location, the separation of the two cellular bands must be maintained.
The method to utilize the existing bands of cellular frequencies, is to make blind nodes. The new method is consistent with the odd and even nodes disclosed in U.S. Pat. No. 5,793,842. Alternate nodes in a route must transmit and receive on alternate frequencies. For example, if a node transmits on channel 17, the next node in the route must listen on channel 17. This requirement led to the even and odd nodes as described in said patent. In the new method, this node differentiation is maintained, but a novel feature is added as is explained herein below. In this method, half of the node sites would be inoperable with respect to direct mobile to node operation. This would correspond to the odd nodes being blind to node to mobile operation. The odd nodes in effect become inoperable for base to mobile communications. These odd nodes would be operable for routing or node to node communication. These nodes would be “blind” to the operation of the remotes and mobiles. However, since these nodes would not serve the existing remotes, they would utilize the bands of frequencies in the identical method used for the remotes. In this method, the signaling channel that is already present to set up the node to mobile operation is used with different codes to also set up the routes and the channel assignment from normal nodes thru blind nodes to create the routes. In this particular utilization of the cellular bands, Table I of '842 which had a total of 10 different bands is reduced to the two bands as explained below. In the table below the signaling channel is one of the channels in the appropriate band.
Normal
Blind
Bandflocation
Mobile
Node
Node
Drop
Mobile Transmit
Transmits
Receives
Transmits
Transmits
Band
Mobile Receive
Receive
Transmits
Receive
Receive
Band
In the above greatly simplified table, the normal base (node) operation and the normal mobile operation occur quite as in a conventional cellular system. However, the normal base (node) can also talk directly to a drop that is configured exactly like a mobile. However, the normal node would utilize multiple channels, and the drop would also utilize normal channels. In this method, the talking and receiving problems that are created in a single band are avoided.
The signaling channel will be highly utilized, but relief is provided by accomplishing the route creation process only at night when the system is not highly utilized. In smaller systems, the amount of routing messages is not significant, and the system performs satisfactorily.
This band allocation option permits the normal node to transmit to any one of a number of drops that would be in range. However, the normal node could also utilize blind nodes to repeat the calls to another normal node that would create a route. The above table of frequency allocations permits a simple installation where there are no blind nodes and the normal nodes can transmit to any number of drops that might be within radio range. This simple installation could be later expanded by the addition of blind nodes that would only serve in a repeater function.
The advantage of easy of manufacturing, limited bands and the elimination of potential licensing problems, and simplified system design are obvious for this approach.
Refer to FIG. 5. In this figure, Mobile A is in a conversation that is routed to the indicated exchange. Also, Mobile B is in a different conversation that is also routed to the same exchange.
In
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in forms and details made be made therein without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
7916648, | Feb 27 1995 | JSDQ MESH TECHNOLOGIES, L L C | Method of call routing and connection |
8199681, | Dec 12 2008 | General Electric Company | Software radio frequency canceller |
8774006, | Feb 27 1995 | JSDQ MESH TECHNOLOGIES, L L C | Wireless mesh routing method |
RE44607, | Sep 14 1998 | JSDQ Mesh Technologies, LLC | Wireless mesh routing method |
Patent | Priority | Assignee | Title |
4125808, | Jun 01 1965 | Martin Marietta Corporation | Automatic sequential search for a radio relay network |
4284848, | Aug 01 1979 | Switched network telephone subscriber distribution system | |
4475010, | May 05 1983 | AT&T Bell Laboratories | High density cellular mobile radio communications |
4534024, | Dec 02 1982 | Illinois Tool Works Inc | System and method for controlling a multiple access data communications system including both data packets and voice packets being communicated over a cable television system |
4794649, | May 06 1986 | NEC Corporation | Radio communication system with power saving disablement prior to call handling processes |
4937822, | Jun 27 1989 | Rockwell International Corporation | Skywave adaptable communication apparatus |
4965850, | Jan 23 1989 | WIRELESS SPECTRUM TECHNOLOGY INC | System for and method of assigning frequencies in a communications system with no central control of frequency allocation |
4989230, | Sep 23 1988 | Motorola, Inc.; MOTOROLA, INC , SCHAUMBURG | Cellular cordless telephone |
5101451, | Dec 29 1988 | AT&T Bell Laboratories; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, | Real-time network routing |
5115430, | Sep 24 1990 | AT&T Bell Laboratories; American Telephone and Telegraph Company | Fair access of multi-priority traffic to distributed-queue dual-bus networks |
5127042, | Sep 23 1988 | Motorola, Inc. | Cellular cordless telephone |
5152002, | Aug 03 1987 | Allen Telecom LLC | System and method for extending cell site coverage |
5323384, | Dec 23 1992 | Motorola, Inc. | Method for establishing communication between tasks of a limited number of repeaters in a communication system |
5408679, | Jul 18 1991 | Fujitsu Limited | Mobile telecommunications system having an expanded operational zone |
5412654, | Jan 10 1994 | International Business Machines Corporation | Highly dynamic destination-sequenced destination vector routing for mobile computers |
5425085, | Mar 18 1994 | RATES TECHNOLOGY INC | Least cost routing device for separate connection into phone line |
5428636, | Oct 01 1991 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Radio frequency local area network |
5440623, | Jul 26 1993 | Qwest Communications International Inc | Telephone routing system with queuing and voice messaging capabilities |
5455569, | Mar 25 1992 | AES Corporation | Link layered communications network and method |
5483668, | Jun 24 1992 | Nokia Mobile Phones LTD | Method and apparatus providing handoff of a mobile station between base stations using parallel communication links established with different time slots |
5504746, | Oct 01 1991 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Radio frequency local area network |
5526414, | Oct 26 1994 | RPX CLEARINGHOUSE LLC | Dynamically controlled routing using virtual nodes |
5570084, | Jun 28 1994 | Google Inc | Method of loose source routing over disparate network types in a packet communication network |
5588048, | Jul 31 1992 | 800 Adept, Inc. | Geographically mapped telephone routing method and system |
5590188, | Nov 09 1992 | Tekelec | Rules-based call routing |
5590395, | Nov 10 1993 | CDC PROPRIETE INTELLECTUELLE | Satellite cellular network resource management method and apparatus |
5610821, | Nov 18 1994 | IBM Corporation | Optimal and stable route planning system |
5633922, | Dec 29 1995 | AT&T Corp | Process and apparatus for restarting call routing in a telephone network |
5659544, | Oct 17 1994 | Alcatel-Lucent USA Inc | Method and system for distributed control in wireless cellular and personal communication systems |
5737403, | Sep 15 1995 | AT&T Corp.; AT&T Corp | Interaction of routing features in a telephone system |
5748619, | Oct 01 1991 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Communication network providing wireless and hard-wired dynamic routing |
5754630, | Mar 08 1996 | Qwest Communications International Inc | System and associated method for multiple extension routing via an advanced intelligent network (AIN) |
5757783, | Jun 15 1995 | Alcatel Lucent | Method and apparatus for routing ATM cells in an AD-ATM LAN |
5764741, | Jul 21 1995 | CALLMANAGE LTD | Least cost rooting system |
5787148, | Dec 28 1995 | AT&T Corp | Enhanced telecommunications relay service |
5790938, | Nov 01 1993 | Nokia Telecommunications Oy | Method for controlling a subscriber station in a mobile radio system |
5793842, | Feb 27 1995 | JSDQ MESH TECHNOLOGIES, L L C | System and method of call routing and connection in a mobile (remote) radio telephone system |
5850605, | Nov 05 1996 | Motorola, Inc. | Method and apparatus for dynamically grouping transmitters for message transmission in a communication system |
5860058, | Aug 26 1996 | CDC PROPRIETE INTELLECTUELLE | Method and apparatus for routing signals through a communication system having multiple destination nodes |
5890054, | Nov 14 1996 | Symbol Technologies, LLC | Emergency mobile routing protocol |
5890067, | Jun 26 1996 | Microsoft Technology Licensing, LLC | Multi-beam antenna arrays for base stations in which the channel follows the mobile unit |
5907540, | Sep 21 1994 | Hitachi, Ltd. | Radio data communication apparatus having a relay function and radio data communication method and system using the same |
6023623, | Feb 16 1995 | T-Mobile Deutschland GmbH | Process for dynamic channel allocation in mobile radio networks |
6052557, | Jan 12 1995 | EADS Secure Networks Oy | Direct mode repeater in a mobile radio system |
6055411, | Apr 22 1996 | Hitachi Communication Technologies, Ltd | Radio communication system having a wireless cell site |
6055429, | Oct 07 1996 | WORLD WIDE WIRELESS COMMUNICATIONS, INC | Distributed wireless call processing system |
6246380, | Aug 25 1998 | CARRIERCOMM, INC | System and method for establishing a point to point radio system |
6459899, | Sep 14 1998 | JSDQ MESH TECHNOLOGIES, L L C | Cellular radio routing system |
6480719, | Feb 27 1995 | JSDQ MESH TECHNOLOGIES, L L C | Method of call routing and connection in a radio communications system |
6704301, | Dec 29 2000 | Hitachi Energy Switzerland AG | Method and apparatus to provide a routing protocol for wireless devices |
6873848, | Feb 27 1995 | JSDQ MESH TECHNOLOGIES, L L C | Method of call routing and connection |
6965575, | Dec 29 2000 | ABB POWER GRIDS SWITZERLAND AG | Selection of routing paths based upon path quality of a wireless mesh network |
7058021, | Dec 29 2000 | ABB POWER GRIDS SWITZERLAND AG | Selection of routing paths based upon routing packet success ratios of wireless routes within a wireless mesh network |
20020107023, | |||
20040224695, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 16 2008 | SCHLOEMER, GERALD R | JSDQ Two, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021050 | /0191 | |
Mar 16 2012 | SCHLOEMER, GERALD R | JSDQ Two, LLC | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS | 027882 | /0646 | |
Apr 09 2012 | JSDQ TWO, L L C | JSDQ MESH TECHNOLOGIES, L L C | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 028011 | /0749 |
Date | Maintenance Fee Events |
Mar 22 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 22 2011 | 4 years fee payment window open |
Oct 22 2011 | 6 months grace period start (w surcharge) |
Apr 22 2012 | patent expiry (for year 4) |
Apr 22 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 22 2015 | 8 years fee payment window open |
Oct 22 2015 | 6 months grace period start (w surcharge) |
Apr 22 2016 | patent expiry (for year 8) |
Apr 22 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 22 2019 | 12 years fee payment window open |
Oct 22 2019 | 6 months grace period start (w surcharge) |
Apr 22 2020 | patent expiry (for year 12) |
Apr 22 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |