In a Diesel engine with variably actuated valves, the cam controlling each inlet valve is shaped to provoke the opening of the respective inlet valve during the engine's normal exhaust phase and thus realize exhaust gas recirculation within the engine, due to the fact that during the normal exhaust phase, part of the exhaust gas passes from the cylinder into the inlet port, from where it returns to the cylinder during the next induction phase, while part of the exhaust gas that had previously passed into the exhaust port returns to the cylinder during the induction phase due to the additional opening of the exhaust valve, in consequence of which the exhaust gas charges that return to the cylinder are subjected to further combustion in the next engine cycle.
|
0. 21. A multi-cylinder Diesel engine, comprising:
two inlet valves (VI) and two exhaust valves (VE) for each cylinder, each valve equipped with respective elastic means of return (4) that push the valve towards the closed position, for controlling the respective inlet and exhaust ports (I, E),
at least one camshaft (10) for operating the inlet (VI) and exhaust (VE) valves of the engine's cylinders via the respective valve lifters (7), each inlet valve (VI) and the two exhaust valves (VE) being controlled by a respective cam (9) of the said camshaft (10),
in which each of the said valve lifters (7) commands the respective inlet (VI) or exhaust (VE) valve against the action of the said elastic means of return (4) via the interposition of hydraulic means including a pressurized fluid chamber (6),
the pressurized fluid chamber (6) associated with each inlet valve (VI) or with the two exhaust valves (VE) being suitable for connection via a solenoid valve (15) to a discharge channel (12) for the purpose of decoupling the valve from its respective valve lifter and provoking rapid closure of the valve under the effect of the elastic means of return (4),
electronic means of control for controlling each solenoid valve (15) to vary the timing and travel of the respective inlet (VI) or exhaust (VE) valve according to one or more of the engine's operating parameters,
characterized in that the control cam (9) of each inlet valve (VI) is shaped so as to provoke the opening of the respective inlet valve (VI) during the engine's normal exhaust phase to accomplish internal exhaust gas recirculation (EGR) due to the fact that during the normal exhaust phase part of the exhaust gas (BA) passes from the cylinder into the inlet port (I), and then returns to the cylinder during the next induction phase,
and in that said engine also comprises means for providing external exhaust gas recirculation EGR,
whereby the combination of internal EGR and external EGR is used to control the temperature of the charge induced into the cylinder.
0. 11. A multi-cylinder Diesel engine, comprising:
two inlet valves (VI) and two exhaust valves (VE) for each cylinder, each valve equipped with respective elastic means of return (4) that push the valve towards the closed position, for controlling the respective inlet and exhaust ports (I, E),
at least one camshaft (10) for operating the inlet (VI) and exhaust (VE) valves of the engine's cylinders via the respective valve lifters (7), each inlet valve (VI) and the two exhaust valves (VE) being controlled by a respective cam (9) of the said camshaft (10),
in which each of the said valve lifters (7) commands the respective inlet (VI) or exhaust (VE) valve against the action of the said elastic means of return (4) via the interposition of hydraulic means including a pressurized fluid chamber (6),
the pressurized fluid chamber (6) associated with each inlet valve (VI) or with the two exhaust valves (VE) being suitable for connection via a solenoid valve (15) to a discharge channel (12) for the purpose of decoupling the valve from its respective valve lifter and provoking rapid closure of the valve under the effect of the elastic means of return (4),
electronic means of control for controlling each solenoid valve (15) to vary the timing and travel of the respective inlet (VI) or exhaust (VE) valve according to one or more of the engine's operating parameters,
in which the said electronic means of control are capable of provoking the opening of each solenoid valve (15) to maintain the respective inlet valve (VI) or the respective exhaust valve (VE) closed, in consequence of which the engine can be made to selectively run according to different modes of operation controlled by the said solenoid valves (15), and
characterized in that the ends of the two inlet ports (I) associated with each cylinder have different geometries, so as to generate different levels of swirl of the induced air within the cylinder, and that the said electronic control means are capable of controlling the two inlet valves (VI) associated with these ports (I) in a differential manner, so as to enable the overall level of swirl within the cylinder to be modulated,
and in that the electronic means of control can be set up to close the inlet valve (VI) after bottom dead centre at maximum revolution and load.
1. A multi-cylinder Diesel engine, comprising:
two inlet valves and two exhaust valves for each cylinder, each valve equipped with respective elastic means of return that push the valve towards the closed position, for controlling the respective inlet and exhaust ports,
at least one camshaft for operating the inlet and exhaust valves of the engine's cylinders via the respective valve lifters, each inlet valve and the two exhaust valves being controlled by a respective cam of the said camshaft,
in which each of said valve lifters commands the respective inlet or exhaust valve against the action of the elastic means of return via the interposition of hydraulic means including a pressurized fluid chamber,
the pressurized fluid chamber associated with each inlet valve or with the two exhaust valves being suitable for connection via a solenoid valve to an discharge channel for the purpose of decoupling the valve from its respective valve lifter and provoking rapid closure of the valve under the effect of the elastic means of return,
electronic means of control for controlling each solenoid valve to vary the time and travel of the respective inlet or exhaust valve according to one or more of the engine's operating parameters,
in which each cam on the engine camshaft has a profile such that it tends to provoke the opening of the respective inlet valve or the respective exhaust valves that it controls, not only during the convention opening phase of the engine's normal operating cycle, but also in certain additional phases of the cycle,
in which said electronic means of control are capable of provoking the opening of each solenoid valve to maintain the respective inlet valve or the respective exhaust valves closed during the abovementioned conventional phase and/or during one or more of said additional phases in which the respective cam would tend to provoke the opening of the valve, in consequence of which the engine can be made to selectively run according to different modes of operation controlled by said solenoid valves, and
in which the profile of the cam controlling the exhaust valves provokes an additional opening phase of the exhaust valves, substantially during the final part of the induction phase, thereby realizing a post-charging operating cycle where the opening of the exhaust valves during the final part of the induction phase causes fresh air to first flow directly from the inlet port to the exhaust port, due to excess pressure in the inlet port, while successively, following the pressure increase in the exhaust port after the inlet valve is closed, part of the air returns from the exhaust port and enters the cylinder exploiting the excess pressure in the exhaust port, thereby improving cylinder replenishment,
said engine also being wherein the control cam of each inlet valve is shaped to such that is provokes the opening of the respective inlet valve during the engine's normal exhaust phase to accomplish exhaust gas recirculation inside the engine, due to the fact that during the normal exhaust phase part of the exhaust gas passes from the cylinder into the inlet port, and then returns to the cylinder during the next induction phase, while part of the exhaust gas that previously passed into the exhaust port returns into the cylinder during this induction phase due to said additional opening of the exhaust valve, in consequence of which the exhaust gas charges that return to the cylinder participate in the combustion on the next engine cycle.
2. A multi-cylinder Diesel engine according to
3. A multi-cylinder Diesel engine according to
4. A multi-cylinder Diesel engine according to
5. A multi-cylinder Diesel engine according to
6. A multi-cylinder Diesel engine according to
7. A multi-cylinder Diesel engine according to
8. A multi-cylinder Diesel engine according to
9. A multi-cylinder Diesel engine according to
10. A multi-cylinder Diesel engine according to
0. 12. The engine as set forth in
0. 13. The engine as set forth in
each cam (9) on the engine camshaft (10) has a profile such that it tends to provoke the opening of the respective inlet valve (VI) or the respective exhaust valves (VE) that it controls, not only during the convention opening phase of the engine's normal operating cycle, but also in certain additional phases of the cycle,
the said electronic means of control are capable of provoking the opening of each solenoid valve (15) to maintain the respective inlet valve (VI) or the respective exhaust valves (VE) closed during the above-mentioned conventional phase and/or during one or more of the said additional phases in which the respective cam would tend to provoke the opening of the valve, in consequence of which the engine can be made to selectively run according to different modes of operation controlled by the said solenoid valves (15), and
in which the profile of the cam (9) controlling the exhaust valves (VE) is such as to provoke an additional opening phase of the exhaust valves, substantially during the final part of the induction phase, thereby realizing an operating cycle of a post-charging type, where the opening of the exhaust valves (VE) during the final part of the induction phase causes fresh air to first flow directly from the inlet port to the exhaust port, due to excess pressure in the inlet port, while successively, following the pressure increase in the exhaust port after the inlet valve is closed, part of the air returns from the exhaust port and enters the cylinder exploiting the excess pressure in the exhaust port, thereby improving cylinder replenishment,
the said engine also being characterized in that the control cam (9) of each inlet valve (VI) is shaped to such that it provokes the opening of the respective inlet valve (VI) during the engine's normal exhaust phase to accomplish exhaust gas recirculation (EGR) inside the engine, due to the fact that during the normal exhaust phase part of the exhaust gas (BA) passes from the cylinder into the inlet port (I), and then returns to the cylinder during the next induction phase, while part of the exhaust gas (BS) that previously passed into the exhaust port returns into the cylinder during this induction phase due to the said additional opening of the exhaust valve (VE), in consequence of which the exhaust gas charges that return to the cylinder participate in the combustion on the next engine cycle.
0. 14. The multi-cylinder Diesel engine according to
0. 15. The multi-cylinder Diesel engine according to
0. 16. The multi-cylinder Diesel engine according to
0. 17. The multi-cylinder Diesel engine according to
0. 18. The multi-cylinder Diesel engine according to
0. 19. The multi-cylinder Diesel engine according to
0. 20. The multi-cylinder Diesel engine according to
0. 22. The multi-cylinder Diesel engine according to
in that the said electronic means of control are capable of provoking the opening of each solenoid valve (15) to maintain the respective inlet valve (VI) or the respective exhaust valves (VE) closed during the above-mentioned conventional phase and/or during one or more of the said additional phases in which the respective cam would tend to provoke the opening of the valve, in consequence of which the engine can be made to selectively run according to different modes of operation controlled by the said solenoid valves (15).
0. 23. The multi-cylinder Diesel engine according to
0. 24. The multi-cylinder Diesel engine according to
0. 25. The multi-cylinder Diesel engine according to
0. 26. The multi-cylinder Diesel engine according to
0. 27. The multi-cylinder Diesel engine according to
0. 28. The multi-cylinder Diesel engine according to
0. 29. The multi-cylinder Diesel engine according to
0. 30. The multi-cylinder Diesel engine according to
0. 31. The multi-cylinder Diesel engine according to
|
The present invention relates to multi-cylinder Diesel engines of the type employing variably actuated valves.
In American patent U.S. Pat. No. 6,237,551, the Applicant has already proposed an engine of this type including:
The object of the present invention is that of further perfecting the previously proposed engine for the purposes of achieving a series of advantages with regards to reducing harmful exhaust emissions and/or overcoming problems of cold starting or creating the so-called “blue smoke” in the “warm-up” phase after a cold start, and/or achieving improved performance and/or consumption reductions.
In order to achieve this objective, the subject of the invention is an internal combustion engine possessing all of the above indicated characteristics and also characterized by the fact that the cam controlling each inlet valve is shaped such that it provokes the opening of the respective inlet valve during the engine's normal exhaust phase to accomplish exhaust gas recirculation (EGR) inside the engine, due to the fact that during the normal exhaust phase part of the exhaust gas passes from the cylinder into the inlet port, and then returns to the cylinder during the next induction phase, while part of the exhaust gas that previously passed into the exhaust port returns into the cylinder during this induction phase due to the said additional opening of the exhaust valve, in consequence of which the exhaust gas charges that return to the cylinder participate in the combustion on the next engine cycle.
Thanks to internal EGR, it is possible to achieve substantial reductions in consumption and emissions at low revs and loads when cold. As can be seen, to realize both the “post-charging” cycle and internal EGR, an additional opening of the exhaust valves is needed during the induction phase. Nevertheless, maximum efficiency in the two cases is achieved with a different law and lift timing for the exhaust valves. Thanks to the use of variably actuated valves, it is possible to employ a cam with a predetermined geometry to achieve both objectives, since the aforesaid electronic means of control that intervene can realize, for a given cam geometry, different lift geometries for the exhaust valves.
In traditional engines, internal EGR can only be realized in a limited measure, as there would otherwise be an excessive reduction in the “swirl” of the air charge introduced into the cylinder due to the introduction of a mass of burnt gases with an angular motion that is null, or low or in the opposite direction. According to another characteristic of the invention, in order to significantly reduce emissions via an increase in internal EGR tolerability, the end sections of the two inlet ports associated with each cylinder are shaped such that one channels air into the cylinder in an almost tangential direction, while the other, having a spiral shape, generates a rotating vortex around an axis that is substantially parallel to the axis of the cylinder, the said electronic means of control being capable of controlling the two inlet valves associated with these ports in a differentiated manner and so modulate the level of “swirl” within the cylinder. In fact, the first inlet port, with the tangential outlet, is suitable for generating significant “swirl” from the first stages of inlet valve opening, while the second port has the function of “replenishment” and only generates “swirl” in synergy with the first. In this way, it is possible to choke air induction whilst maintaining high swirl, thereby avoiding the risks of stalling that are generated due to excessive EGR. Keeping the first port open and choking valve lift on the second minimises losses due to the surge effect, which have a negative effect on consumption.
Thanks to control over the effective compression ration, the engine according to the invention can also exploit, in the same manner as the known engine already proposed, the possibility of designing an engine with a relatively low geometric compression ratio, in the order of 17:1 for example or even lower. The electronic means of control can thus be set up to close the inlet valve after bottom dead centre at maximum revolutions and loads and to instead advance the closure of the inlet valve to bottom dead centre during starting. In this way, when starting, all of the cylinder's internal volume is exploited to avoid the risk of misfire and producing “blue smoke” due to low pressure and temperature, because all of the engine's geometric compression ratio is exploited, whilst at maximum revolutions and loads a law for valve lift similar to the conventional one is used.
According to another characteristic of the invention, the electronic means of control are set up to advance the closure of the inlet valves and/or to advance the opening of the exhaust valve on cold starts in order to reduce the flow of air through the engine and, in consequence, for a given amount of heat transferred to the exhaust gas, to increase exhaust temperature, to obtain the same result. Thanks to these characteristics, it is possible to obtain an increase to exhaust gas temperature during warm-up that is useful for activating exhaust gas post-treatment systems (catalysers and traps). In certain known engines, this result is achieved via a butterfly valve inserted in the inlet port, which has the drawback however of limited dynamic response.
Naturally, the fact that the engine according to the invention exploits an EGR system within the engine does not exclude the possibility of also using external EGR. In general, internal EGR (hot) is not as efficient as external EGR (cooled) in reducing nitrogen oxides. In any case, internal EGR (hot) can be used for reducing nitrogen oxides during the first phases of engine warm-up where the amount of external EGR cannot be maximised due to its low temperatures, which results in excessive emission levels of carbon and hydrogen oxides.
Another important advantage of the engine according to the invention, deriving from the possibility of using internal EGR, is that of obtaining an HCCI (Homogeneous Charge Compression Ignition) type of combustion. In fact, the variable valve actuation system can accurately control high internal EGR doses and dilute the charge to render it almost stoichiometric, simultaneously controlling its temperature by mixing with external EGR (cold). This is extremely important because the temperature of the charge influences the ignition delay caused by the high rarefaction of the mixture and, thanks to the high concentration of active radicals present in hot EGR, it can accelerate the speed of combustion.
The system also allows improved charge homogenisation and stratification. The control of the inlet and exhaust valves in a differentiated manner can be adjusted according to the engine's state of operation and allow stratification of air and internal EGR in a controllable manner. From the viewpoint of controlling self-ignition and combustion, the combination of this stratification of gases with the possibility of introducing fuel in small packets (multiple injection) allows homogenisation and/or stratification of the fuel/air/residual gases right from the very first phases of induction. In addition, the injection of a small amount (pilot) of fuel during the last phases of compression allows the charge to be locally enriched and guarantees its ignition and combustion.
The use of an oxygen sensor opportunely positioned on the engine exhaust allows continuous correction in the actuation of the valves and/or the introduction of fuel for correcting the effective mixture strength of each cylinder on a cycle-by-cycle basic.
Finally, the cycle-by-cycle control of air and internal EGR provided by the variable valve actuation system permits transition from HCCI combustion to conventional Diesel combustion without any vehicle driveability problems.
In the engine switch-off phase, inlet and/or exhaust valve lifts are modulated to minimise compression pressure inside the cylinder and, in consequence, torque oscillations on the engine shaft. This strategy significantly reduces engine/vehicle shaking and substitutes the butterfly device, inserted in the inlet line, which is currently used for the same purposes.
In addition, the possibility of selectively closing both the inlet and exhaust valves of any cylinder, even while running, allows the other cylinders to operate with higher charges and thus in a more efficient manner in terms of fuel consumption (modularity).
Further characteristics and advantages of the invention will become clear from the description that follows, supplied merely as a non limitative example and with reference to the enclosed drawings, where:
FIGS. 8(A)-8(G) schematically illustrate the operating cycle of the engine according to the invention and realized for the purpose of obtaining internal EGR, and
When the solenoid valve 15 is closed, the oil present in the chamber 6 transmits the movements of the piston 7 to the piston 5 and thus to the valve 1, in consequence of which the position of the valve 1 is determined by the cam 9. In other words, the cam 9 normally controls the opening of the valve 1 according to a cycle that depends on the profile of the cam, but it can be “disabled” any time it is wished by opening the solenoid valve 15, thereby interrupting the connection between the piston 7 and the valve 1.
The present invention refers to the application of the above described variable valve actuation system to a multi-cylinder Diesel engine, especially the type suited for utilization in automobiles, but also the application of any other type of variable valve actuation system with the same or similar characteristics.
With reference to
As can clearly seen in
As has just been explained above, the mode of operation that is realized with the valve lifts illustrated in
In the operating mode corresponding to the valve lift diagrams illustrated in
According to the invention, it is possible to selectively carry out the above-described dual actuations of the valves or just one of them.
In addition, it is possible to anticipate exhaust valve closure and thereby trap the residual gases inside the cylinder.
EGR allows fuel consumption and emissions to be reduced in cold-running conditions at low revolutions and loads. As can be seen, maximum efficiency of the system is achieved with the supplementary exhaust valve lift, which has different timing and duration in the case of post-charging (
In an engine according to the invention, the realization of internal EGR, in the mode of operation illustrated in
Instead, with regard to the “post-charging” effect realized with the mode of operation illustrated in
As has also been previously described, thanks to control of the effective compression ratio, the variable valve attraction system allows a lower geometric compression ration (GCR) to be adopted, with corresponding benefits in terms of performance as is clearly evident from the diagram in
As has already been described above, according to another characteristic of the invention, the engine is controlled in a manner that raises the exhaust gas temperature for activating the post-treatment systems (catalysers and traps) on cold starts. This is achieved by advancing closure of the inlet valve to reduce the flow of air through the engine, and thus, for a given amount of heat transferred to the exhaust gas, to increase exhaust temperature. The same effect can also achieved by advancing the opening of the exhaust valve.
Always according to the invention, control of the engine is provided for the purposes of realizing a HCCI type of combustion via internal EGR dosing, as has already been described in the foregoing. Furthermore, as has also been described in the foregoing, the system can be controlled to obtain charge homogeneity and stratification, closed-loop control of the engine, with the aid of an oxygen sensor positioned on the exhaust, and the transition from HCCI to normal combustion without any vehicle driveability problems. In addition, as has already been described in the foregoing, the engine can be controlled in a manner to minimize the compression pressure within the cylinder and, in consequence, torque oscillations on the engine shaft during the switch-off phase.
Still with reference to the mode of operation that accomplishes internal EGR, it should be noted that internal EGR (hot) is generally not as efficient in reducing nitrogen oxides as recirculation systems realized externally to the engine, which permit cooling of the gases. Nevertheless, internal EGR (hot) can be used to reduce nitrogen oxides during the first phases of engine warm-up after starting, where external EGR cannot be used due to its low temperature, resulting in excessive emission of carbon and hydrocarbon oxides.
Naturally, the principle of the invention being understood, the constructional details and forms of embodiment could be extensively changed with respect to that described and illustrated, by way of example, without leaving the scope of this invention.
Vattaneo, Francesco, Macor, Lorentino, Gianolio, Laura, Pecori, Andrea, Vafidis, Constantino
Patent | Priority | Assignee | Title |
7980232, | Jul 25 2006 | Yamaha Hatsudoki Kabushiki Kaisha | Four stroke internal combustion engine |
8096281, | Nov 07 2008 | C.R.F. Società Consortile per Azioni | Diesel engine having a system for variable control of the intake valves and internal exhaust-gas recirculation |
8991357, | Sep 27 2011 | Suzuki Motor Corporation | Internal combustion engine |
Patent | Priority | Assignee | Title |
4424790, | Feb 05 1979 | Societe d'Etudes de Machines Thermiques, S.E.M.T. | Method of improving the efficiency of a supercharged diesel engine |
4696265, | Dec 27 1984 | Toyota Jidosha Kabushiki Kaisha | Device for varying a valve timing and lift for an internal combustion engine |
4765288, | Sep 12 1985 | Robert Bosch GmbH | Valve control arrangement |
4889084, | May 07 1988 | Robert Bosch GmbH | Valve control device with magnetic valve for internal combustion engines |
4982706, | Sep 01 1989 | Robert Bosch GmbH | Valve control apparatus having a magnet valve for internal combustion engines |
5113812, | Sep 01 1989 | Robert Bosch GmbH | Valve control apparatus with magnet valve for internal combustion engines |
5140955, | Mar 08 1990 | Giken Kogyo K.K. (Honda Motor Co., Ltd., in English) | Method of controlling an internal combustion engine |
5918577, | Feb 04 1998 | Ford Global Technologies, Inc | Stratified exhaust residual engine |
6053136, | Jan 23 1998 | C R F SOCIETA CONSORTILE PER AZIONI | To internal combustion engines with variable valve actuation |
6109234, | Oct 16 1998 | Ford Global Technologies, Inc | Cylinder head intake system |
6237551, | Feb 04 1997 | C.R.F. Societa Consortile per Azioni | Multi-cylinder diesel engine with variable valve actuation |
6318348, | Jun 08 2000 | Visteon Global Technologies, Inc | Stratified exhaust gas recirculation strategy for internal combustion engine |
6321715, | Jun 23 2000 | Visteon Global Technologies, Inc | Conjugate vortex stratified exhaust gas recirculation system for internal combustion engine |
6321731, | Jan 19 2000 | Ford Global Technologies, Inc. | Engine control strategy using dual equal cam phasing combined with exhaust gas recirculation |
6386177, | Jan 25 2000 | NISSAN MOTOR CO , LTD | System and method for auto-ignition of gasoline internal combustion engine |
6390057, | Dec 14 1999 | NISSAN MOTOR CO , LTD | Compression self-ignition gasoline engine |
6427653, | Oct 29 1999 | Hitachi, LTD | System for driving and controlling CAM for internal combustion engine |
6439195, | Jul 30 2000 | Detroit Diesel Corporation | Valve train apparatus |
6497213, | May 16 2000 | Nissan Motor Co., Ltd. | Controlled auto-ignition lean burn stratified engine by intelligent injection |
6526940, | Dec 24 1999 | Isuzu Motors Limited | Multiple intake valve engine |
6718945, | Dec 18 2001 | C.R.F. Societa Consortile per Azioni | Multicylinder petrol engine with variable actuation of the valves |
6728626, | Jul 01 2002 | C.R.F. Societa Consortile per Azioni | Internal combustion engine with means for uniforming the amount of intake air in different cylinders, and method therefor |
6732710, | Jul 01 2002 | C.R.F. Societa Consortile per Azioni | Internal-combustion engine with two inlet valves for each cylinder and an electronically controlled system for actuating the inlet valves in differentiated and alternating ways |
6736092, | Jul 01 2002 | C.R.F. Societa Consortile Perazioni | Internal-combustion engine with an electronically controlled hydraulic system for actuation of the valves and means for compensating changes in the operating conditions of the hydraulic |
6745122, | Jan 14 2000 | Continental Teves AG & Co., oHG | Method for operating an internal combustion engine |
7066139, | Jul 10 2003 | Hyundai Motor Company | Intake port of lean burn engine and core thereof |
7077102, | Jan 17 2005 | Dual inlet port for internal combustion engine | |
20040000287, | |||
EP961018, | |||
JP288038, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 04 2005 | CRF Societa Consortile Per Azioni | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 25 2008 | ASPN: Payor Number Assigned. |
Mar 01 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 10 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 17 2011 | 4 years fee payment window open |
Dec 17 2011 | 6 months grace period start (w surcharge) |
Jun 17 2012 | patent expiry (for year 4) |
Jun 17 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 17 2015 | 8 years fee payment window open |
Dec 17 2015 | 6 months grace period start (w surcharge) |
Jun 17 2016 | patent expiry (for year 8) |
Jun 17 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 17 2019 | 12 years fee payment window open |
Dec 17 2019 | 6 months grace period start (w surcharge) |
Jun 17 2020 | patent expiry (for year 12) |
Jun 17 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |