A telecommunications system comprises an asynchronous transfer mode (atm) network having uncommitted bandwidth, and a plurality of adaptive grooming routers (agr) coupled to the network. The agrs comprise a group adapted to function as a virtual transit exchange whose fabric and control are distributed over the group. The virtual comprising the agrs incorporates independent connection control and call routing functions and has means for determining the current system status whereby to set up narrow band connections across the atm network based on that status determination.
|
0. 58. A method of routing traffic in a telecommunications system the method comprising the steps of:
interconnecting a plurality of routers across a broadband digital communications network by virtual trunks;
setting up narrowband connections across the network using the virtual trunks, the plurality of routers thereby being arranged to function as a distributed narrowband exchange; and
adapting narrowband traffic received at one of said routers to/from the network.
0. 35. A method of handling telecommunications traffic in a telecommunications system, the method comprising the steps of:
interconnecting a plurality of routers coupled to a broadband digital communications network, the interconnecting being by virtual trunks across the network;
arranging the routers to function as a distributed narrowband exchange to set up narrowband connections across the network; and
adapting narrowband traffic received at a said router to/from the network.
16. A telecommunications system comprising:
an asynchronous transfer mode (atm) network; and
a plurality of adaptive grooming routers (agrs) coupled to the network, each agr comprising an atm switch including means for adapting narrowband traffic received at said agr to/from the atm adaptation layer,
wherein the agrs are interconnected across the atm network by virtual trunks and are arranged to function as a distributed narrowband exchange to set up narrowband connections across the atm network.
0. 17. A telecommunications system comprising:
a broadband digital communications network; and
a plurality of adaptive grooming routers (agrs) coupled to the network, each agr comprising a traffic switch including at least one adaptive virtual junctor (AVJ) for adapting narrowband traffic received at said agr to/from the network,
wherein the agrs are interconnected across the network by virtual trunks and are arranged to function as a distributed narrowband exchange to set up narrowband connections across the network.
1. A telecommunications system comprising:
an asynchronous transfer mode (atm) network; and
a plurality of adaptive grooming routers (agrs) coupled to the network, each agr comprising an atm switch including at least one adaptive virtual junctor (AVJ) for adapting narrowband traffic received at said agr to/from the atm adaptation layer,
wherein the agrs are interconnected across the atm network by virtual trunks and are arranged to function as a distributed narrowband exchange to set up narrowband connections across the atm network.
12. A method of routing handling telecommunications traffic in a telecommunications system, the method comprising the steps of:
an asynchronous transfer mode (atm) network; and
interconnecting a plurality of adaptive grooming routers (agrs) coupled to the an asynchronous transfer mode (atm) network, each agr comprising an atm switch including at least one adaptive virtual junctor (AVJ) for adapting narrowband traffic received at said agr to/from the atm adaptation layer, the interconnecting being by virtual trunks across the atm network,
wherein the agrs are interconnected across the atm network by virtual trunks and are arranged arranging the routers to function as a distributed narrowband exchange to set up narrowband connections across the atm network; and
adapting narrowband traffic received at a said router to/from an atm adaptation layer.
0. 44. An adaptive grooming router (agr) for use in a telecommunications system comprising a broadband digital communications network to which the agr may be coupled, the agr comprising:
a traffic switch including at least one adaptive virtual junctor (AVJ) for adapting narrowband traffic received at said agr to/from the network, and
an interface for interconnecting the agr with one or more other agrs across the network by virtual trunks,
wherein the agr is arranged to function as at least part of a distributed narrowband exchange for setting up narrowband connections across the network.
2. A telecommunications system as claimed in
3. A telecommunications system as claimed in
4. A telecommunications system as claimed in
5. A telecommunications system as claimed in
6. A telecommunications system as claimed in
7. A telecommunications system as claimed in
8. A telecommunications system as claimed in
9. A telecommunications system as claimed in
10. A telecommunications system as claimed in
11. A telecommunications system as claimed in
13. A method as claimed in
14. A method as claimed in
15. A method as claimed in
0. 18. A telecommunications system according to
0. 19. A telecommunications system according to
0. 20. A telecommunications system according to
0. 21. A telecommunications system according to
0. 22. A telecommunications system according to
0. 23. A telecommunications system according to
0. 24. A telecommunications system according to
0. 25. A telecommunications system according to
0. 26. A telecommunications system according to
0. 27. A telecommunications system according to
0. 28. A telecommunications system according to
0. 29. A telecommunications system according to
0. 30. A telecommunications system according to
0. 31. A telecommunications system according to
0. 32. A telecommunications system according to
0. 33. A telecommunications system according to
0. 34. A telecommunications system according to
0. 36. A method according to
0. 37. A method as claimed in 35, comprising determining a set of potential voice routes for a connection and prioritizing said routes from an assessment of congestion of said potential voice routes.
0. 38. A method as claimed in 35, comprising determining the availability of a destination and rejecting traffic to that destination at source in the event that the destination is unavailable.
0. 39. A method as claimed in 35, comprising determining the current traffic status of the system prior to effecting routing of narrowband traffic across the system.
0. 40. A method according to
0. 41. A method according to
0. 42. A method according to
0. 43. A method according to
0. 45. An agr according to
0. 46. An agr according to
0. 47. An agr according to
0. 48. An agr according to
0. 49. An agr according to
0. 50. An agr according to
0. 51. An agr according to
0. 52. An agr according to
0. 53. An agr according to
0. 54. An agr according to
0. 55. An agr according to
0. 56. An agr according to
0. 57. An agr according to
0. 59. A method according to
determining one or more potential voice routes for a connection.
0. 60. A method according to
determining a set of potential voice routes for a connection; and
prioritising said routes from an assessment of congestion of said potential voice routes.
0. 61. A method according to
determining the availability of a destination; and
rejecting at source traffic to that destination in the event that the destination is unavailable.
0. 62. A method according to
determining the current traffic status of the system; and
routing narrowband traffic across the system in dependence on the determined current traffic status.
0. 63. A method according to
0. 64. A method according to
0. 65. A method according to
0. 66. A method according to
|
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,519,257. The reissue application Ser. Nos. are: 11/759,494; 11/759,508; 11/759,481; and 11/055,787. Application Ser. Nos. 11/757,494 and 11/759,508 are divisional applications of parent reissue application Ser. Nos. 11/055,787 and 11/759,481 is a continuation of parent reissue application Ser. No. 11/055,787.
This invention relates to digital communications systems and in particular to systems embodying asynchronous transfer mode (ATM) technology.
The asynchronous transfer mode (ATM) technology is a flexible form of transmission which allows any type of service traffic, voice, video or data, to be multiplexed together on to a common means of transmission. In order for this to be realised, the service traffic must first be adapted typically into 53 byte cells comprising 5 byte headers and 48 byte payloads such that the original traffic can be reconstituted at the far end of an ATM network. This form of adaptation is performed in the ATM adaptation layer (AAL).
A discussion of ATM adaptation of narrow band traffic is given in specification No GB-A-2,290,433 (EP 9411944) which describes a system and method in which an adaptive virtual junctor is used to adapt an ATM switch to perform a narrow band .e.g. 64 kb/s, switching function whereby to carry narrow band services on a broadband network
As telecommunications networks increase in complexity and carry increasing volumes of traffic, the current procedures for setting up connections between subscribers are limiting the performance of these networks. In particular, congestion may be caused by attempting to connect to a subscriber who is already busy, or by attempting to choose a route through an already congested part of the network. Thus equipment and resources can be wasted in attempts to set up calls which cannot be completed. A further problem is that of scalability. As the network expands to accommodate increased traffic and a larger number of subscribers, there is an increasing need to facilitate integration of new equipment into an existing network without simply increasing the congestion problem.
The object of the invention is to minimise or to overcome these disadvantages.
According to one aspect of the present invention there is provided a distributed telecommunications exchange system having independent call routing and connection control for setting up connections across the system.
According to another aspect of the invention there is provided a telecommunications system, including an asynchronous transfer mode (ATM) network, and a plurality of adaptive grooming routers (AGR) coupled to the network, wherein the AGRs comprise a group adapted to function as a single distributed or virtual transit exchange whereby in use to set up narrow band connections across the ATM network.
According to one aspect of the present invention there is provided a distributed telecommunications exchange system having means for determining the current status of the system whereby to effect routing of narrow band traffic across the system.
According to another aspect of the invention there is provided a method of communicating resource availability to maintain performance of a distributed exchange system under overload conditions.
According to a further aspect of the invention there is provided a method of routing telecommunications traffic in a system including an asynchronous transfer mode (ATM) network having uncommitted bandwidth, and a plurality of adaptive grooming routers (AGR) coupled to the ATM network, which AGRs comprise a group adapted to function as a virtual transit exchange whose fabric and control are distributed over the group, the method including determining the current system status whereby to set up narrow band connections across the ATM network based on that status determination.
The technique provides for the separation of call routing and connection control together with the advertising of the system status. This ensures a wide range of scaleability so that the application of dynamic trunking technology provides scaleability in a traffic sense. Further, the separation of call routing and connection control provides a distributed computing environment which is scaleable and managed by this advertisement resource. Because the distributed exchange manages its own internal traffic, effectively it provides means for balancing that traffic to the fabric and makes its own internal routing decisions.
Reference is here directed to our co-pending United Kingdom patent applications Nos. 9410294.4, 9410295.1, 9411944.0 and 9502552.4 which relate to arrangements and methods for handling narrow band traffic in an ATM communications network.
Embodiments of the invention will now be described with reference to the accompanying drawings in which:
Referring first to
The capacity of a single AGR node is dependent on the size of the host ATM switch, the number of connected AVJ devices and the capacity of the AVJ device itself. Further, the AVJ device can be dedicated to perform either a trunking function (termination of synchronous narrow-band circuits) or a grooming function (generation of traffic groups for transmission across the WAN) equivalent to a tandem switching function of NB networks. Therefore both the overall capacity of the node and the mix of traffic (intra and inter node) can be dimensioned according to need. For example, consider a node built using 8,000 channel AVJ devices, hosted to a 10 Gb/s ATM switch. A total of 11 fully interconnected AVJ devices with four dedicated to trunking and 7 to grooming yields node with a total of 70,000 circuits (32,000 TDM trunks and 28,000 WAN trunks). In this configuration the node can terminate up to 28,000 Erlangs of traffic from the synchronous local exchange network with over 80% of this traffic capable of being carried across the WAN. If however, the amount of WAN traffic is less, then one or more of the grooming AVJ devices could be sacrificed for a further trunking AVJ thus increasing the amount of synchronous trunking capacity.
For AGR network resilience, a minimum of two VTGs will interconnect all of the nodes within a network. The capacity of the routes can be dimensioned according to the communication demand—high capacity VTGs connecting high traffic routes, 47 trunks and up and low capacity VTGs connecting low demand routes 6-46 trunks. In this manner the overall grooming capacity of a node can be flexibly dimensioned to connect to either a very large number of nodes (with modest traffic on each route) or to a lower number of nodes (but with a large amount of inter-nodal traffic or a mix of both. As an example, consider the node described above, with 28,000 inter-nodal trunks. In one configuration this could support 178 similar nodes each node interconnected by two VTGs with an average capacity of 80 trunks (the capacities of the individual VTGs can of course dynamically increase and decrease according to demand). In this manner a network capacity of over 5,000,000 narrow-band trunks can be supported with over 80% of this traffic able to traverse the WAN at any one time.
The arrangement provides a means for establishing, maintaining and removing connections in an AGR network. The AGR network system is controlled from a proxy call routing server in an ATM network to provide new services to users in the network, stemming directly from the aforementioned separation of call routing from connection control which is illustrated in
Referring now to
Reference is now made
Connection control is responsible for ensuring that a connection can be made between the end points P and Q through the AGR network system. Messages can be passed from call routing (CR) to connection control (CC) which can then eliminate routes with respect to internal congestion, or may be continually passed from connection control to CR such that call routing may eliminate candidate routes in priority order. Internal congestion can be due to having to share the ATM network with other types of traffic so that voice traffic demands have to compete with other demands for the same resources, and also because inherently in the design of the AGR there is a fragmentation of resources in the physical devices. Whilst there may be a certain amount of capacity available on a pooled resource, it may in fact be fragmented over a number of physical devices and therefore steps should be taken to balance the load between the physical devices. It is possible to arrive at a situation where the carrying capacity is much less than the design capacity because this capacity cannot be accessed fully as a result of fragmentation. In such circumstances connection control eliminates the corresponding route and then passes the message back to call routing for forwarding to a destination AGR.
Thus, the destination AGR choice is based on the highest priority accessible, reachable, voice route which immediately identifies the AGR from which that voice route emanates so from that point on signalling messages are forwarded to the outgoing (OG) call routing on the other side of the network. At that stage the outgoing Call Routing is responsible for determining whether it can make a particular trunk circuit selection. A voice route consists of many trunk circuits, so call routing has to deal with the possible race conditions of incoming signalling on that side which may want to select the same voice circuit, because they are both way circuits, from that same voice route. There may be various circuit selection policies. Call routing monitors the progress of those signals and will then perform the final selection of the trunk circuit in that given voice route with respect to whether there is a race condition, which is termed glare, and also taking into account whether certain circuits are out of service, not provisioned, or the type of call, e.g. whether it is a test call. Once the circuit has been selected, call routing passes this information to connection control and begins the third stage of the process to actually connect the voice path between the end points P and Q, either in a unidirectional or bidirectional manner in the network system, this being referred to as a worm which is a specification of the nodes that the voice path will pass through. The content of the worm specifies the connection of the circuit at each stage of the connection in turn from trunking AVJ to grooming AVJ and back from grooming AVJ to trunking AVJ in the other remote AGR. Essentially the mechanism is driven by the worm being passed forward in a chain and then passed back as a form of acknowledgement. Once it has reached the outgoing stage again then the trunking AVJ responsible passes it to connection control which passes out a message to Call Routing which can then send out the outgoing IAM signal. This illustration of the worm is in fact a main path which shows the whole passage of a call set up. The call handling that is encompassed on the AGR has taken into account external and internal congestion. When the call routing is a proxy call routing, i.e. the AGR were just providing a connection entity, it is connection control's responsibility to handle internal congestion, and the particular form of call routing or special services would take into account their own means of determining external congestion, for the signalling scheme in use, and the handshake between Call Routing and connection control and the selection of the outgoing voice route applies equally to these proxy servers.
Outgoing AGRs are illustrated just to illustrate a means for balancing traffic load to local exchange LEC which happens to be dual homed onto these two outgoing AGRs. The local exchange LEA can select a destination point code. The LEA when it has performed digit analysis on the call derives a destination point codes (DPC) and from the destination point code derives particular signalling route and then a particular signalling link set and a particular signalling link to reach the AGR system layer MTP-3 (Message Transfer Part 3) whereby to determine whether the messages are indeed for this AGR, which from the DPC determines whether the messages are being forwarded to another exchange, either in the AGR system, or external to the AGR system, or whether they have in fact been routed incorrectly. From the destination point code and the originating point code, the MPT-3 can tell whether to handle this message internally, which is passed to the narrow band ISDN User Part (NIS UP), and determines whether the message came from local exchange LEB or from local exchange LEA, in which case it may be handled accordingly, or whether the destination point code differs from the AGR in this case, LEC, in which case there is an STP function whereby messages are forwarded to MTP3 in one of the outgoing AGRs using SAAL which is the broadband signalling ATM adaptation layer. If the destination point code and originating point code imply a signalling route, the message is passed to N-ISUP, which from the destination point code and the originating point code associates that signalling route with a particular incoming voice route, and the CR entity that takes the signalling messages and, by digit analysis, determines the possible set of destination point codes, i.e. the point code implies a possible set of outgoing voice routes that connect between the AGR network system and destination NB exchanges which therefore implies a possible set of outgoing AGRs which head-up those voice routes. Once a choice of voice route has been made with due consideration to load balancing, internal congestion, to determine which is the outgoing AGR, a similar scheme from Call Routing down through N-ISUP down to MTP3 signals the outgoing exchange, for example the local exchange LEC. Thus, the destination point code of the AGR is now replaced with the destination point code of exchange LEC, the originating point code is now replaced with that of the AGR network system rather than exchange LEA or LEB. The destination point code, will imply a particular voice route between that originating point code and the new destination point code, local exchange LEC which would imply a particular signalling route and therefore a particular signalling link set.
Referring now to
Call routing passes the set of potential destination AGRs to Connection Control. Connection Control is aware of the topology of the AGR network system, which AGRs are connected together by virtual trunk groups. There may be more than one virtual trunk group (VTG) between any given pair of AGRs. Therefore there is a choice for load balancing between VTGs, but combined with the candidate set of AGRs there could be more than one VTG to choose from overall. Connection control maps the set of AGRs onto the set of candidate VTGs which are carried in virtual paths in the ATM sense, referred to as virtual trunk routes, and connection control can establish from the set of VTGs those voice routes which are not reachable due to internal congestion. By knowing the capacity available on the VTGs, because these are dynamically sized, connection control knows from congestion criteria whether it can dilate any particular VTG and what the greatest likelihood of success will be for any given choice. This provides a tacility to block routes which are unreachable in the network at the outset. By rejecting calls with as small amount of processing as possible then, when the system is heavily overloaded there is reduced processing and signalling generated for calls which can not currentlby be established across the network. By providing this essentially negative feedback scheme, a call can be rejected at the periphery of the AGR network before an abortive attempt to route the call across the network and thus a high degree of carried traffic can be maintained. Connection control does not necessarily know the prioritisation of voice routes, but it will eliminate those voice routes which are not reachable without actually changing the priority and therefore it can achieve a load balancing capability with voice routes which are of equal priority or may have changed their dynamic priority from the call routing perspective. Call routing can thus select one given route which has a high degree or certainty of success and therefore need be only indirectly aware of the internal resource availability.
A preferred AGR connection protocol stack is illustrated by way of example in FIG. 9.
Referring now to
A VTR is a shared resource in the Connection Control, and therefore interrogation for its spare capacity can be single threaded on a call by call basis, providing a ready means to share out the spare capacity. The VTR CU information could be updated every time a call is modified in a VTG; it comprises as a means to reduce signalling, one could have a fixed time interval, for update, between which the VTR CU grants a credit per interval to each VTG it comprises based on that VTG's absolute—and change in utilisation in the previous interval, or any other appropriate scheme is applicable, so in this manner the VTR capacity monitor need not be precise in operation. When the VTR capacity monitor has crossed a certain predefined threshold, and there may be several such thresholds, it flags processed calls a corresponding degree of congestion, and thresholds would be determined according to a desired network performance and efficiency. Bandwidth for VTRs may be decided according to desired network performance and those thresholds can be used as an indication of internal congestion in place of or in conjunction with the absolute spare capacity, the indication of having crossed the threshold may provide a direct means of comparison and suitability between candidate VTRs in routing a call, and as a means for data/signalling compression.
A VTR capacity monitor can advertise its local congestion status in terms of thresholds or absolute capacity to all or select remote VTR capacity monitors to which it is connected, by VTGs through the VTGs it comprises, by using for example the ATM F5 cell method or any other equivalent signalling scheme which can be associated with a virtual channel connection or VTG. A VTRCU can advertise to all those VTRCUs or to a selection, based on any selection criteria, for example geographical distance or logical hierarchical placement. The VTGs could be given for example a geographic location or, reach or distance indicator, and thereby the congestion could be sent out as an indication to only a local area if the distance is below a certain threshold with an associated congestion threshold, thereby only AGRs within a given geographic locale will get signalled first and as congestion increases then it could spread to the wider AGR network system. One can envisage any scheme of selection criteria for any advantageous purpose, which may be select or universal in application. A VTR capacity monitor obtains remote VTR congestion indication for any VTG that it comprises and with regard to
As shown in
Referring now to
This incorporates a 5 part protocol for signalling over to a cascade of an arbitrary number of multiple stages, Each stage comprises an ingress and a egress process defined with respect to the ATM domain, egress being traffic that emanates from the ATM domain into the TDM domain in all cases. The egress process keeps a record of free channel timeslots and therefore dictates where the offset in any given trunk group, VTG or VCJ of a new channel is going to be by determining where a free timeslot is in relation to the other active channels already in the trunk group and therefore the offset into that group when the new channel is added. A similar process applies to the criteria for removal of an existing channel from the trunk group. Using the offset the egress process can signal to the ingress process which is responsible for assembly of that trunk group into ATM cells, and the ingress process is responsible for adding the channel through the dynamic structure data transfer function of our earlier patent, and the agress process can detect the occurrence of changes in trunk group size and therefore knows that the channel has been connected and can receive subsequently further changes on that particular VTG cor VCJ. This operation process, firstly is single threaded by VTG or VCJ, and the figure illustrates the two parts of the process, firstly signalling an offset from egress to ingress, and secondly making the change to trunk group size, and forwarding the next stage's offset as a fully pipelined process in a unidirectional manner, in which, connecting a voice path in the upstream direction from P to Q is achieved by signalling in the reverse direction from Q to P which is a preferred embodiment, because it minimises the signalling transactions involved, but does not imply the exclusion of signalling in the same direction as the voice circuit and moreover the unidirectional mechanism may be used to effect a bidirectional mechanism by signalling first from Q to P and then in an identical manner for the reverse downstream voice path signalling from P to Q. Once an egress process has signalled an ingress process, the ingress process can transfer signalling to the egress process in the same AVJ for example, the grooming AVJ at stage 2 which in turn determines the offset it needs for the VTG between stage 3 and 2 and signals to that ingress process in stage 3 and so on through the system. The offset may be embodied in a cell referred to as a worm which passes to and fro to set up a bidirectional voice path. Provision is made for AVJ stages 2, 3 and 4 to reject the connection because the congestion indication given by the VTR capacity monitor could be out of date with respect to the true capacity status in any AVJ because of delay race for-resource conditions in the AGR network system. Therefore, a backtracking capability is built into the AVJ connection entities and provision is made for the means to function correctly in the absence of an advertising mechanism in part or in total. Provision is also made for correct operation in the absence of a VTR capacity monitor by a backtrack capability or similar recovery means. The AVJs at stages 1 and 2, may optionally have capability to send a digital signature thereby guarding against any false simulation of that identity intentionally or otherwise. This provides a means of authentication such that each trunking AVJ at the end of a communication path known that it has connected the voice path through to AGR network correctly providing analogous integrity checks in existing narrow-band exchanges which have, for example, a additional integrity pattern or other signalling schemes to ensure proper cross-connection of narrow band channels through the fabric. We envisage sending a digital signature for unambiguously identifying the identities of the trunking AVJs at each end, and the circuits P and Q prior to or subsequent to completion of the voice path, in the bandwidth of that voice path on erection, or prior to dissolution of that voice path in order to provide a means to ensure continual integrity checking on operations pertaining to network connectivity. The grooming AVJs are free to choose any free time slot in their connection map. This need not be prescribed by the worm, but the worm can be annotated with that information so that connection control software can readily use the returned worm acknowledgement to check that the AVJ devices are performing the intended function. This is not a strict requirement, there still being a means for disconnection of any trunk circuit Q from any trunk circuit P by a voice path trace operation.
The arrangement and method described provide for the distribution of the exchange in terms of its fabric and its control and its enabling technologies with reference to the dynamic structure data transfer. There is uncommitted bandwidth within the fabric and consequently routing decisions can be fully independent of the operation of this distributed fabric. The distributed fabric can, because of this unallocated bandwidth use separate connections to the control layer for establishing the connections through the fabric and this in no way compromises external decisions that are made except when an overload situation is encountered. An advertising process provides knowledge of the distributed fabric. This includes local knowledge about a remote site such that routing decisions can be made and modified where necessary so as to reject traffic at source. The dynamic trunking enables the separation of call routing and connection control. The arrangement also provides a means of ensuring stability under overload situations and minimising the cost of handling traffic which would be rejected by destinations.
The separation of call routing and connection control together with advertising the system status ensures a wide range of scalability so that the application of dynamic trunking technology provides scalability in a traffic sense. Further, the separation of call routing and connection control provides a distributed computing environment which is scaleable and managed by this advertisement resource. Because the distributed exchange manages its own internal traffic, effectively it provides means for balancing that traffic to the fabric and makes its own internal routing decisions. Once that network grows through its scalability, a local exchange can dual home on to it and allow it to make its own routing decisions. The local exchange does not have to make any individual routing decisions to a variety of traffic exchanges. The separation further provides a facility to support a wide range of services using other signalling schemes. The fabric provides a connection engine that can accommodate a wide variety of signalling protocols appropriate for the type of service to be provided and that can set up connections.
The full knowledge of the network connectivity and the release of resources can be enabled by any node within the network, as it can trace through all connections from any starting point. This can be used to support failure recovery.
It will be appreciated that although the arrangement and method have been described above with particular reference to current standard protocols, such as SS7 signalling, it is in no way limited to the use of these particular protocols.
Stacey, David John, Brueckheimer, Simon Daniel, Mauger, Roy Harold
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5428607, | Dec 20 1993 | AT&T IPM Corp | Intra-switch communications in narrow band ATM networks |
5479402, | Mar 05 1991 | Fujitsu Limited | Logical channel setting system for ATM network |
5483527, | Dec 21 1994 | Alcatel Lucent | Terminal adapter for interfacing an ATM network with a STM network |
5600641, | Jul 07 1994 | International Business Machines Corporation | Voice circuit emulation system in a packet switching network |
5790522, | Oct 07 1994 | CISCO TECHNOLOGY, INC , A CORPORATION OF CALIFORNIA | Method and system for performing traffic congestion control in a data communication network |
6016319, | Oct 31 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Communications system for transmission of datagram packets over connection-oriented networks |
EP599764, | |||
GB2269724, | |||
GB2288297, | |||
GB2290433, | |||
GB2305812, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 03 1997 | Nortel Networks Limited | (assignment on the face of the patent) | / | |||
Jul 29 2011 | Nortel Networks Limited | Rockstar Bidco, LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027164 | /0356 | |
May 09 2012 | Rockstar Bidco, LP | Rockstar Consortium US LP | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030494 | /0804 | |
Jan 28 2015 | Bockstar Technologies LLC | RPX CLEARINGHOUSE LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034924 | /0779 | |
Jan 28 2015 | NETSTAR TECHNOLOGIES LLC | RPX CLEARINGHOUSE LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034924 | /0779 | |
Jan 28 2015 | MOBILESTAR TECHNOLOGIES LLC | RPX CLEARINGHOUSE LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034924 | /0779 | |
Jan 28 2015 | Constellation Technologies LLC | RPX CLEARINGHOUSE LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034924 | /0779 | |
Jan 28 2015 | ROCKSTAR CONSORTIUM LLC | RPX CLEARINGHOUSE LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034924 | /0779 | |
Jan 28 2015 | Rockstar Consortium US LP | RPX CLEARINGHOUSE LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034924 | /0779 | |
Feb 26 2016 | RPX Corporation | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 038041 | /0001 | |
Feb 26 2016 | RPX CLEARINGHOUSE LLC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 038041 | /0001 | |
Dec 22 2017 | JPMORGAN CHASE BANK, N A | RPX Corporation | RELEASE REEL 038041 FRAME 0001 | 044970 | /0030 | |
Dec 22 2017 | JPMORGAN CHASE BANK, N A | RPX CLEARINGHOUSE LLC | RELEASE REEL 038041 FRAME 0001 | 044970 | /0030 |
Date | Maintenance Fee Events |
Jul 22 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 25 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 24 2011 | 4 years fee payment window open |
Dec 24 2011 | 6 months grace period start (w surcharge) |
Jun 24 2012 | patent expiry (for year 4) |
Jun 24 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 24 2015 | 8 years fee payment window open |
Dec 24 2015 | 6 months grace period start (w surcharge) |
Jun 24 2016 | patent expiry (for year 8) |
Jun 24 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 24 2019 | 12 years fee payment window open |
Dec 24 2019 | 6 months grace period start (w surcharge) |
Jun 24 2020 | patent expiry (for year 12) |
Jun 24 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |