An electronic display screen is created by processing a mirror on a substrate glass. A back plate glass is then placed on top of the substrate glass and sealed to the back plate glass. A hermetic seal that includes an adhesive mixed with zeolites is disclosed. The hermetic seal can seal the back plate glass with the substrate glass. The application of the hermetic seal is not limited to the electronic display screen. Rather, the hermetic seal can be used to seal a variety of surfaces including metals, polymers, plastics, alloys, ceramics and the like.
|
1. A micro-electromechanical systems based device package comprising:
a back plate glass;
a substrate glass;
at least one mirror located between the substrate glass and the back plate glass; the at lease one mirror being configured to be actuated in an electronic display; and
a bead of an adhesive mixed with a zeolite, the adhesive applied between the back plate glass and the substrate glass; and , wherein the adhesive is applied substantially around the outer perimeter of the at least one mirror.
a mirror processed on the substrate glass.
0. 20. A micro-electromechanical systems device, comprising:
a back plate;
a substrate;
at least one mirror located between the substrate and the back plate, the at least one mirror being configured to be actuated; and
an adhesive mixed with a zeolite, the adhesive applied between the back plate and the substrate, wherein the zeolite is selected to have a pore size of about fifty angstroms, and wherein the adhesive is applied substantially around the outer perimeter of the at least one mirror.
6. A micro-electromechanical systems based (MEMS) device package comprising:
a back plate glass;
a substrate glass;
at least one MEMS structure located between the substrate glass and the back plate glass; and
a bead of an adhesive mixed with zeolites of different pore sizes, the adhesive applied between the back plate glass and the substrate glass, wherein the zeolites of different pore sizes are selected to absorb molecules of different diameters, wherein the adhesive is applied substantially around the outer perimeter of the at least one MEMS structure.
0. 14. A micro-electromechanical systems (MEMS) device, comprising:
a back plate;
a substrate;
at least one reflective MEMS device located between the substrate glass and the back plate glass; and
an adhesive mixed with a zeolite, the adhesive applied between the back plate and the substrate, wherein the zeolite is selected to absorb contaminant molecules outgassed by the at least one MEMS device, said contaminant molecules having a diameter of up to about ten angstroms, and wherein the adhesive is applied substantially around the outer perimeter of the at least one MEMS device.
10. A micro-electromechanical systems based (MEMS) device package comprising:
a back plate glass;
a substrate glass;
at least one MEMS structure located between the substrate glass and the back plate glass, the at least one MEMS structure being configured to be actuated; and
a bead of an adhesive mixed with a zeolite, the adhesive applied between the back plate glass and the substrate glass, wherein the zeolite is selected to have a pore size which allows the zeolite to absorb a contaminant gas that is outgassed by components of the package the at least one MEMS structure, and wherein said pore size is up to about fifty Angstroms, wherein the adhesive is supplied substantially around the outer perimeter of the at least one MEMS structure.
0. 2. The micro-electromechanical systems based device package of
3. The micro-electromechanical systems based device package of
4. The micro-electromechanical systems based device package of
0. 5. The micro-electromechanical systems based device package of
7. The micro-electromechanical systems based device package of
8. The micro-electromechanical systems based device package of
9. The micro-electromechanical systems based device package of
11. The micro-electromechanical systems based device package of
12. The micro-electromechanical systems based device package of
13. The micro-electromechanical systems based device package of
0. 15. The micro-electromechanical systems device of
0. 16. The micro-electromechanical systems device of
0. 17. The micro-electromechanical systems device of
0. 18. The micro-electromechanical systems device of
0. 19. The micro-electromechanical systems device of
0. 21. The micro-electromechanical systems device of
0. 22. The micro-electromechanical systems device of
0. 23. The micro-electromechanical systems device of
0. 24. The micro-electromechanical systems device of
0. 25. The micro-electromechanical systems device of
0. 26. The micro-electromechanical systems device of
0. 27. The micro-electromechanical systems device of
0. 28. The micro-electromechanical systems device of
|
The present invention relates to a hermetic seal and methods to create the same. Specifically, a functional hermetic seal is disclosed that includes an adhesive mixed with an active component that can act as an absorbing filter on a molecular level.
To create an electronic display screen, a micro-electromechanical systems (MEMS) based device such as a mirror is sandwiched between two glass plates: the back plate glass stand the substrate glass. The mirror is typically processed on the substrate glass. The back plate glass is then placed on top of the substrate glass to form the sandwich. The purpose of the back plate glass is to act as a viewing surface and to provide mechanical and environmental protection to the mirror. The sandwich is also referred to as the package.
The MEMS based device that is packaged in this manner is susceptible to problems associated with moisture and other harmful contaminants. The presence of moisture can cause stiction (static friction). The stiction can result because of the physical hydrogen bonding between the two glass surfaces in contact or because of the surface tension forces that result when the moisture between the two glass surfaces undergoes capillary condensation during the actuation of the MEMS based device. The presence of moisture can also cause electrochemical corrosion; for example, if the mirror includes an aluminum mirror.
The presence of harmful contaminants and moisture can pose a danger to the functioning of MEMS based device. For example, chlorine and moisture can combine to form an acidic environment that can be harmful to the MEMS based device. It is important that the package is moisture and contaminant free for the life of the device.
There are various channels by which water vapor or the contaminant can find its way inside the package. The moisture can enter the package from the environment in which the MEMS device is packaged. The moisture can permeate into the package from outside. The contaminant can be formed as a result of the outgassing of package components such as glass and polymers, especially at elevated temperatures.
In the prior art, to prevent the moisture and the contaminant from entering the package, the back plate glass and the substrate glass of the package are sealed to each other by using techniques such as welding and soldering, and by using o-rings. These prior art techniques are lacking in at least two respects. One, welding and soldering materials and o-rings occupy space. Real estate in MEMS based device packages is tight and there is a growing need for smaller form factors. Two, these prior art techniques do not eliminate the moisture and contaminants that are formed inside the package as a result of, for example, outgassing.
A simple technique to effectively seal two surfaces to each other that does not occupy additional real estate is desirable.
The present invention is illustrated by way of example and not limitation in the figure of the accompanying drawing, in which:
The hermetic seal including an adhesive mixed with an active component that can act as an absorbing filter on a molecular level is disclosed. The material can include a zeolite.
Additional features and advantages of the present invention will be apparent from the accompanying drawing and the detailed description that follows.
In the following descriptions for the purposes of explanation, numerous details are set forth such as examples of specific materials and methods in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that these specific details are not required in order to practice the present invention. In other instances, well known materials and methods have not been described in detail in order to avoid unnecessarily obscuring the present invention.
In this description, a hermetic seal and, methods to create the same are disclosed. The hermetic seal includes an adhesive mixed with molecular sieves or zeolites. In one embodiment, the zeolites can include aluminosilicate-structured minerals such as sodium aluminosilicate. In another embodiment, the zeolites can include microporous silicate-structured minerals. It will be appreciated that active components other than zeolites that can act as absorbing filters on a molecular level can also be used. In one embodiment, the adhesive can include an adhesive with low outgassing numbers. In other embodiments, the adhesives can include adhesives with various outgassing numbers.
In one embodiment, the zeolites are mixed with the adhesive in a weight: ratio of 50:50. In other embodiments, the zeolites are mixed with the adhesive in various weight ratios. In one embodiment, the zeolites include zeolites in the powder form. In another embodiment, the zeolites include zeolites pellets. In yet another embodiment, the zeolites include zeolites beads.
The hermetic seal of the present invention can be applied as a bead between two surfaces to seal the two surfaces. The surfaces can include glass, metal, polymer, plastic, alloy or ceramic surfaces, or a combination thereof. The amount of bead that is applied can depend on the estimated amount of moisture or contaminant gases that will have to be removed from the package during the life of the package. This amount can be calculated by considering factors such as the amount of moisture/contamination that is present inside the package when the package is formed, the permeation rate of the adhesive, and the outgassing potential of the package components.
The zeolites can absorb water molecules at high temperatures. Zeolites of different pore sizes can be selected to absorb different contaminants. In one embodiment, the zeolites are selected to absorb contaminant molecules such as aromatic branched-chain hydrocarbons that have critical diameters of up to ten angstroms. In another embodiment, zeolites of pore sizes between two and three angstroms can be selected to absorb molecules of diameters less than two angstroms, namely hydrogen and moisture molecules. In yet another embodiment, zeolites of pore sizes of fifty angstroms are used to absorb nitrogen and carbon dioxide. molecules. In yet another embodiment, the hermetic seal can include a mixture of zeolites of various pore sizes.
The hermetic seal of the present invention can be constructed in a simple manner without using techniques such as welding and soldering, or by using o-rings. The bead can be applied through a simple in-line manufacturing process. The bead occupies a negligible amount of real estate and it does not significantly bulk up the package. The hermetic seal includes active components in the form of zeolites that can trap the moisture and other contaminant gases in their pores. The hermetic seal provides mechanical support to the MEMS based device package.
The mirror 120 can be referred to as the MEMS based device or the MEMS structure. The package 100 can also be referred to as the glass sandwich. The package 100 formed by the components 100 can be a component of a flat panel display. An array of mirrors such as the mirror 120 can be processed on the substrate glass 110 to form the flat panel display. The back plate glass 140 serves as the viewing surface. The back plate glass 140 also serves a mechanical function because it prevents the user from touching the mirror 110.
The mirror 120 can be processed through conventional semiconductor technology processes. The mirror 120 can include a metallic mirror such as an aluminum mirror. It will be appreciated that in addition to the mirror 120, the package can include other display elements. It will be appreciated that clear plastic surfaces can replace the substrate glass 110 and the back plate glass 140.
The bead 130 can be applied around the perimeter of the mirror 120. For the embodiments in which the substrate glass 110 includes a plurality of mirrors 130 120, the bead 130 can be applied around the perimeter of the plurality of mirrors 120. In one embodiment, the bead 130 thickness is one hundred angstroms. In another embodiment, the bead 130 thickness is two hundred angstroms. In yet another embodiment, the bead 130 thickness is three hundred angstroms. In still other embodiments, beads 130 of various thicknesses that maintain a low form factor for the package 100 can be applied.
It will be appreciated that the application of the hermetic seal 130 of the present invention is not limited to the MEMS based products. The hermetic seal 130 can seal various surfaces of various devices and products. The hermetic seal 130 can seal surfaces including metals, plastics, polymers, ceramics, alloys and the like. The hermetic seal 130 of the present invention is ideal for the space critical environments because it occupies negligible real estate. The prior art seals that are formed by using techniques such as welding and soldering or by using o-rings can substantially bulk up the size of the package 100. The hermetic seal 130 can be applied through simple in-line manufacturing processes. The prior art techniques of welding and soldering require very high temperature processes that are expensive, can damage the package, and occupy valuable real estate.
The hermetic seal 130 acts as an environmental barrier by blocking humidity and chemical contaminants from entering the package 100. The hermetic seal 130 includes an adhesive mixed with an active component such as the zeolites. The adhesive alone, even a low permeation rate adhesive, cannot serve as a perfect environmental barrier because it eventually allows the contaminants and moisture to permeate. The active component can grab the contaminants and moisture that try to permeate into the package 100, instead of merely blocking their entry. The active component can grab the contaminant gases that result from outgassing of the components 100 after the package 100 is formed. The active component can grab the portion of the adhesive that evaporates into the package 100 while the adhesive is curing. The thickness of the bead 130 and the amount of active component that is mixed with the adhesive can depend on the package 100 estimated life time and the estimated amount of contaminants and moisture that can penetrate the package 100 during the expected life time.
In some embodiments, an outer bead 150 of adhesive is applied around the perimeter of the bead 130. The outer bead 150 can include a low permeation rate adhesive. The outer bead 150 can provide additional environmental protection to the package 100. The outer bead can be useful for the aggressive environment in which the bead 130 alone cannot serve as an effective hermetic seal without being loaded with an impractical amount of the active component. If the bead 130 includes a very high portion of zeolites in the zeolites-adhesive mixture, for example more than sixty percent zeolites by weight, the bead 130 can become microscopically porous. The bead 130 can also become highly non-viscous and thus difficult to apply. Also, the bead 130 with a high percentage of zeolite by weight may not provide a robust mechanical support to the package 100. In aggressive environments, the application of the outer bead 150 can slow down the penetration process of contaminants and moisture into the package 100.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Chui, Clarence, Kothari, Manish
Patent | Priority | Assignee | Title |
7561334, | Dec 20 2005 | SNAPTRACK, INC | Method and apparatus for reducing back-glass deflection in an interferometric modulator display device |
7629678, | Sep 27 2004 | SNAPTRACK, INC | Method and system for sealing a substrate |
7642127, | Sep 27 2004 | SNAPTRACK, INC | Method and system for sealing a substrate |
7715080, | Apr 13 2006 | SNAPTRACK, INC | Packaging a MEMS device using a frame |
7826127, | Jun 21 2006 | SNAPTRACK, INC | MEMS device having a recessed cavity and methods therefor |
7935555, | Sep 27 2004 | SNAPTRACK, INC | Method and system for sealing a substrate |
8379392, | Oct 23 2009 | SNAPTRACK, INC | Light-based sealing and device packaging |
8735225, | Sep 27 2004 | SNAPTRACK, INC | Method and system for packaging MEMS devices with glass seal |
8928967, | Apr 08 1998 | SNAPTRACK, INC | Method and device for modulating light |
8970939, | Sep 27 2004 | SNAPTRACK, INC | Method and device for multistate interferometric light modulation |
8971675, | Jan 13 2006 | SNAPTRACK, INC | Interconnect structure for MEMS device |
8988760, | Jul 17 2008 | SNAPTRACK, INC | Encapsulated electromechanical devices |
9001412, | Sep 27 2004 | SNAPTRACK, INC | Electromechanical device with optical function separated from mechanical and electrical function |
9110289, | Apr 08 1998 | SNAPTRACK, INC | Device for modulating light with multiple electrodes |
Patent | Priority | Assignee | Title |
2534846, | |||
3439973, | |||
3443854, | |||
3653741, | |||
3656836, | |||
3704806, | |||
3813265, | |||
3900440, | |||
3955880, | Jul 20 1973 | Organisation Europeenne de Recherches Spatiales | Infrared radiation modulator |
4036360, | Nov 12 1975 | Vistatech Corporation | Package having dessicant composition |
4074480, | Feb 12 1976 | Kit for converting single-glazed window to double-glazed window | |
4099854, | Oct 12 1976 | The Unites States of America as represented by the Secretary of the Navy | Optical notch filter utilizing electric dipole resonance absorption |
4228437, | Jun 26 1979 | The United States of America as represented by the Secretary of the Navy | Wideband polarization-transforming electromagnetic mirror |
4377324, | Aug 04 1980 | Honeywell Inc. | Graded index Fabry-Perot optical filter device |
4389096, | Dec 27 1977 | Matsushita Electric Industrial Co., Ltd. | Image display apparatus of liquid crystal valve projection type |
4403248, | Mar 04 1980 | U S PHILIPS CORPORATION, ACOR OF DE | Display device with deformable reflective medium |
4431691, | Jan 29 1979 | TRUSEAL TECHNOLOGIES, INC ; TRUSEAL TECHNOLOGIES, INC , A CORPORATION OF THE STATE OF DELAWARE | Dimensionally stable sealant and spacer strip and composite structures comprising the same |
4441791, | Sep 02 1980 | Texas Instruments Incorporated | Deformable mirror light modulator |
4445050, | Dec 15 1981 | Device for conversion of light power to electric power | |
4482213, | Nov 23 1982 | Texas Instruments Incorporated | Perimeter seal reinforcement holes for plastic LCDs |
4500171, | Jun 02 1982 | Texas Instruments Incorporated | Process for plastic LCD fill hole sealing |
4519676, | Feb 01 1982 | U S PHILIPS CORPORATION, A DE CORP | Passive display device |
4531126, | May 18 1981 | Societe d'Etude du Radant | Method and device for analyzing a very high frequency radiation beam of electromagnetic waves |
4552806, | Jul 16 1982 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Cellular glass coated with a heat insulator |
4566935, | Jul 31 1984 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DE | Spatial light modulator and method |
4571603, | Nov 03 1981 | Texas Instruments Incorporated | Deformable mirror electrostatic printer |
4596992, | Aug 31 1984 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A DE CORP | Linear spatial light modulator and printer |
4615595, | Oct 10 1984 | Texas Instruments Incorporated | Frame addressed spatial light modulator |
4662746, | Oct 30 1985 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, 13500 NORTH CENTRAL EXPRESSWAY, DALLAS, TEXAS 75265, A CORP OF DE | Spatial light modulator and method |
4663083, | May 26 1978 | Electro-optical dipole suspension with reflective-absorptive-transmissive characteristics | |
4681403, | Jul 16 1981 | U.S. Philips Corporation | Display device with micromechanical leaf spring switches |
4710732, | Jul 31 1984 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DE | Spatial light modulator and method |
4748366, | Sep 02 1986 | Ocean Power Technologies, INC | Novel uses of piezoelectric materials for creating optical effects |
4786128, | Dec 02 1986 | QUANTUM DIAGNOSTICS, LTD | Device for modulating and reflecting electromagnetic radiation employing electro-optic layer having a variable index of refraction |
4790635, | Apr 25 1986 | Qinetiq Limited | Electro-optical device |
4856863, | Jun 22 1988 | Texas Instruments Incorporated | Optical fiber interconnection network including spatial light modulator |
4950344, | Dec 05 1988 | LAUREN INTERNATIONAL, INC | Method of manufacturing multiple-pane sealed glazing units |
4954789, | Sep 28 1989 | Texas Instruments Incorporated | Spatial light modulator |
4956619, | Jul 31 1984 | Texas Instruments Incorporated | Spatial light modulator |
4977009, | Dec 16 1987 | Ford Motor Company | Composite polymer/desiccant coatings for IC encapsulation |
4982184, | Jan 03 1989 | Lockheed Martin Corporation | Electrocrystallochromic display and element |
5018256, | Jun 29 1990 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE | Architecture and process for integrating DMD with control circuit substrates |
5018258, | Dec 15 1988 | Valmet Paper Machinery Inc. | Support system for a variable-crown roll |
5022745, | Sep 07 1989 | Massachusetts Institute of Technology | Electrostatically deformable single crystal dielectrically coated mirror |
5028939, | Jun 23 1986 | Texas Instruments Incorporated | Spatial light modulator system |
5037173, | Nov 22 1989 | Texas Instruments Incorporated | Optical interconnection network |
5044736, | Nov 06 1990 | Motorola, Inc. | Configurable optical filter or display |
5061049, | Jul 31 1984 | Texas Instruments Incorporated | Spatial light modulator and method |
5075796, | May 31 1990 | Eastman Kodak Company | Optical article for multicolor imaging |
5078479, | Apr 20 1990 | Colibrys SA | Light modulation device with matrix addressing |
5079544, | Feb 27 1989 | Texas Instruments Incorporated | Standard independent digitized video system |
5083857, | Jun 29 1990 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DE | Multi-level deformable mirror device |
5095375, | Mar 29 1991 | RAYTHEON COMPANY A CORPORATION OF DELAWARE | Holographic combiner edge seal design and composition |
5096279, | Jul 31 1984 | Texas Instruments Incorporated | Spatial light modulator and method |
5099353, | Jun 29 1990 | Texas Instruments Incorporated | Architecture and process for integrating DMD with control circuit substrates |
5124834, | Nov 16 1989 | Lockheed Martin Corporation | Transferrable, self-supporting pellicle for elastomer light valve displays and method for making the same |
5142405, | Jun 29 1990 | Texas Instruments Incorporated | Bistable DMD addressing circuit and method |
5153771, | Jul 18 1990 | Northrop Corporation | Coherent light modulation and detector |
5162787, | Feb 27 1989 | Texas Instruments Incorporated | Apparatus and method for digitized video system utilizing a moving display surface |
5168406, | Jul 31 1991 | Texas Instruments Incorporated | Color deformable mirror device and method for manufacture |
5170156, | Feb 27 1989 | Texas Instruments Incorporated | Multi-frequency two dimensional display system |
5172262, | Oct 30 1985 | Texas Instruments Incorporated | Spatial light modulator and method |
5179274, | Jul 12 1991 | Texas Instruments Incorporated; TEXAS INSTRTUMENTS INCORPORTED, A CORP OF DE | Method for controlling operation of optical systems and devices |
5192395, | Oct 12 1990 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, A CORP OF DELAWARE | Method of making a digital flexure beam accelerometer |
5192946, | Feb 27 1989 | Texas Instruments Incorporated | Digitized color video display system |
5206629, | Feb 27 1989 | Texas Instruments Incorporated | Spatial light modulator and memory for digitized video display |
5212582, | Mar 04 1992 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DELAWARE | Electrostatically controlled beam steering device and method |
5214419, | Feb 27 1989 | Texas Instruments Incorporated | Planarized true three dimensional display |
5214420, | Feb 27 1989 | Texas Instruments Incorporated | Spatial light modulator projection system with random polarity light |
5216537, | Jun 29 1990 | Texas Instruments Incorporated | Architecture and process for integrating DMD with control circuit substrates |
5226099, | Apr 26 1991 | Texas Instruments Incorporated | Digital micromirror shutter device |
5231532, | Feb 05 1992 | Texas Instruments Incorporated | Switchable resonant filter for optical radiation |
5233385, | Dec 18 1991 | Texas Instruments Incorporated | White light enhanced color field sequential projection |
5233456, | Dec 20 1991 | Texas Instruments Incorporated | Resonant mirror and method of manufacture |
5233459, | Mar 06 1991 | MASSACHUSETTS INSTITUTE OF TECHNOLOGY, A CORP OF MA | Electric display device |
5244707, | Jan 10 1992 | Alpha Fry Limited | Enclosure for electronic devices |
5254980, | Sep 06 1991 | Texas Instruments Incorporated | DMD display system controller |
5272473, | Feb 27 1989 | Texas Instruments Incorporated | Reduced-speckle display system |
5278652, | Apr 01 1991 | Texas Instruments Incorporated | DMD architecture and timing for use in a pulse width modulated display system |
5280277, | Jun 29 1990 | Texas Instruments Incorporated | Field updated deformable mirror device |
5287096, | Feb 27 1989 | Texas Instruments Incorporated | Variable luminosity display system |
5296950, | Jan 31 1992 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DELAWARE | Optical signal free-space conversion board |
5304419, | Jul 06 1990 | Alpha Fry Limited | Moisture and particle getter for enclosures |
5305640, | Oct 12 1990 | Texas Instruments Incorporated | Digital flexure beam accelerometer |
5311360, | Apr 28 1992 | LELAND STANFORD, JR UNIVERSITY | Method and apparatus for modulating a light beam |
5312513, | Apr 03 1992 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED A CORP OF DELAWARE | Methods of forming multiple phase light modulators |
5323002, | Mar 25 1992 | Texas Instruments Incorporated | Spatial light modulator based optical calibration system |
5325116, | Sep 18 1992 | Texas Instruments Incorporated | Device for writing to and reading from optical storage media |
5327286, | Aug 31 1992 | Texas Instruments Incorporated | Real time optical correlation system |
5331454, | Nov 13 1990 | Texas Instruments Incorporated | Low reset voltage process for DMD |
5339116, | Apr 01 1991 | Texas Instruments Incorporated | DMD architecture and timing for use in a pulse-width modulated display system |
5365283, | Jul 19 1993 | Texas Instruments Incorporated | Color phase control for projection display using spatial light modulator |
5381253, | Nov 14 1991 | BOARD OF REGENTS OF THE UNIVERSITY OF COLORADO, THE | Chiral smectic liquid crystal optical modulators having variable retardation |
5401983, | Apr 08 1992 | Georgia Tech Research Corporation | Processes for lift-off of thin film materials or devices for fabricating three dimensional integrated circuits, optical detectors, and micromechanical devices |
5411769, | Nov 13 1990 | Texas Instruments Incorporated | Method of producing micromechanical devices |
5444566, | Mar 07 1994 | Texas Instruments Incorporated | Optimized electronic operation of digital micromirror devices |
5446479, | Feb 27 1989 | Texas Instruments Incorporated | Multi-dimensional array video processor system |
5448314, | Jan 07 1994 | Texas Instruments | Method and apparatus for sequential color imaging |
5452024, | Nov 01 1993 | Texas Instruments Incorporated | DMD display system |
5454906, | Jun 21 1994 | Texas Instruments Inc. | Method of providing sacrificial spacer for micro-mechanical devices |
5457493, | Sep 15 1993 | Texas Instruments Incorporated | Digital micro-mirror based image simulation system |
5457566, | Nov 22 1991 | Texas Instruments Incorporated | DMD scanner |
5459602, | Oct 29 1993 | Texas Instruments | Micro-mechanical optical shutter |
5459610, | Apr 28 1992 | BOARD OF TRUSTEES OF THE LELAND STANFORD, JUNIOR UNIVERSITY, THE | Deformable grating apparatus for modulating a light beam and including means for obviating stiction between grating elements and underlying substrate |
5461411, | Mar 29 1993 | AGFA-GEVAERT N V | Process and architecture for digital micromirror printer |
5489952, | Jul 14 1993 | Texas Instruments Incorporated | Method and device for multi-format television |
5497172, | Jun 13 1994 | Texas Instruments Incorporated | Pulse width modulation for spatial light modulator with split reset addressing |
5497197, | Nov 04 1993 | Texas Instruments Incorporated | System and method for packaging data into video processor |
5499062, | Jun 23 1994 | Texas Instruments Incorporated | Multiplexed memory timing with block reset and secondary memory |
5500635, | Feb 20 1990 | Products incorporating piezoelectric material | |
5500761, | Jan 27 1994 | AT&T Corp. | Micromechanical modulator |
5506597, | Feb 27 1989 | Texas Instruments Incorporated | Apparatus and method for image projection |
5515076, | Feb 27 1989 | Texas Instruments Incorporated | Multi-dimensional array video processor system |
5517347, | Dec 01 1993 | Texas Instruments Incorporated | Direct view deformable mirror device |
5523803, | Apr 01 1991 | Texas Instruments Incorporated | DMD architecture and timing for use in a pulse-width modulated display system |
5526051, | Oct 27 1993 | Texas Instruments Incorporated | Digital television system |
5526172, | Jul 27 1993 | Texas Instruments Incorporated | Microminiature, monolithic, variable electrical signal processor and apparatus including same |
5526688, | Oct 12 1990 | Texas Instruments Incorporated | Digital flexure beam accelerometer and method |
5535047, | Apr 18 1995 | Texas Instruments Incorporated | Active yoke hidden hinge digital micromirror device |
5547823, | Jun 28 1993 | Ishihara Sangyo Kaisha, Ltd.; Akira, Fujishima; Kazuhito, Hashimoto | Photocatalyst composite and process for producing the same |
5548301, | Jan 11 1993 | Texas Instruments Incorporated | Pixel control circuitry for spatial light modulator |
5550373, | Dec 30 1994 | Honeywell INC | Fabry-Perot micro filter-detector |
5551293, | Oct 12 1990 | Texas Instruments Incorporated | Micro-machined accelerometer array with shield plane |
5552924, | Nov 14 1994 | Texas Instruments Incorporated | Micromechanical device having an improved beam |
5553440, | Oct 20 1994 | VITRO, S A B DE C V ; Vitro Flat Glass LLC | Multi-sheet glazing unit and method of making same |
5559358, | May 25 1993 | Honeywell INC | Opto-electro-mechanical device or filter, process for making, and sensors made therefrom |
5563398, | Oct 31 1991 | Texas Instruments Incorporated | Spatial light modulator scanning system |
5567334, | Feb 27 1995 | Texas Instruments Incorporated | Method for creating a digital micromirror device using an aluminum hard mask |
5570135, | Jul 14 1993 | Texas Instruments Incorporated | Method and device for multi-format television |
5579149, | Sep 13 1993 | Colibrys SA | Miniature network of light obturators |
5581272, | Aug 25 1993 | Texas Instruments Incorporated | Signal generator for controlling a spatial light modulator |
5583688, | Dec 21 1993 | Texas Instruments Incorporated | Multi-level digital micromirror device |
5589852, | Feb 27 1989 | Texas Instruments Incorporated | Apparatus and method for image projection with pixel intensity control |
5591379, | Jul 06 1990 | Alpha Fry Limited | Moisture getting composition for hermetic microelectronic devices |
5597736, | Aug 11 1992 | Texas Instruments Incorporated | High-yield spatial light modulator with light blocking layer |
5600383, | Jun 29 1990 | Texas Instruments Incorporated | Multi-level deformable mirror device with torsion hinges placed in a layer different from the torsion beam layer |
5602671, | Nov 13 1990 | Texas Instruments Incorporated | Low surface energy passivation layer for micromechanical devices |
5606441, | Apr 03 1992 | Texas Instruments Incorporated | Multiple phase light modulation using binary addressing |
5608468, | Jul 14 1993 | Texas Instruments Incorporated | Method and device for multi-format television |
5610438, | Mar 08 1995 | Texas Instruments Incorporated | Micro-mechanical device with non-evaporable getter |
5610624, | Nov 30 1994 | Texas Instruments Incorporated | Spatial light modulator with reduced possibility of an on state defect |
5610625, | May 02 1992 | Texas Instruments Incorporated | Monolithic spatial light modulator and memory package |
5619059, | Sep 28 1994 | National Research Council of Canada | Color deformable mirror device having optical thin film interference color coatings |
5619365, | Jun 08 1992 | Texas Instruments Incorporated | Elecronically tunable optical periodic surface filters with an alterable resonant frequency |
5619366, | Jun 08 1992 | Texas Instruments Incorporated | Controllable surface filter |
5636052, | Jul 29 1994 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Direct view display based on a micromechanical modulation |
5646768, | Jul 29 1994 | Texas Instruments Incorporated | Support posts for micro-mechanical devices |
5650881, | Nov 02 1994 | Texas Instruments Incorporated | Support post architecture for micromechanical devices |
5654741, | May 17 1994 | TEXAS INSTRUMENTS INCORPORATION; Sony Corporation | Spatial light modulator display pointing device |
5657099, | Aug 09 1994 | Texas Instruments Incorporated | Color phase control for projection display using spatial light modulator |
5659374, | Oct 23 1992 | Texas Instruments Incorporated | Method of repairing defective pixels |
5665997, | Mar 31 1994 | Texas Instruments Incorporated | Grated landing area to eliminate sticking of micro-mechanical devices |
5703710, | Sep 09 1994 | GEMFIRE CORPORATION, A CALIFORNIA CORPORATION | Method for manipulating optical energy using poled structure |
5710656, | Jul 30 1996 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Micromechanical optical modulator having a reduced-mass composite membrane |
5739945, | Sep 27 1996 | HANGER SOLUTIONS, LLC | Electrically tunable optical filter utilizing a deformable multi-layer mirror |
5745193, | Apr 01 1991 | Texas Instruments Incorporated | DMD architecture and timing for use in a pulse-width modulated display system |
5745281, | Dec 29 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD | Electrostatically-driven light modulator and display |
5771116, | Oct 21 1996 | Texas Instruments Incorporated | Multiple bias level reset waveform for enhanced DMD control |
5784190, | Apr 27 1995 | BAKER, JOHN M | Electro-micro-mechanical shutters on transparent substrates |
5784212, | Nov 02 1994 | Texas Instruments Incorporated | Method of making a support post for a micromechanical device |
5815141, | Apr 12 1996 | Tyco Electronics Corporation | Resistive touchscreen having multiple selectable regions for pressure discrimination |
5818095, | Aug 11 1992 | Texas Instruments Incorporated; TEXAS INSSTRUMENTS INCORRPORATED | High-yield spatial light modulator with light blocking layer |
5825528, | Dec 26 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Phase-mismatched fabry-perot cavity micromechanical modulator |
5835255, | Apr 23 1986 | SNAPTRACK, INC | Visible spectrum modulator arrays |
5842088, | Jun 17 1994 | Texas Instruments Incorporated | Method of calibrating a spatial light modulator printing system |
5853662, | Apr 17 1996 | Mitsubishi Gas Chemical Company, Inc. | Method for preserving polished inorganic glass and method for preserving article obtained by using the same |
5912758, | Sep 11 1996 | Texas Instruments Incorporated | Bipolar reset for spatial light modulators |
5939785, | Apr 12 1996 | Texas Instruments Incorporated | Micromechanical device including time-release passivant |
5986796, | Mar 17 1993 | SNAPTRACK, INC | Visible spectrum modulator arrays |
6028690, | Nov 26 1997 | Texas Instruments Incorporated | Reduced micromirror mirror gaps for improved contrast ratio |
6038056, | May 06 1998 | Texas Instruments Incorporated | Spatial light modulator having improved contrast ratio |
6040937, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation |
6049317, | Feb 27 1989 | Texas Instruments Incorporated | System for imaging of light-sensitive media |
6055090, | Apr 23 1986 | SNAPTRACK, INC | Interferometric modulation |
6061075, | Jan 23 1992 | Texas Instruments Incorporated | Non-systolic time delay and integration printing |
6099132, | Sep 23 1994 | Texas Instruments Incorporated | Manufacture method for micromechanical devices |
6113239, | Sep 04 1998 | Sharp Kabushiki Kaisha | Projection display system for reflective light valves |
6147790, | Jun 02 1998 | Texas Instruments Incorporated | Spring-ring micromechanical device |
6160833, | May 06 1998 | Xerox Corporation | Blue vertical cavity surface emitting laser |
6180428, | Dec 12 1997 | Xerox Corporation | Monolithic scanning light emitting devices using micromachining |
6201633, | Jun 07 1999 | Xerox Corporation | Micro-electromechanical based bistable color display sheets |
6232936, | Dec 03 1993 | Texas Instruments Incorporated | DMD Architecture to improve horizontal resolution |
6238755, | Nov 15 1997 | Dow Silicones Corporation | Insulating glass units |
6282010, | May 14 1998 | Texas Instruments Incorporated | Anti-reflective coatings for spatial light modulators |
6295154, | Jun 05 1998 | Texas Instruments Incorporated | Optical switching apparatus |
6323982, | May 22 1998 | Texas Instruments Incorporated | Yield superstructure for digital micromirror device |
6355328, | Feb 27 1996 | QUANEX IG SYSTEMS, ICN | Preformed flexible laminate |
6447126, | Nov 02 1994 | Texas Instruments Incorporated | Support post architecture for micromechanical devices |
6455927, | Mar 12 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Micromirror device package |
6465355, | Apr 27 2001 | Hewlett-Packard Company | Method of fabricating suspended microstructures |
6466358, | Dec 30 1999 | Texas Instruments Incorporated | Analog pulse width modulation cell for digital micromechanical device |
6473274, | Jun 28 2000 | Texas Instruments Incorporated | Symmetrical microactuator structure for use in mass data storage devices, or the like |
6480177, | Jun 02 1998 | Texas Instruments Incorporated | Blocked stepped address voltage for micromechanical devices |
6496122, | Jun 26 1998 | Sharp Laboratories of America, Inc | Image display and remote control system capable of displaying two distinct images |
6545335, | Dec 27 1999 | MAJANDRO LLC | Structure and method for electrical isolation of optoelectronic integrated circuits |
6548908, | Dec 27 1999 | MAJANDRO LLC | Structure and method for planar lateral oxidation in passive devices |
6549338, | Nov 12 1999 | Texas Instruments Incorporated | Bandpass filter to reduce thermal impact of dichroic light shift |
6552840, | Dec 03 1999 | Texas Instruments Incorporated | Electrostatic efficiency of micromechanical devices |
6582789, | Oct 01 1999 | Teijin Limited | Surface protective film and laminate formed therefrom |
6600201, | Aug 03 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Systems with high density packing of micromachines |
6606175, | Mar 16 1999 | Sharp Laboratories of America, Inc. | Multi-segment light-emitting diode |
6625047, | Dec 31 2000 | Texas Instruments Incorporated | Micromechanical memory element |
6630786, | Mar 30 2001 | Canon Kabushiki Kaisha | Light-emitting device having light-reflective layer formed with, or/and adjacent to, material that enhances device performance |
6643069, | Aug 31 2000 | Texas Instruments Incorporated | SLM-base color projection display having multiple SLM's and multiple projection lenses |
6650455, | May 05 1994 | SNAPTRACK, INC | Photonic mems and structures |
6674090, | Dec 27 1999 | MAJANDRO LLC | Structure and method for planar lateral oxidation in active |
6674562, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation of radiation |
6680792, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation of radiation |
6709750, | Apr 06 1998 | Metallgesellschaft Aktiengesellschaft | Hot-melt adhesive for sealing the edge of laminated glass |
6710908, | May 05 1994 | SNAPTRACK, INC | Controlling micro-electro-mechanical cavities |
6775174, | Dec 28 2000 | Texas Instruments Incorporated | Memory architecture for micromirror cell |
6778155, | Jul 31 2000 | Texas Instruments Incorporated | Display operation with inserted block clears |
6822628, | Jun 28 2001 | Canon Kabushiki Kaisha | Methods and systems for compensating row-to-row brightness variations of a field emission display |
6859218, | Nov 07 2000 | HEWLETT-PACKARD DEVELOPMENT COMPANY L P | Electronic display devices and methods |
6862022, | Jul 20 2001 | VALTRUS INNOVATIONS LIMITED | Method and system for automatically selecting a vertical refresh rate for a video display monitor |
6862029, | Jul 27 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Color display system |
6867896, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation of radiation |
7012726, | Nov 03 2003 | SNAPTRACK, INC | MEMS devices with unreleased thin film components |
7012732, | May 05 1994 | SNAPTRACK, INC | Method and device for modulating light with a time-varying signal |
7042643, | May 05 1994 | SNAPTRACK, INC | Interferometric modulation of radiation |
7119945, | Mar 03 2004 | SNAPTRACK, INC | Altering temporal response of microelectromechanical elements |
7123216, | May 05 1994 | SNAPTRACK, INC | Photonic MEMS and structures |
7130104, | Sep 27 2004 | SNAPTRACK, INC | Methods and devices for inhibiting tilting of a mirror in an interferometric modulator |
7136213, | Sep 27 2004 | SNAPTRACK, INC | Interferometric modulators having charge persistence |
7138984, | Jun 05 2001 | SNAPTRACK, INC | Directly laminated touch sensitive screen |
7142346, | Dec 09 2003 | SNAPTRACK, INC | System and method for addressing a MEMS display |
20010003487, | |||
20020015215, | |||
20020056898, | |||
20020075555, | |||
20020126364, | |||
20020187254, | |||
20030043157, | |||
20030072070, | |||
20030202266, | |||
20040051929, | |||
20040240032, | |||
20050254155, | |||
20060066935, | |||
20070097477, | |||
EP667548, | |||
JP2068513, | |||
JP3199920, | |||
WO3007049, | |||
WO9530924, | |||
WO9717628, | |||
WO9952006, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 10 2004 | KOTHARI, MANISH | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024484 | /0264 | |
Dec 10 2004 | CHUI, CLARENCE | IDC, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 024484 | /0264 | |
Jul 07 2005 | IDC, LLC | (assignment on the face of the patent) | / | |||
Sep 25 2009 | IDC,LLC | Qualcomm Mems Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023449 | /0614 | |
Aug 30 2016 | Qualcomm Mems Technologies, Inc | SNAPTRACK, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039891 | /0001 |
Date | Maintenance Fee Events |
Dec 28 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 29 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 15 2011 | 4 years fee payment window open |
Jan 15 2012 | 6 months grace period start (w surcharge) |
Jul 15 2012 | patent expiry (for year 4) |
Jul 15 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 15 2015 | 8 years fee payment window open |
Jan 15 2016 | 6 months grace period start (w surcharge) |
Jul 15 2016 | patent expiry (for year 8) |
Jul 15 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 15 2019 | 12 years fee payment window open |
Jan 15 2020 | 6 months grace period start (w surcharge) |
Jul 15 2020 | patent expiry (for year 12) |
Jul 15 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |