In an image forming apparatus including a periodic replacement part detachably mounted to the apparatus main body, the periodic replacement part is provided with a storage medium storing information on the replacement part. The information stored in the storage medium can at least be read on the main body side of the image forming apparatus using a communication portion communicating through a radio wave.
|
21. An image forming apparatus main body configured to detachably mount at least two replacement parts, each replacement part including a storage medium storing information regarding the replacement part, the image forming apparatus main body including a single communication portion to communicate with the storage medium,
wherein the communication portion has a communication range and is configured to be moveable relative to the storage media of the mounted at least two replacement parts so that the storage media are successively positioned within the communication range of the communication portion.
0. 25. An image forming apparatus, comprising:
a plurality of periodic replacement parts each including a storage medium, having an antenna, that stores information on the replacement part therein; and
a main body of said image forming apparatus to which said periodic replacement parts are detachably mounted, the main body including at least one communication portion,
wherein said main body reads the information stored in said storage medium through said communication portion and the antenna using radio waves, and
each antenna of the storage medium is attached to a circumferential surface of the respective periodic replacement parts.
19. An image forming apparatus, comprising:
a plurality of periodic replacement parts each including a storage medium that stores information on the replacement part therein;
a main body of said image forming apparatus to which said periodic replacement part is detachably mounted and including a single communication portion, wherein said main body reads the information stored in said storage medium through said single communication portion using a radio wave; and
a control portion notifying an operator of the detection if said communication portion of said main body detects a larger number of the storage media than the number of replacement parts mountable to said image forming apparatus.
20. An image forming apparatus, comprising:
a plurality of periodic replacement parts each including a storage medium that stores information on the replacement part therein; and
a main body of said image forming apparatus to which said periodic replacement part is detachably mounted and including a single communication portion,
wherein said main body reads the information stored in said storage medium through said single communication portion using a radio wave, and
wherein if said communication portion of said main body detects a larger number of the storage media than the number of replacement parts mountable to said image forming apparatus, information in said storage media is not reflected on the control of said main body.
0. 22. A wireless communication system provided at an image forming apparatus, comprising a main body and a plurality of periodic replacement parts insertably and removably mounted at the main body, the system comprising:
at least one main body antenna disposed at a communication portion of the main body; and
antennas attached to the periodic replacement parts,
wherein the antennas are supported by the periodic replacement parts such that coil axes of the antennas are substantially perpendicular to a direction of insertion and removal of the periodic replacement parts into and from the main body, and the main body antenna is supported by the main body such that a coil axis of the main body antenna is substantially parallel with at least one of the coil axes of the antennas.
1. An image forming apparatus, comprising:
a plurality of periodic replacement parts each including a storage medium that stores information on the replacement part therein; and
a main body of said image forming apparatus to which said periodic replacement part is detachably mounted, the main body including a single communication portion;
wherein said main body reads the information stored in said storage medium through said single communication portion using a radio wave, and
wherein said image forming apparatus has the multiple replacement parts within a range to allow the single communication portion to transmit/receive the radio wave to/from them, and the storage media of at least two replacement parts are communicable with the single communication portion on the apparatus main body side.
0. 28. An image forming apparatus, comprising:
a plurality of periodic replacement parts each including a storage medium, having a coil shaped antenna, that stores information on the replacement part therein; and
a main body of said image forming apparatus to which said periodic replacement part is detachably mounted, the main body including at least one communication portion,
wherein said main body reads the information stored in said storage medium through said communication portion and the coil shaped antenna using radio waves, and
each coil shaped antenna of the storage medium is attached to the respective periodic replacement parts such that a coil axis of the coil shaped antenna is substantially perpendicular to a direction of insertion and removal of the periodic replacement part into and from the main body.
16. A periodic replacement part configured to be detachably mounted to an image forming apparatus, said image forming apparatus including a plurality of the periodic replacement parts each including a storage medium that stores information on the replacement part therein; and a main body of said image forming apparatus to which said periodic replacement part is detachably mounted, the main body including a single communication portion, wherein said main body reads the information stored in said storage medium through said single communication portion using a radio wave, and wherein said image forming apparatus has the multiple replacement parts within a range to allow the communication portion to transmit/receive the radio wave to/from them, and the storage media of at least two replacement parts are communicable with the single communication portion on the apparatus main body side,
said replacement part comprising:
the storage medium that stores information on said replacement part, and the information stored in said storage medium can be read on said main body by the communication portion communicating through the radio wave.
2. The image forming apparatus according to
3. The image forming apparatus according to
4. The image forming apparatus according to
5. The image forming apparatus according to
6. The image forming apparatus according to
7. The image forming apparatus according to
8. The image forming apparatus according to
9. The image forming apparatus according to
10. The image forming apparatus according to
11. The image forming apparatus according to
12. The image forming apparatus according to
13. The image forming apparatus according to
14. The image forming apparatus according to
15. The image forming apparatus according to
17. The replacement part according to
18. The replacement part according to
0. 23. A wireless communication system according to
0. 24. A wireless communication system according to
0. 26. An image forming apparatus according to
0. 27. An image forming apparatus according to
0. 29. An image forming apparatus according to
0. 30. An image forming apparatus according to
|
1. Field of the Invention
The present invention relates to an image forming apparatus such as a printer and a copying machine including a periodic replacement part detachably mounted at the main body thereof and a replacement part used therefor in which a storage medium holding information on a replacement part is stored in the main body of the replacement part, and the information on the replacement part is used for controlling the main body of the apparatus.
2. Description of the Related Art
In recent years, in the image forming apparatus such as a printer and a copying machine as described above, there has been a general tendency to input information on a replacement part such as a toner cartridge to the main body of the apparatus and control the apparatus based on the input information in order to better the commercial value of the apparatus to improve the operability. For example, according to a practiced technique, in a network printer connected with a personal computer, information on the toner remaining amount of a toner cartridge, for example, is input to the printer main body. The input information is transmitted to a host computer, and the toner remaining amount is displayed at the monitor of a user interface for the host computer, so that the user can readily know the time to exchange the toner cartridge.
Also in the image forming apparatus such as a printer and a copying machine as described above, information on replacement parts such as a toner cartridge is input to the main body of the apparatus so that various replacement parts are identified from one another or kinds of toner in the toner cartridges are identified from one another.
As a method of inputting such information on a replacement part to the apparatus main body as described above and controlling the apparatus based on the input information, a replacement part such as a toner cartridge may be provided with a storage medium which can be used for information transmission to the main body of the apparatus.
A drawer connector is generally used as a conventional coupling device for transmitting information between the recording medium provided at a replacement part such as a toner cartridge as described above and the main body of the apparatus. This is because the drawer connector can be electrically connected in association with the mounting of the replacement part.
The conventional technique described above, however, suffers from the following disadvantages.
The present invention is therefore directed to a solution to the disadvantages associated with the conventional technique described above, and provides an image forming apparatus provided with information on a replacement part as an input to a main body thereof, and controlled based on the information, and a replacement part used therefor, in which the direction of connecting the replacement part is not restricted, the operability of the replacement part is not lowered, the size and cost of the apparatus or the replacement part are not increased and yet the information on the replacement part can surely be input to the apparatus main body.
More specifically, according to an aspect of the present invention, in an image forming apparatus having a periodic replacement part detachably mounted to a main body thereof, the replacement part includes a storage medium storing information on the replacement part. The information stored in the storage medium can at least be read on the main body side of the image forming apparatus by the communication portion communicating through a radio wave. In this structure, the storage medium provided at the replacement part and the apparatus main body side communicate by the communication portion communicating through a radio wave, so that the method of mounting the replacement part can be set as desired and the operability can be improved. Since a drawer connector for transmitting information is not necessary for the storage medium of the replacement part, the size of the storage medium can be reduced, so that the replacement part itself can be reduced in size.
Note that the replacement part is, for example, a toner cartridge, but the invention is not limited to this and is applicable to any replacement part used in an image forming apparatus such as a photoreceptor drum, a fuser, a transfer roll, an intermediate transfer body (such as a drum and a belt), and a waste toner box. The term “periodic” in “the periodic replacement part” means that the replacement is expected for the part, and the part actually does not have to be periodically replaced.
The information stored in the storage medium of the replacement part such as a toner cartridge storing toner is the used amount of the toner, the number of prints, information on the manufacture (such as the date of manufacture), user information, monitored information on the use environment such as temperature and humidity, and the number of reuse. Note, however, that the information stored in the storage medium of the replacement part is not limited to these kinds, and may include various kinds of information on the replacement part or the image forming apparatus using the replacement part.
Furthermore, an image forming apparatus having a periodic replacement part detachably mounted to a main body of the apparatus has multiple replacement parts, and a single communication portion is used as a communication portion on the main body side of the apparatus to storage media of the multiple replacement parts. In this structure, only the one communication portion on the apparatus main body side is necessary to the storage media of the multiple replacement parts, and therefore the size and cost of the apparatus can be reduced.
According to another aspect of the present invention, a periodic replacement part detachably mounted to an image forming apparatus is provided with a storage medium storing information on the replacement part. The information stored in the storage medium can at least be read on the main body side of the image forming apparatus by a communication portion communicating through a radio wave. In this structure, the storage medium provided at the replacement part and the image forming apparatus communicate by the communication portion communicating through a radio wave, and therefore the method of mounting the replacement part can be set as desired, so that the operability is improved. A drawer connector for information transmission is not necessary for the storage medium in the replacement part, and therefore the size of the storage medium can be reduced, so that the replacement part itself may be reduced in size.
Preferred embodiments of the present invention will be described in detail based on the following figures, wherein:
Embodiments of the present invention will be now described in conjunction with the accompanying drawings.
First Embodiment
In
The four color toner images transferred on the intermediate transfer belt 9 on one another are transferred altogether on a recording paper sheet P as a recording medium by a secondary roll 14 in pressure contact with the back up roll 12 through the intermediate transfer belt 9. The recording paper sheet P is fed by a paper feeding roll 18 or 19 from one of two paper feeding cassettes 16 and 17 provided at a lower portion in the apparatus main body, transported to a resist roll pair 22 through multiple transport roll pairs 20, 21 and then stopped. Then, the recording paper sheet P is transported to a secondary transfer position by the resist roll pair 22 which starts to rotate in synchronization with the toner image transferred on the intermediate transfer belt 9. At the secondary transfer position, the back up roll 12 and the secondary transfer roll 14 are in contact with each other under pressure through the intermediate transfer belt 9. The four color toner images are transferred altogether from the intermediate transfer belt 9 onto the recording paper sheet P at the secondary transfer position, and then the recording paper sheet P is subjected to fixing process by heat and pressure using a fixing unit 23, and switched by a switching gate which is not shown and discharged to a discharge tray 24 at the side surface of the apparatus main body or to an exhaust tray 25 at the upper part of the apparatus main body.
Note that the photoreceptor drum 2 after the toner image transfer process is removed of residual toner by a cleaning device 8 including a blade or the like to be ready for the next image forming process. The intermediate transfer belt 9 after the toner image transfer process is removed of residual toner by a belt cleaner 15 opposing the idle roll 13 to be ready for the next image forming process.
In use, as shown in
The waste toner scraped by the cleaning device 8 and the belt cleaner 15 from the photoreceptor drum 2 or the intermediate transfer belt 9 is recovered to a waste toner recovery container 26. The waste toner collected from the belt cleaner 15 in particular is transported to the waste toner recovery container 26 through a transport tube 27 by the transport portion including an auger and a transport screw.
As shown in
These developing units 5Y, 5M, 5C and 5K all have the same structure, and therefore the developing unit 5 Y for yellow (Y) will be described here by way of illustration. The developing unit 5Y for yellow (Y) may be roughly divided into a developing unit main body 40 and a developer cartridge 50.
In the developing unit main body 40, there are a developing roll 41 elongated in the direction perpendicular to the surface of the sheet and two spiral augers 42, 43 located at the rear surface side of the developing roll 41 and extending parallel to the developing roll 41. Here, when the developing roll 41 rotates, the spiral auger 42 transports the developer 44 stored in the developing unit main body 40 in a direction perpendicular to the surface of the sheet while stirring the developer 44. Meanwhile, the spiral auger 43 transports the developer 44 in the direction opposite to the transport direction by the spiral auger 42 while stirring the developer 44, such that the developer 44 is evenly supplied to the developing roll 41.
The developing roll 41 adsorbs carriers included in the developer 44 by the magnetic force of a magnet roll (not shown) provided therein, and forms a magnetic brush of the developer 44 on the surface of the developing roll 41, so that the toner adsorbed by the carriers is transported to a developing region opposing the photoreceptor drum 2. An electrostatic latent image formed on the photoreceptor drum 2 is made visible by the magnetic brush of the developer 44 including the carriers and the toner formed on the surface of the developing roll 41.
The developing cartridge 50 includes a cylindrical container elongated in the direction perpendicular to the surface of the sheet, and the inside of the developer cartridge 50 is divided into a storage chamber for new developer and a recovery chamber for degraded developer.
The storage chamber for new developer is provided with a supply opening (not shown) which is in communication with an approximately cylindrical casing 51 for guiding new developer into the developing unit main body 40. The cylindrical casing 51 is provided on the upper part of the developing unit main body 40 on the rear surface side. A spiral auger 52 is provided in the casing 51, and the developer 44 supplied from the developer cartridge 50 is guided by the spiral auger 52 to the supply opening 53 provided on the upper part of the developing unit main body 40 on the rear surface side, and supplied into the developing unit main body 40. An outlet positioned at the lower end of the supply opening 53 of the developing unit main body 40 is provided with a flap 54 which can be opened/closed as required. The flap is open when the developing unit 57 is in the developing position D in FIG. 3. Meanwhile, the flap 54 is closed by its own weight when the developing unit 5Y is in the position F or G in FIG. 3.
The degraded developer recovery chamber 55 in the developer cartridge 50 is provided with a circulating recovery passage 56 which is connected with an exhaust tube 57 bent in an approximately L shape. The exhaust tube 57 is provided about in the center on the upper part of the developing unit main body 40, and a recovery opening 58 positioned at the tip end of the exhaust tube 57 (at the lower end in
The rotary developing device 5 having this developing unit 5Y and the developing units 5M, 5C and 5K having the same structure allows the flap 54 to open the supply opening 53 by its own weight in the position D, i.e., the developing position where the developing unit main body 40 opposes the photoreceptor drum 2, and drives the spiral auger 52 to rotate, so that the new developer 44 is supplied into the developing unit main body 40 as required. When an electrostatic latent image on the photoreceptor drum 2 is developed by the developing unit main body 40, then the rotating body 30 rotates in the clockwise direction, and the developing unit comes to the lower right position E from the position D, the flap 54 is half-opened, and the recovery opening 58 is directed upwardly as shown in the figure. As a result, the old developer transported by the exhaust tube 57 is allowed to flow toward the recovery passage 56 rather than returning to the developing unit main body 40. The degraded developer C is recovered into the degraded developer recovery chamber 55 through the recovery passage 56 during the period in which the developing unit main body 40 travels from the lower left position F to the upper left position G. Thus, this circulating recovery passage 56 can prevent the recovered developer C from returning into the developing unit main body 40.
Meanwhile, as the developing unit main body 40 travels from the upper left position G to the upper right position D, i.e., the developing position by the function of an agitator (not shown) provided in the developer cartridge 50, the new developer 44 is sent to the casing 51 and then guided to the supply opening 53 by the spiral auger 52 in the casing 51. At this time, the flap 54 is open again to leave the supply opening 53 open, so that the new developer 44 is supplied into the developing unit main body 40 through the supply opening 53.
The structure of the developer cartridge 50 will be now described in conjunction with the perspective view in FIG. 4 and the exploded perspective view in FIG. 5.
As shown in
A recessed part defining a guide groove is formed around the supply opening 63 and the intake 72 in the circumferential direction. The guide groove is attached with a shutter 73 curved in a circular form along the outer surface of the developer cartridge 50 and provided slidably in the circumferential direction. A tubular slide cover 81 is slidably mounted around part of the recovery box 75 and the recovery case 71. The slide cover 81 is urged in the direction to cover the shutter 73 with a spring 82 as shown in FIG. 5.
Therefore, when the developer cartridge 50 is not mounted in a developer cartridge mounting portion in the rotating body 30, the shutter 73 blocks the supply opening 63 and the intake 72 by the elastic force applied by an element which is not shown, and the slide cover 81 is placed thereon.
Meanwhile, when the developer cartridge 50 is inserted to the developer cartridge mounting portion in the rotating body 30, an elongated groove 74 provided in the width-wise direction of the shutter 73 engages with a projection formed in the developer cartridge mounting portion. Then, turning the handle 78 with fingers rotates the developer cartridge 50 to move the shutter 73, so that the supply opening 63 and the intake 72 are both opened. The inclined open end of the slide cover 81 abuts against a stopper (not shown) on the apparatus side and the shutter 73 is exposed as a result.
In an image forming apparatus having detachable, periodic replacement parts mounted to the apparatus main body according to this embodiment, the replacement parts are each provided with a storage medium storing information on the replacement part. The information stored in the storage medium can at least be read on the main body side of the image forming apparatus by a communication portion communicating through a radio wave.
Also according to the embodiment, the image forming apparatus has multiple replacement parts, and a single communication portion on the main body side of the image forming apparatus can be used for communication with the storage media of these multiple replacement parts.
Furthermore, according to the embodiment, the communication portion for exchanging information between the storage media and the apparatus main body uses radio waves of a prescribed wavelength.
More specifically, according to the embodiment, as shown in
Meanwhile, as shown in
The communication portion 92 on the apparatus main body side and the storage element member 91 on the side of the developer cartridge 50 can communicate with each other through radio waves at a prescribed frequency. The communication portion 92 can at least read information related to the developer cartridge 50 or the like stored in the storage element 94 in the storage element member 91 on the side of the developer cartridge 50 through radio wave at a prescribed frequency and can read and also can both read and write such information as required. The communication portion 92 transmits/receives radio waves at a prescribed frequency to/from the antenna 93, and transmits information to the storage element member 91 on the side of the developer cartridge 50 in a non-contacted state.
The communication portion 92 on the apparatus main body side and the storage element member 91 on the side of the developer cartridge 50 communicate as follows. As shown in
More specifically, as shown in
As shown in
The radio wave at a prescribed frequency used for communication by the communication portion 92 on the apparatus main body side may be, for example, at a frequency of 13.56 MHz. The communicable range of the communication portion 92 varies depending upon the intensity of the radio wave used. It is about in the range from 2 to 4 cm for an extremely weak radio wave, while it is about 25 cm for a low power wave. If an extremely weak radio wave is used so that the communicable range of the communication portion 92 may be about in the range from 2 to 4 cm, as shown in
Note that as the storage element member 91 on the side of the developer cartridge 50, those as shown in
Meanwhile, the storage element member 91 on the side of the developer cartridge 50 does not have a power supply for its own. The element 91 obtains power for reading information stored in the storage element 94 or for transmitting the stored information to the communication portion 92 on the main body side by the function of electromagnetic induction when the radio wave transmitted from the communication portion 92 is, received by the receiving antenna 95.
Furthermore, according to the embodiment, information transmitted from the main body side of the image forming apparatus by communication can be written in an unused memory region of the storage medium of each replacement part.
In addition, according to the embodiment, the memory region of the storage medium of the replacement part includes, for example, rewritable and un-rewritable regions.
Also according to the embodiment, information stored in the storage medium of the replacement part is used for controlling the operation of the apparatus main body, and the control to change the operation of the apparatus main body is performed based the kind of the replacement part.
Furthermore, according to the embodiment, the image forming apparatus has multiple replacement parts and a moving device to move these multiple replacement parts. The multiple replacement parts are each moved to a position where the storage medium of the replacement part can communicate with the communication portion of the apparatus main body side.
More specifically, according to the embodiment, as shown in
Also according to this embodiment, as shown in
Furthermore, according to the embodiment, as shown in
In
In the color printer as an image forming apparatus according to the embodiment having the above described structure, information on a replacement part is input to the apparatus main body in the following manner and the apparatus is controlled based on the information. In the apparatus, the direction of connecting the replacement part is not restricted, the operability of the replacement part is not lowered, the size and cost of the apparatus or the replacement part are not increased and yet the information on the replacement part can surely be input to the apparatus main body.
More specifically, in the color printer according to the embodiment, the MCU 95 performs control as shown in FIG. 13. First, it is determined whether or not the power supply is on (step 101). If an interlock switch or the like to detect the open/closed state of the door of the apparatus main body 1 is off and it is determined that the power supply is not on, it is then determined whether or not a door for replacing the cartridge is closed (step 102). If the door for replacing the cartridge is not closed, the control stands by until the door for replacing the cartridge is closed (step 102). If it is determined that the power supply is on, the MCU proceeds to step 103.
Then, if it is determined that the power supply is on or that the door for replacing the cartridge is closed, the MCU communicates with the storage medium member 91 in the developer cartridge 50 called “CRUM” through the communication portion 92 on the apparatus main body side (step 103), reads out an ID code stored in the storage element 94 in the storage medium member 91 in the developer cartridge 50 to determine whether or not the ID code is “1” (step 104). Herein, the ID code of the developer cartridge 50 is represented by an individual key (number) set for each kind or color of toner.
Thereafter, if the ID code stored in the storage element 94 in the storage medium member 91 in the developer cartridge 50 is not a prescribed code, i.e., “1” here, the MCU immediately stops the apparatus (step 105), and the indication that a developer cartridge 50 other than the prescribed developer cartridge 50 is mounted is displayed on the display portion of the control panel or on the display of a personal computer connected through a LAN or the like (step 106).
Note that there may be provided a control portion which notifies the operator of the state if the communication portion 92 on the apparatus main body side detects a larger number of storage media than the number of replacement parts which can be mounted to the image forming apparatus.
If then the MCU determines that the ID code of the mounted developer cartridge 50 is “1”, it is determined whether or not the developer cartridge 50 is a new cartridge based on information stored in the storage element 94 in the storage medium member 91 in the developer cartridge 50 (step 107). If it is determined that the developer cartridge 50 is a new cartridge, the life counter (software counter) of the developer cartridge 50 is cleared (step 108) and a printing operation is started (step 109). If it is determined that the developer cartridge 50 is not a new cartridge, the life counter (software counter) of the developer cartridge 50 is not cleared and a printing operation is started (step 109).
At the time, after the counter to count the used amount of the developer in association with the printing operation is incremented (step 110), it is determined whether or not the printing JOB is completed (step 111). If the printing JOB is not completed, the MCU returns to step 109 and continues the printing operation (step 109). If the printing JOB has been completed, the MCU communicates with the storage medium member 91 called “CRUM” in the developer cartridge 50 through the communication portion 92 on the apparatus main body side, and writes data in the counter to count the used amount of the developer in the storage element 94 in the storage medium member 91 in the developer cartridge 50 (step 112), and the operation ends.
As described above, according to the embodiment, the developer cartridge 50 is installed with the storage element 94 storing information on the developer cartridge 50, and the information stored in the storage element 94 can at least be read on the apparatus main body side by the communication portion 92 which communicates through a radio wave. In this structure, the storage element 94 provided in the developer cartridge 50 and the apparatus main body side can communicate with one another by the communication portion 92 through a radio wave. Therefore, the method of mounting the developer cartridge 50 as a replacement part can be set as desired, so that the operability may be improved. A drawer connector for information transmission is not necessary for the storage element 94 in the developer cartridge 50, and therefore the size of the storage element 94 can be significantly reduced, so that the replacement part itself may be reduced in size.
Also according to the embodiment described above, the multiple developer cartridges 50 are provided, and the single communication portion 92 is used as a communication portion on the main body side of the image forming apparatus to the storage elements 94 in the multiple developer cartridges 50. Thus, since only the one communication portion 92 on the apparatus main body side is necessary for the memory elements 94 in the multiple developer cartridges 50, the size and cost of the apparatus can be reduced.
Furthermore, according to the embodiment, the communication portion 92 communicating information between the storage elements 94 in the multiple developer cartridges 50 and the apparatus main body utilizes a radio wave having a prescribed wavelength. Thus, the storage element 94 in the developer cartridge 50 and the apparatus main body can communicate in a non-contact state.
In addition, according to the embodiment, information transmitted from the main body side of the image forming apparatus by communication with the apparatus main body side can be written into the unused memory region 101a in the storage element 94 in the developer cartridge 50. Thus, the use state of the developer cartridge 50 can be input to the storage element 94, and optimum control can be achieved if the developer cartridge 50 which has been once used is re-mounted to the apparatus.
Also according to the embodiment, the memory region in the storage element 94 in the developer cartridge 50 includes the rewritable region 101 and the un-rewritable region 102. In this structure, information storage in the un-rewritable region 102 provided in the memory region 100 in the storage element 94 may be used to identify information such as the date of manufacture, the number of reuse, and the area of use. Therefore, the main body of the image forming apparatus can be controlled in an optimum manner based on the characteristic of the replacement part, and the stored information on the characteristic of the replacement part can be prevented from being inadvertently erased or altered. As a result, inconvenience can be avoided in the apparatus main body.
Second Embodiment
According to a second embodiment of the invention, as shown in
Also according to the second embodiment, the image forming apparatus has multiple replacement parts, and a moving device to move the communication portion on the apparatus main body side. The communication portion on the apparatus main body side can be moved to a position where the communication portion can communicate with the storage medium of a replacement part of interest by the moving device.
More specifically, according to the second embodiment, as shown in
At the rear surface side of the four toner cartridges 120Y, 120M, 120C and 120K, a threaded shaft 121 is provided in the arrangement direction of these four cartridges. The threaded shaft 121 is driven to rotate by a driving portion 122 such as a stepping motor. The antenna 93 of the communication 122 as a stepping motor. The antenna 93 of the communication portion 92 on the apparatus main body side is mounted in a screwed manner to the threaded shaft 121, so that as the threaded shaft 121 is driven to rotate, the antenna 93 of the communication portion 92 on the main body side reciprocates.
Furthermore, a position detection sensor 123 to detect the position of the antenna 93 of the communication portion 92 on the apparatus main body side is provided at an end of the threaded shaft 121, and a signal from the position detection sensor 123 is input to the control circuit 124.
According to the embodiment, the driving portion 122 is reversed by the control circuit 124, and the antenna 93 of the communication portion 92 on the main body side is moved until the position detection sensor 123 turns on. When the position detection sensor 123 turns on, the driving portion 122 stops the driving operation.
The control circuit 124 drives (normally rotates) the driving portion 122 for a prescribed time period and moves the antenna 93 of the communication portion 92 on the main body side to a home position, where the antenna 93 is stopped.
Then, the control circuit 124 drives (normally rotates) the driving portion 122 for a prescribed time period and moves the antenna 93 of the communication portion 92 on the main body side to a communication position with the storage element member 91Y in the yellow toner cartridge 120Y for communication with the member.
Then, the control circuit 124 similarly drives (normally rotates) the driving portion 122 for a prescribed time period and moves the antenna 93 of the communication portion 92 on the main body side sequentially to communication positions with the storage element members 91M, 91C, and 91K in the magenta, cyan and black toner cartridges 120M, 120C and 120K for communication with the members.
The antenna 93 of the communication portion 92 on the apparatus main body side finally returns to the home position.
Furthermore, according to the second embodiment, the communicable range of the communication portion on the apparatus main body side is set within the outer size of the apparatus main body.
In addition, according to the second embodiment, when the communication portion on the apparatus main body side detects a larger number of storage media than the number of replacement parts which can be mounted to the image forming apparatus, the information from the storage media are not reflected on the control of the apparatus main body.
As in the foregoing, according to the present invention, the storage medium provided at a replacement part and the main body side of the image forming apparatus communicate by the communication portion communicating through a radio wave, and therefore the method of mounting the replacement part can be set as desired, so that the operability can be improved. A drawer connector for information transmission is not necessary for the storage medium of the replacement part, and therefore the size of the storage medium can be reduced. As a result, the replacement part itself can be reduced in size.
Patent | Priority | Assignee | Title |
9213261, | Jul 23 2009 | Ricoh Company, Ltd. | Toner container and manufacturing method for toner container |
9436127, | Jul 23 2009 | Ricoh Company, Ltd. | Toner container and manufacturing method for toner container |
9529303, | Jul 23 2009 | Ricoh Company, Ltd. | Toner container and manufacturing method for toner container |
Patent | Priority | Assignee | Title |
6324351, | Dec 22 1998 | Sharp Kabushiki Kaisha | Image-forming apparatus unit and image-forming apparatus |
JP2000187415, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 01 2004 | Fuji Xerox Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 07 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 11 2014 | REM: Maintenance Fee Reminder Mailed. |
Dec 03 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 05 2011 | 4 years fee payment window open |
Feb 05 2012 | 6 months grace period start (w surcharge) |
Aug 05 2012 | patent expiry (for year 4) |
Aug 05 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 05 2015 | 8 years fee payment window open |
Feb 05 2016 | 6 months grace period start (w surcharge) |
Aug 05 2016 | patent expiry (for year 8) |
Aug 05 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 05 2019 | 12 years fee payment window open |
Feb 05 2020 | 6 months grace period start (w surcharge) |
Aug 05 2020 | patent expiry (for year 12) |
Aug 05 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |