In an ivus system, units are located outside or remote from the patient except for the display monitor (12), the catheter interface module (4) and the catheter (3) which are located adjacent the patient together with a control arrangement (13) to enable the said units to be remotely controlled from a position adjacent the patient.

Patent
   RE40608
Priority
Jan 06 1999
Filed
Dec 22 1999
Issued
Dec 16 2008
Expiry
Dec 22 2019
Assg.orig
Entity
Small
88
12
all paid
0. 19. A method of arranging components of an ivs system, the method comprising:
providing an ivus system having:
a catheter having an ultrasonic transducer mounted at least near a distal end thereof,
a catheter interface module connected to a proximal end of the catheter;
a display monitor,
a control device for controlling the system,
a signal processing data entry and data storage device for processing an storing data derived from energizing the ultrasonic transducer to output a signal to the display monitor in order to display an image of an interior of a patient's body, and
a bed for supporting a patient;
locating the catheter interface module, the display monitor and the control device adjacent the bed such as to be easily viewed and operated respectively by a clinician; and
locating the signal processing data entry and data storage device remotely from the bed at a sufficient distance to enable a clear space around the bed for occupation by a medical team so that the team can be adjacent the patient.
9. A method of arranging components of an ivs system, the method comprising:
providing an ivus system having:
a catheter having an ultrasonic transducer array mounted at least near a distal end thereof,
a catheter interface module connected to a proximal end of the catheter;
a display monitor,
a control device for controlling the system,
a signal processing data entry and data storage device for processing an storing data derived from energizing the ultrasonic transducer array to output a signal to the display monitor in order to display an image of an interior of a patient's body, and
a bed for supporting a patient;
locating the catheter interface module, the display monitor and the control device adjacent that bed such as to be easily viewed and operated respectively by a clinician; and
locating the signal processing data entry and data storage device remotely from the bed at a sufficient distance to enable a clear space around the bed for occupation by a medical team so that the team can be adjacent the patient.
0. 11. An ivus system comprising:
a) a catheter having an ultrasonic transducer mounted at least near a distal end thereof;
b) a catheter interface module connected to a proximal end of the catheter;
c) a display monitor;
d) a control device for controlling the system;
e) a signal processing data entry and data storage device for processing and storing data derived from energizing the ultrasonic transducer to output a signal to the display monitor in order to display an image of an interior of a patient's body; and
f) a bed for supporting a patient, wherein the catheter interface module, the display monitor and the control device are located adjacent to the bed such as to be easily viewed and operated respectively by a clinician, and
wherein the signal processing data entry and storage device is located remotely from the bed at a sufficient distance to enable a clear space around the bed for occupation by a medical team so that the medical team can be adjacent to the patent, and wherein the control device includes a wireless remote control device to enable control instructions to be given from a position adjacent the patient to remotely located units.
1. An ivus system comprising:
a) a catheter having an ultrasonic transducer array mounted at least near a distal end thereof;
b) a catheter interface module connected to a proximal end of the catheter;
c) a display monitor;
d) a control device for controlling the system;
e) a signal processing data entry and data storage device for processing and storing data derived from energizing the ultrasonic transducer array to output a signal to the display monitor in order to display an image of an interior of a patient's body; and
f) a bed for supporting a patient, wherein the catheter interface module, the display monitor and the control device are located adjacent to the bed such as to be easily viewed and operated respectively by a clinician, and
wherein the signal processing data entry and storage device is located remotely from the bed at a sufficient distance to enable a clear space around the bed for occupation by a medical team so that the medical team can be adjacent to the patient, and wherein the control device includes a wireless remote control device to enable control instructions to be given from a position adjacent the patient to remotely located units.
2. An ivus system as claimed in claim 1 in which at least one of the following is located remotely from the bed:
(i) a power distribution unit;
(ii) a video recorder; and
(iii) a video printer.
3. An ivus system as claimed in claim 1 in which the display monitor comprises a flat screen monitor.
4. An ivus system as claimed in claim 1 in which the control device incorporates a device to enable control instructions to be given by voice and incorporates a voice recognition device for accepting and implementing those instructions.
5. An ivus system as claimed in claim 1 wherein the ivus system is embedded in a conventional ultrasound system employing a transducer placed externally of the patient, so that units common to the ivus system and the conventional ultrasound system can be shared.
6. An ivus system as claimed in claim 1 wherein the ivus system is embedded in an X-ray system, so that units common to the ivus system and the X-ray system can be shared.
7. An ivus system as claimed in claim 1 in which the wireless control device comprises an infra-red remote control device.
8. An ivus system as claimed in claim 1 in which the display monitor is mounted on the catheter interface module.
10. A method as claimed in claim 9, comprising the step of locating at least one of the following at a position remote from the bed:
(i) a power distribution unit;
(ii) a video recorder; and
(iii) a video printer.
0. 12. An ivus system as claimed in claim 11 in which at least one of the following is located remotely from the bed:
(i) a power distribution unit;
(ii) a video recorder; and
(iii) a video printer.
0. 13. An ivus system as claimed in claim 11 in which the display monitor comprises a flat screen monitor.
0. 14. An ivus system as claimed in claim 11 in which the control device incorporates a device to enable control instructions to be given by voice and incorporates a voice recognition device for accepting and implementing those instructions.
0. 15. An ivus system as claimed in claim 11 wherein the ivus system is embedded in a conventional ultrasound system employing a transducer placed externally of the patient, so that units common to the ivus system and the conventional ultrasound system can be shared.
0. 16. An ivus system as claimed in claim 11 wherein the ivus system is embedded in an X-ray system, so that units common to the ivus system and the X-ray system can be shared.
0. 17. An ivus system as claimed in claim 11 in which the wireless control device comprises an infra-red remote control device.
0. 18. An ivus system as claimed in claim 11 in which the display monitor is mounted on the catheter interface module.
0. 20. A method as claimed in claim 19, comprising the step of locating at least one of the following at a position remote from the bed:
(i) a power distribution unit;
(ii) a video recorder; and
(iii) a video printer.

The present invention relates to ultrasonic visualisation systems and more particularly to systems of the kind to which our United Kingdom patent 2,233,094 and U.S. Pat. No. 5,257,629 relate. Such systems will hereinafter be referred to as intravascular ultrasound systems or IVUS.

Such systems include various units such as a cathode ray tube monitor, an ultrasound processing unit, a power distribution unit, and possibly a video recorder (VCR), together with a video printer as well as the catheter to be inserted into the patent and a catheter interface module linking the catheter to the other units referred to.

It has been proposed to mount the above types of unit in a cart or trolley that can be maneuvered into an appropriate position within the catheter laboratory or other relevant environment.

In such an arrangement the catheter and its associated catheter-interface-module (CIM), are not mounted on the cart or trolley because the catheter is to be inserted into the patient and the CIM would typically rest on or near the patient.

The floor area adjacent to the patient is at a premium because of the need to accommodate the medical team close to the patient. As a result, it is usually necessary to locate the cart or trolley some distance from the patient which in turn means that the display monitor has to have a reasonably large screen in order for the displayed image to be clearly visible to the clinician.

The present invention is concerned with the physical location of such units of the system in order to improve the operating environment for the medical team.

According to one aspect of the present invention in an IVUS system the said units are located outside or remote from the patient except for the display monitor, the CIM and the catheter which are located adjacent the patient together with a control arrangement to enable the said units to be remotely controlled from a position adjacent the patient.

According to a first aspect of the present invention, the display monitor comprises a flat screen monitor such as a liquid crystal display.

Because the monitor can now be located much nearer to the patient it can be made much smaller and still provide the clinician with a clearly visible image.

According to a second aspect of the present invention, the control arrangement incorporates means to enable control instructions to be given by voice and incorporates voice recognition manes for accepting and implementing those instructions.

According to a third aspect of the present invention, an IVUS system is embedded in a conventional ultrasound system which employs a transducer placed externally of the patient so that units of the conventional ultrasound system can also be employed in the IVUS system thus avoiding the duplication of those units. In other words, certain units are common to both the conventional ultrasound system and the IVUS system.

According to a fourth aspect of the present invention, the IVUS system is embedded in an existing X-ray system, again so that units common to both systems can be shared.

According to a fifth aspect of the present invention, the control arrangement includes an infrared remote control device to enable control instructions to be given from a position adjacent the patient to the remotely located units.

According to a sixth aspect of the present invention, the monitor is mounted on the CIM unit.

FIG. 1 is a perspective view of a known mobile cart or trolley of the kind already described;

FIG. 2 is a perspective view of a combined display and catheter-interface-module according to the present invention;

FIG. 3 is a diagrammatic representation of an IVUS embedded in a standard X-ray room according to the present invention;

FIG. 4 is a block diagram showing an IVUS embedded in a personal computer according to the present invention; and

FIG. 5 is a block diagram showing a single board IVUS embedded in an ultrasound system.

A cart or trolley 1 is provided with casters 2 by which it can be maneuvered within a catheter laboratory or other relevant environment.

A catheter 3 for insertion into a patient, is connected to a catheter interface module 4 which in turn is connected by a cable 5 to the various units carried by the trolley 1.

These units typically comprise a cathode ray tube monitor 6 mounted on the top of the cart or trolley 1, a keyboard and trackball 7 for controlling the display on the monitor, a power distribution unit 8, an ultrasound processing unit 9 (which could be a personal computer), a video recorder (VCR) 10 and an associated video printer 11.

The cart or trolley 1 typically comprises a framework 1a and a number of shelves 1b.

As discussed earlier, the cart or trolley arrangement shown in FIG. 1 would be located within the catheter laboratory or other relevant environment as close as possible to the patient without taking up floor space which would be needed by the medical team adjacent the patient. As a result the size of the screen of the monitor 6 has to be relatively large in order to provide a clear and visible display to the clinician.

The essence of the present invention is the elimination of the trolley or cart 1 and the positioning at a remote location of most of the units normally carried by the trolley as shown in FIG. 1.

The only units which would be located adjacent the patient are the CIM 4, a display screen 12 mounted on the CIM 4, and a control panel 13 by which the various units making up the system can be controlled. The catheter 3 is of course close to the patient as it has to be inserted into the patient.

Because the screen of the monitor 12 is close to the patient and therefore to the clinician, that screen can be much smaller than the screen of the known arrangement of FIG. 1.

In fact, instead of comprising a cathode ray tube display, the monitor 12 could comprise a flat liquid crystal display or other type of flat screen display.

The control panel can be through a simple local control such as a trackball, joy stick or similar pointing device, combined with Windows based software, and be very small. Alternatively, the control can be mounted with other control devices such as an X-ray gantry and bed controls.

To make control of the system easier a remote handset could be used. This could operate through an infrared link (or similar wireless communication), to the bedside unit, or directly with the processing hardware as an alternative where the room configuration demands it. This handset could provide all the control required to run the IVUS system such as adjusting gain, image magnification etc, and replaces the slides and buttons of a normal IVUS system.

According to a further aspect of the present invention, the system control could make use of voice-recognition technology. Here the handset could be employed with links to the processing hardware. System generated speech could be employed to allow interaction between operator and system that would make the need for close observation of the display less important. Recognition of key words could allow any function to be activated etc. Text entry could be managed in a similar way.

The advantages of the arrangements according to the present invention, so far described, is that the processing hardware is now free of display and interface devices such as a keyboard, and can be made small enough to be positioned in a convenient place such as underneath the patient's bed.

Overhead monitors in the room can be used as an alternative or additional display.

Alternatively, it can be housed with the X-ray electronics in the X-ray control room, an arrangement of this kind being shown in FIG. 3. The IVUS system can then make use of the standard peripherals such as printers and digital or video recorders already provided in the X-ray room. The processing hardware in the control room can also be provided with a parallel set of operating controls to enable operation from outside the catheter lab, by a suitable operator, and a patient's details can be entered from this control room.

Referring to FIG. 3, a patient's bed is indicated at 14 with the arrangement shown in FIG. 2 adjacent the bed.

The CIM 4 is connected to the IVUS computer 9 through an electrical connection 15 and a remote control joystick-type arrangement 16 is also connected to the computer 9 through an electrical connection 17.

All the other units required to make the IVUS system operative are already incorporated in the known standard X-ray equipment.

The data processing performed in an IVUS system consists of a series of discrete operations arranged in what is known as a pipeline. This means that the output of one process is the input of the next process. These processes can be arranged as separate modules, such as individual circuit cards, that are linked through a standard interface. An example of this is a set of dedicated cards that plug in to a peripheral component interconnect (PCI), computer bus. It then becomes possible to utilise commonly available standard cards or components to perform some of the non-IVUS specific processing such as data storage and archive, display drivers and power supplies. In this example the processing could be performed in a standard personal computer.

FIG. 4 illustrates an embodiment of the IVUS processing modules.

In FIG. 4 those items which are equivalent to items already described with reference to FIGS. 1 to 3 have the same reference numerals.

In FIG. 4 the overall personal computer arrangement is illustrated within the box 18.

Contained within the box 18 are the modules which are specific to the IVUS system and these are contained within the smaller box 19.

The modules which are within the box 18 but not within the smaller box 19 are those which could be standard items in many known imaging systems such as external ultrasound imaging systems.

These common units include a personal computer bus 20, a scan conversion module 21, a graphics card 22 and a unit such as a CD-ROM for storing data and archiving media 23. The modules which are specific to the IVUS system in box 19 comprise an analogue to digital converter module 24 which takes an analogue input 25 from the catheter-interface-module 4.

The output from the ADC 24 is raw digital data 26, which is input to a digital signal processing card 27 which is concerned with focusing and beam forming.

The card 27 is interconnected with a data store 28 which itself is also interconnected with the module 23.

With this arrangement one module 24 performs all of the data-capture operations and also undertakes the interface with the catheter-interface-module 4.

A second module 27 undertakes the intensive numerical calculations required to focus the received data signals. This is typically a focusing and noise reduction operation.

The outputs from 27 would typically be digital and have a much lower bandwidth than the input to this module. This output consists of focused A-scans which can be temporarily stored in a local disk 28, and archived suitable removable media 23. Alternatively, the output of module 21 can be stored and archived using a similar arrangement.

The module 21 performs scan conversion of the digital data to allow representation of it on raster-scanned display devices such as conventional computer monitors or video screens.

This operation is similar to the interpolation and zoom functions found in many imaging modalities.

The IVUS modality can therefore be incorporated into another imaging modality by utilising the following components:

In a further aspect of the present invention, and in particular of the processing hardware, the digital processing function could be incorporated into the IVUS data acquisition module.

This would employ custom digital chip design techniques resulting ASICs or FPGAs to embed the processing operation. An example of which is synthetic aperture processing.

The system could then consist of a single module that can be incorporated into another imaging modality such as conventional external ultrasound. The same technique could also be used in standard computer systems to provide IVUS.

FIG. 5 illustrates an embodiment of such an arrangement. Where those units or components which correspond with ones already described and illustrated have the same reference numerals.

A conventional external ultrasound has a transducer 29 the output signal of which inputs to a transmit/receive module 30 which in turn inputs to an analogue to digital converter (ADC) 31, which in turn inputs to a digital beam former 32. In parallel the IVUS system takes the signals from the transducer at the distal end of the catheter 3, passes them through the catheter-interface-module 4 and the combined ADC and focusing/beam forming module 24-27, the output of which is common with the output from the digital beam former 32, both of which input into the scan converter 21 followed by the graphics memory 22 and the display 12.

The dotted line 33 indicates the single board comprising essentially an IVUS system embedded in a known conventional ultrasound system.

Dickinson, Robert Julian, Glover, Richard Peter, Stenning, Anthony David

Patent Priority Assignee Title
10027075, Dec 21 2012 Volcano Corporation Laser direct structured connection for intravascular device
10058284, Dec 21 2012 Volcano Corporation Simultaneous imaging, monitoring, and therapy
10070827, Oct 05 2012 Volcano Corporation Automatic image playback
10105107, Jan 08 2015 ST JUDE MEDICAL INTERNATIONAL HOLDING S À R L Medical system having combined and synergized data output from multiple independent inputs
10109058, May 17 2015 LIGHTLAB IMAGING, INC Intravascular imaging system interfaces and stent detection methods
10166003, Dec 21 2012 Volcano Corporation Ultrasound imaging with variable line density
10172582, Nov 18 2015 LIGHTLAB IMAGING, INC X-ray image feature detection and registration systems and methods
10191220, Dec 21 2012 Volcano Corporation Power-efficient optical circuit
10219780, Jul 12 2007 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
10219887, Mar 14 2013 Volcano Corporation Filters with echogenic characteristics
10222956, Oct 13 2015 LIGHTLAB IMAGING, INC Intravascular imaging user interface systems and methods
10226597, Mar 07 2013 Volcano Corporation Guidewire with centering mechanism
10238367, Dec 13 2012 Volcano Corporation Devices, systems, and methods for targeted cannulation
10292677, Mar 14 2013 Volcano Corporation Endoluminal filter having enhanced echogenic properties
10327726, Nov 18 2015 LIGHTLAB IMAGING, INC X-ray image feature detection and registration systems and methods
10331099, Mar 12 2013 LightLab Imaging, Inc. Controller and user interface device, systems, and methods
10332228, Dec 21 2012 VOLCANO CORPORATION, System and method for graphical processing of medical data
10342502, Nov 18 2015 LIGHTLAB IMAGING, INC X-ray image feature detection and registration systems and methods
10413317, Dec 21 2012 Volcano Corporation System and method for catheter steering and operation
10420530, Dec 21 2012 Volcano Corporation System and method for multipath processing of image signals
10426590, Mar 14 2013 Volcano Corporation Filters with echogenic characteristics
10453190, Nov 23 2015 LIGHTLAB IMAGING, INC Detection of and validation of shadows in intravascular images
10499813, Sep 12 2014 LIGHTLAB IMAGING, INC Methods, systems and apparatus for temporal calibration of an intravascular imaging system
10568586, Oct 05 2012 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
10593037, Apr 14 2016 LIGHTLAB IMAGING, INC Method, apparatus, and system to identify branches of a blood vessel
10595820, Dec 20 2012 Volcano Corporation Smooth transition catheters
10631754, May 16 2016 LIGHTLAB IMAGING INC Intravascular absorbable stent detection and diagnostic methods and systems
10638939, Mar 12 2013 Volcano Corporation Systems and methods for diagnosing coronary microvascular disease
10646198, Nov 19 2015 LIGHTLAB IMAGING, INC Intravascular imaging and guide catheter detection methods and systems
10687777, Mar 12 2013 LIGHTLAB IMAGING, INC Vascular data processing and image registration systems, methods, and apparatuses
10702170, Jul 01 2013 ZURICH MEDICAL CORPORATION Apparatus and method for intravascular measurements
10713786, May 17 2015 LightLab Imaging, Inc. Detection of metal stent struts
10724082, Oct 22 2012 BIO-RAD LABORATORIES, INC Methods for analyzing DNA
10758207, Mar 13 2013 Volcano Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
10835183, Jul 01 2013 ZURICH MEDICAL CORPORATION Apparatus and method for intravascular measurements
10902599, May 17 2015 LightLab Imaging, Inc. Stent detection methods and imaging system interfaces
10939826, Dec 20 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION Aspirating and removing biological material
10942022, Dec 20 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION Manual calibration of imaging system
10993694, Dec 21 2012 Volcano Corporation Rotational ultrasound imaging catheter with extended catheter body telescope
11020078, Nov 18 2015 LightLab Imaging, Inc. X-ray image feature detection and registration systems and methods
11026591, Mar 13 2013 Volcano Corporation Intravascular pressure sensor calibration
11040140, Dec 31 2010 PHILIPS IMAGE GUIDED THERAPY CORPORATION Deep vein thrombosis therapeutic methods
11141063, Dec 23 2010 Volcano Corporation Integrated system architectures and methods of use
11141131, Dec 20 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION Smooth transition catheters
11154313, Mar 12 2013 THE VOLCANO CORPORATION Vibrating guidewire torquer and methods of use
11172831, Oct 05 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION System and method for instant and automatic border detection
11253225, Dec 21 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION System and method for multipath processing of image signals
11272845, Oct 05 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION System and method for instant and automatic border detection
11287961, Jul 25 2015 LightLab Imaging, Inc. Intravascular data visualization and interface systems and methods
11350906, Jul 12 2007 Volcano Corporation OCT-IVUS catheter for concurrent luminal imaging
11367186, May 17 2015 LightLab Imaging, Inc. Detection of metal stent struts
11406498, Dec 20 2012 Volcano Corporation Implant delivery system and implants
11471061, Jul 01 2013 ZURICH MEDICAL CORPORATION Apparatus and method for intravascular measurements
11475560, Apr 14 2016 LightLab Imaging, Inc. Method, apparatus, and system to identify branches of a blood vessel
11510632, Oct 05 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION Systems for indicating parameters in an imaging data set and methods of use
11532087, May 17 2015 LightLab Imaging, Inc. Stent detection methods and imaging system interfaces
11633167, Nov 18 2015 LightLab Imaging, Inc. X-ray image feature detection and registration systems and methods
11768593, Jul 25 2015 LightLab Imaging, Inc. Intravascular data visualization and interface systems and methods
11786213, Dec 21 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION System and method for multipath processing of image signals
11850089, Nov 19 2015 LIGHTLAB IMAGING, INC Intravascular imaging and guide catheter detection methods and systems
11864870, Oct 05 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION System and method for instant and automatic border detection
11890117, Oct 05 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION Systems for indicating parameters in an imaging data set and methods of use
11892289, Dec 20 2012 PHILIPS IMAGE GUIDED THERAPY CORPORATION Manual calibration of imaging system
9069396, Mar 12 2013 LIGHTLAB IMAGING, INC Controller and user interface device, systems, and methods
9226711, Dec 21 2012 Volcano Corporation Laser direct structured catheter connection for intravascular device
9286673, Oct 05 2012 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
9292918, Oct 05 2012 Volcano Corporation Methods and systems for transforming luminal images
9301687, Mar 13 2013 Volcano Corporation System and method for OCT depth calibration
9307926, Oct 05 2012 Volcano Corporation Automatic stent detection
9324141, Oct 05 2012 Volcano Corporation Removal of A-scan streaking artifact
9351698, Mar 12 2013 LIGHTLAB IMAGING, INC Vascular data processing and image registration systems, methods, and apparatuses
9360630, Aug 31 2011 Volcano Corporation Optical-electrical rotary joint and methods of use
9367965, Oct 05 2012 Volcano Corporation Systems and methods for generating images of tissue
9383263, Dec 21 2012 Volcano Corporation Systems and methods for narrowing a wavelength emission of light
9478940, Oct 05 2012 Volcano Corporation Systems and methods for amplifying light
9486143, Dec 21 2012 Volcano Corporation Intravascular forward imaging device
9525250, Dec 21 2012 Volcano Corporation Laser direct structured connection for intravascular device
9596993, Jul 12 2007 Volcano Corporation Automatic calibration systems and methods of use
9612105, Dec 21 2012 Volcano Corporation Polarization sensitive optical coherence tomography system
9622706, Jul 12 2007 Volcano Corporation Catheter for in vivo imaging
9709379, Dec 20 2012 Volcano Corporation Optical coherence tomography system that is reconfigurable between different imaging modes
9730613, Dec 20 2012 Volcano Corporation Locating intravascular images
9770172, Mar 07 2013 Volcano Corporation Multimodal segmentation in intravascular images
9858668, Oct 05 2012 Volcano Corporation Guidewire artifact removal in images
9867530, Aug 14 2006 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
9907527, Mar 12 2013 LightLab Imaging, Inc. Vascular data processing and image registration systems, methods, and apparatuses
9989945, Mar 12 2013 LightLab Imaging, Inc. Controller and user interface device, systems, and methods
9996921, May 17 2015 LIGHTLAB IMAGING, INC Detection of metal stent struts
Patent Priority Assignee Title
4625731, Oct 10 1984 PICKER INTERNATIONAL, INC , A CORP OF NY Ultrasonic image display mounting
5465724, May 28 1993 Siemens Medical Solutions USA, Inc Compact rotationally steerable ultrasound transducer
5544654, Jun 06 1995 Siemens Medical Solutions USA, Inc Voice control of a medical ultrasound scanning machine
5687717, Aug 06 1996 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
5730146, Aug 01 1991 Transmitting, analyzing and reporting EEG data
5765565, Jul 12 1996 Sterile encapsulated operating room video monitor and video monitor support device
6017307, Jun 10 1996 VASOCOR, INC , A CORP OF DELAWARE Integrated peripheral vascular diagnostic system and method therefor
6059731, Aug 19 1998 Mayo Foundation for Medical Education and Research Simultaneous side-and-end viewing underfluid catheter
6142946, Nov 20 1998 ATL Ultrasound, Inc. Ultrasonic diagnostic imaging system with cordless scanheads
DE19534663,
DE4316643,
JP4316643,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 22 1999Volcano Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 06 2011M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jul 06 2015M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
Dec 16 20114 years fee payment window open
Jun 16 20126 months grace period start (w surcharge)
Dec 16 2012patent expiry (for year 4)
Dec 16 20142 years to revive unintentionally abandoned end. (for year 4)
Dec 16 20158 years fee payment window open
Jun 16 20166 months grace period start (w surcharge)
Dec 16 2016patent expiry (for year 8)
Dec 16 20182 years to revive unintentionally abandoned end. (for year 8)
Dec 16 201912 years fee payment window open
Jun 16 20206 months grace period start (w surcharge)
Dec 16 2020patent expiry (for year 12)
Dec 16 20222 years to revive unintentionally abandoned end. (for year 12)