A method for assembling a turbine nozzle for a gas turbine engine facilitates improving cooling efficiency of the turbine nozzle. The method includes providing a hollow doublet including a leading airfoil and a trailing airfoil coupled by at least one platform, wherein each airfoil includes a first sidewall and a second sidewall that extend between a respective leading and trailing edge. The method also includes inserting an insert into at least one of the airfoils, wherein the insert includes a first sidewall including a first plurality of cooling openings that extending therethrough, and a second sidewall including a second plurality of cooling openings extending therethrough, and wherein the first plurality of cooling openings facilitate more cooling of the airfoil than the second plurality of cooling openings.
|
6. A method of operating a gas turbine engine, said method comprising:
directing fluid flow through the engine using at least one turbine airfoil nozzle that includes a leading airfoil and a trailing airfoil coupled by at least one platform that is formed integrally with the leading and trailing airfoils, and wherein each respective airfoil includes a first sidewall and a second sidewall that extend between respective leading and trailing edges to define a cavity therein; and
directing cooling air into the turbine airfoil nozzle such that the nozzle trailing airfoil is cooled more than the leading airfoil.
0. 18. A turbine nozzle for a gas turbine engine, said nozzle comprising:
a leading airfoil; and
a trailing airfoil; and
at least one platform that is formed integrally with said leading and trailing airfoils, and wherein each respective airfoil comprises a first sidewall and a second sidewall that extend between respective leading and trailing edges to define a cavity therein; and
at least one insert inserted within said airfoil cavity, said turbine nozzle coupled to a cooling system configured to direct cooling air into the turbine airfoil nozzle such that a portion of said trailing airfoil is cooled more than other portions of said trailing airfoil, and such that said trailing airfoil first sidewall is cooled more than said leading airfoil first sidewall.
1. A method for assembling a turbine nozzle for a gas turbine engine, said method comprising:
providing a hollow doublet including a leading airfoil vane and a trailing airfoil vane coupled by at least one platform, wherein each airfoil vane includes a first sidewall and a second sidewall that extend between a respective leading and trailing edge;
inserting an insert into at least one of the airfoil vanes, wherein the insert includes a first sidewall including a first plurality of cooling openings that extending therethrough, and a second sidewall including a second plurality of cooling openings extending therethrough, and wherein the first plurality of cooling openings facilitie cooling the airfoil more than the second plurality of cooling openings;
inserting second insert into the remaining airfoil vane, wherein the first and second inserts non-identical.
12. A turbine nozzle for a gas turbine engine, said nozzle comprising:
a pair of identical airfoil vanes coupled by at least one platform that is formed integrally with said airfoil vanes, each said airfoil vane comprising a first sidewall and a second sidewall connected at a leading edge and a trailing edge to define a cavity therebetween, said airflow vane first sidewall defines an airfoil vane suction side, said airfoil vane second sidewall defines an airfoil vane pressure side; and
at least one inset configured to be inserted within said airfoil vane cavity and comprising a first sidewall and a second sidewall, said insert first sidewall is adjacent said airfoil vane first sidewall, said insert first sidewall comprising a first plurality of openings extending therethrough for directing cooling air towards at least one of said airfoil vane first and second sidewalls, said insert second sidewall comprising a second plurality of openings extending therethrough for directing cooling air towards at least one of said airfoil vane first and second sidewalls, said first plurality of openings configured to facilitate more vane sidewall cooling than said second plurality of openings, said first plurality of cooling openings is greater than said insert second plurality of cooling openings.
2. A method in accordance with
3. A method in accordance with
4. A method in accordance with
5. A method in accordance with
7. A method in accordance with
8. A method in accordance with
9. A method in accordance with
10. A method in accordance with
11. A method in accordance with
0. 13. A nozzle in accordance with
14. A nozzle in accordance with claim 13 12 wherein said airfoil vane first sidewall is convex, said airfoil vane second sidewall is concave, said insert further configured to facilitate cooling said airfoil vane first sidewall more than said airfoil vane second sidewall.
15.A nozzle in accordance with claim 13 12 wherein said at least one insert further configured to be inserted such that said insert first sidewall is in flow communication and adjacent said airfoil vane first sidewall, said insert first sidewall is convex, said insert second sidewall is concave.
16. A nozzle in accordance with claim 13 12 wherein said pair of airfoil vanes further comprise a leading airfoil vane and a trailing airfoil vane, said at least one insert further comprises a first insert installed within said leading airfoil vane, and a non-identical second insert installed within said tailing airfoil vane, said inserts configured to facilitate cooling said trailing airfoil vane more than said leading airfoil vane.
17. A nozzle in accordance with claim 13 12 wherein said at least one insert further configured to facilitate reducing thermal stresses within said nozzle.
0. 19. A turbine nozzle in accordance with
0. 20. A turbine nozzle in accordance with
a first insert configured to be inserted within one of the airfoil vanes, wherein the first insert comprises a first sidewall including a first plurality of cooling openings extending therethrough, and a second sidewall including a second plurality of cooling openings extending therethrough, and wherein the first plurality of cooling openings facilitate cooling the airfoil more than the second plurality of cooling openings, and wherein the first plurality of cooling openings is greater than the second plurality of cooling openings; and
a second insert configured to be inserted within the remaining airfoil vane.
0. 21. A turbine nozzle in accordance with
0. 22. A turbine nozzle in accordance with
0. 23. A turbine nozzle in accordance with
0. 24. A turbine nozzle in accordance with
0. 25. A turbine nozzle in accordance with
|
This invention relates generally to gas turbine engine nozzles and more particularly, to methods and apparatus for cooling gas turbine engine nozzles.
Gas turbine engines include combustors which ignite fuel-air mixtures which are then channeled through a turbine nozzle assembly towards a turbine. At lease some known turbine nozzle assemblies include a plurality of nozzles arranged circumferentially and configured as doublets. A turbine nozzle doublet includes a pair of circumferentially-spaced hollow airfoil vanes coupled by integrally-formed inner and outer band platforms.
The doublet type turbine nozzles facilitate improving durability and reducing leakage in comparison to non-doublet turbine nozzles. Furthermore, turbine nozzle doublets also facilitate reducing manufacturing and assembly costs. In addition, because such turbine nozzles are subjected to high temperatures and may be subjected to high mechanical loads, at least some known doublets include an identical insert installed within each airfoil vane cavity to distribute cooling air supplied internally to each airfoil vane. The inserts include a plurality of openings extending through each side of the insert.
In a turbine nozzle, the temperature of the external gas is higher on the pressure-side than on the suction-side of each airfoil vane. Because the openings are arranged symmetrically between the opposite insert sides, the openings facilitate distributing the cooling air throughout the airfoil vane cavity to facilitate achieving approximately the same operating temperature on opposite sides of each airfoil. However, because of the construction of the doublet, mechanical loads and thermal stresses may still be induced unequally across the turbine nozzle. In particular, because of the orientation of the turbine nozzle with respect to the flowpath, typically the mechanical and thermal stresses induced to the trailing doublet airfoil vane are higher than those induced to the leading doublet airfoil vane. Over time, continued operation with an unequal distribution of stresses within the nozzle may shorten a useful life of the nozzle.
In one aspect of the invention, a method for assembling a turbine nozzle for a gas turbine engine is provided. The method includes providing a hollow doublet including a leading airfoil vane and a trailing airfoil vane coupled by at least one platform, wherein each airfoil vane includes a first sidewall and a second sidewall that extend between a respective leading and trailing edge. The method also includes inserting an insert into at least one of the airfoil vanes, wherein the insert includes a first sidewall including a first plurality of cooling openings that extend therethrough, and a second sidewall including a second plurality of cooling openings extending therethrough.
In another aspect, a method of operating a gas turbine engine is provided. The method includes directing fluid flow through the engine using at least one turbine airfoil nozzle that includes a leading airfoil and a trailing airfoil coupled by at least one platform that is formed integrally with the leading and trailing airfoils, and wherein each respective airfoil includes a first sidewall and a second sidewall that extend between respective leading and trailing edges to define a cavity therein. The method also includes directing cooling air into the turbine airfoil nozzle such that the nozzle trailing airfoil is cooled more than the leading airfoil.
In a further aspect of the invention, a turbine nozzle for a gas turbine engine is provided. The nozzle includes a pair of identical airfoil vanes coupled by at least one platform formed integrally with the airfoil vanes. Each airfoil vane includes a first sidewall and a second sidewall that are connected at a leading edge and a trailing edge, such that a cavity is defined therebetween. The nozzle also includes at least one insert that is configured to be inserted within the airfoil vane cavity and includes a first sidewall and a second sidewall. The insert first sidewall includes a first plurality of openings extending therethrough for directing cooling air towards at least one of the airfoil vane first and second sidewalls. The insert second sidewall includes a second plurality of openings that extend therethrough for directing cooling air towards at least one of the airfoil vane first and second sidewalls. The first plurality of openings are configured to facilitate lower metal temperatures therefrom than the second plurality of openings.
In operation, air flows through fan assembly 12 and compressed air is supplied to high-pressure compressor 14. The highly compressed air is delivered to combustor 16. Airflow from combustor 16 is discharged through a turbine nozzle assembly (not shown in
Inner band 54 includes a retention flange 60 that extends radially inwardly therefrom. More specifically, flange 60 extends substantially perpendicularly from band 54 with respect to a radially outer surface 62 of flange 60. Outer band 56 also includes a retention flange 64 that extends radially outwardly therefrom, and a leading edge flange 66 that also extends radially outwardly therefrom. More specifically, outer band retention flange 64 and leading edge flange 66 extend substantially perpendicularly from band 56 with respect to a radially inner surface 68 of band 56. Surfaces 62 and 68 define a radially outer and radially inner boundary for a flowpath through nozzle 50.
Airfoil vanes 52 are identical and include a leading airfoil vane 76 and a trailing airfoil vane 78. Each airfoil vane 52 includes a first sidewall 80 and a second sidewall 82. First sidewall 80 is convex and defines a suction side of each airfoil vane 76 and 78, and second sidewall 82 is concave and defines a pressure side of each airfoil vane 76 and 78. Sidewalls 80 and 82 are joined at a leading edge 84 and at an axially-spaced trailing edge 86 of each airfoil vane 76 and 78. More specifically, each airfoil trailing edge 86 is spaced chordwise and downstream from each respective airfoil leading edge 84.
First and second sidewalls 80 and 82, respectively, extend longitudinally, or radially outwardly, in span from radially inner band 54 to radially outer band 56. Additionally, first and second sidewalls 80 and 82, respectively, define a cooling chamber 90 within each airfoil vane 52. More specifically, chamber 90 is bounded by an inner surface 92 and 94 of each respective sidewall 80 and 82, and extends through each band 54 and 56.
Each cooling chamber 90 is sized to receive an insert 100 therein. More specifically, lead airfoil chamber 90 is sized to receive a lead insert 102, and trailing airfoil chamber 90 is sized to receive a trailing insert 104 therein. Inserts 102 and 104 are substantially similar and each includes a respective key feature 110 and 112, and an identical attachment flange 114. Flange 114 extends from a radially outer end 116 of each insert 102 and 104, and enables each insert 102 and 104 to be secured within each respective cooling chamber 90. In one embodiment, flange 114 is brazed to radially outer band 56. In another embodiment, flange 114 is welded to radially outer band 56.
Key features 110 and 112 extend through flange 114 at each insert radially outer end 116. Specifically, key features 110 and 112 are unique to each respective insert 102 and 104, and are sized to be received in a mating slot (not shown) that extends through nozzle radially outer band 56. More specifically, key features 110 and 112 prevent lead insert 102 from being inadvertently inserted within trailing airfoil vane 78, and prevent trailing insert 104 from being inadvertently inserted within leading airfoil vane 76.
Each insert 102 and 104 has a cross sectional profile that is substantially similar to that of a respective airfoil vane 76 and 78. More specifically, each insert 102 and 104 includes a first sidewall 120 and 122, respectively, and a second sidewall 124 and 126. Accordingly, each insert first sidewall 120 and 122 is adjacent each respective airfoil vane first sidewall 80 when each insert 102 and 104 is installed within each respective cooling chamber 90. Each insert first sidewall 120 and 122 is convex and defines a suction side of each respective insert 102 and 104, and each insert second sidewall is concave and defines a pressure side of each respective insert 102 and 104. Respective pairs of insert sidewalls 120 and 124, and 122 and 126, are joined at respective leading edges 128 and 130, and at respective trailing edges 132 and 134.
Lead insert first sidewall 120 defines a suction side of lead insert 102 and includes a first plurality of openings 140 that extend therethrough to a cavity 142 defined therein. Lead insert second sidewall 124 includes a second plurality of openings 144 that extend therethrough to cavity 142. First and second sidewall openings 140 and 144 of insert 102 are biased to facilitate cooling a suction side 80 of lead airfoil vane 76, more than a pressure side 82 of lead airfoil vane 76. In the exemplary embodiment, the plurality of first sidewall openings 140 are greater than that required to achieve substantially equal surface temperatures when compared to the plurality of second sidewall openings 144. The ratio of ninety first sidewall openings 140 to ninety-seven second sidewall openings 144 results in biased cooling and is in contrast to known inserts which have a ratio of seventy-six first sidewall openings to one hundred thirty-seven second sidewall openings which results in cooling all four airfoil sidewalls substantially equally. In an alterative embodiment, the larger volume of air is facilitated because insert first sidewall 120 includes openings 140 which are larger in diameter than corresponding openings 144 extending through insert second sidewall 124. It should be noted that the arrangement of openings 140 and 144 with respect to each respective sidewall 120 and 124 is variable. Furthermore, the number and size of openings 140 and 144 is also variable.
Trailing insert first sidewall 122 defines a suction side of trailing insert 104 and includes a first plurality of openings 150 that extend therethrough to a cavity 152 defined therein. Trailing insert second sidewall 126 includes a second plurality of openings 154 that extend therethrough to cavity 152. First sidewall openings 150 permit a larger volume of cooling air to pass therethrough than second sidewall openings 154. More specifically, insert 104 is biased to facilitate cooling a suction side 80 of trailing airfoil vane 78, more than a pressure side 82 of trailing airfoil vane 78. In the exemplary embodiment, the larger volume of air is facilitated because the plurality of first sidewall openings 150 outnumber the plurality of second sidewall openings 154. More specifically, in the exemplary embodiment, first sidewall 122 includes one hundred forty-two openings 150, and second sidewall 126 includes ninety-seven openings 154. In an alterative embodiment, the larger volume of air is facilitated because insert first sidewall 122 includes openings 150 which are larger in diameter than corresponding openings 154 extending through insert second sidewall 126. It should be noted that the arrangement of openings 150 and 154 with respect to each respective sidewall 122 and 126 is variable. Furthermore, the number and size of openings 150 and 154 is also variable.
Each nozzle 50 is in flow communication with a cooling system (not shown) that directs cooling air into each airfoil vane cooling chamber 90 for internal cooling of nozzle airfoil vanes 52. Specifically, the cooling system directs cooling air into each airfoil vane insert 100, which in-turn, channels the cooling air for cooling airfoil vanes 52. In addition to being biased to facilitate cooling a suction side of each respective airfoil vane 76 and 78, nozzle inserts 100 are biased to facilitate cooling trailing airfoil vane 78 more than lead airfoil vane 76. More specifically, trailing insert openings 150 and 154 are biased such that a larger volume cooling air is directed towards trailing airfoil vane 78 through trailing insert 104 than is directed through lead insert 102 towards lead airfoil vane 76. In the exemplary embodiment, the larger volume of air is facilitated because the plurality of trailing airfoil vane first sidewall openings 150 outnumber the plurality of, lead airfoil vane first sidewall openings 140. In an alternative embodiment, the larger volume of air is facilitated by varying the size of trailing airfoil vane openings 150 in comparison to lead airfoil vane openings 140.
During operation, cooling air is routed through the cooling system into nozzle 50, which may not be thermally loaded or mechanically stressed equally between adjacent airfoil vanes 76 and 78. More specifically, due to gas loading, thermal variations, and mechanical loading, more mechanical and thermal stresses are induced and transmitted through trailing airfoil vane 78 than through lead airfoil vane 76. Because nozzle inserts 102 and 104 provide nozzle 50 with a cooling scheme that may be customized to particular applications, cooling air supplied to nozzle 50 is allocated more to a suction side 80 of the airfoil vanes 52 than to a pressure side 82 of the airfoil vanes 52. Accordingly, as cooling air is channeled into nozzle 50, inserts 102 and 104 direct cooling air towards a respective nozzle airfoil vane 76 and 78. The cooling air exits outwardly from each nozzle airfoil vane 52 through a plurality of airfoil trailing edge openings (not shown), and thermal stresses induced within each individual airfoil vane 76 and 78 are facilitated to be reduced. Furthermore, by biasing the cooling airflow to cool trailing airfoil vane 78 more than lead airfoil vane 76, thermal stresses across nozzle 50 are facilitated to be controlled. As a result, although a maximum temperature on each airfoil vane concave surface is increased, the thermal stresses induced in nozzle 50 are facilitated to be controlled to counteract the mechanical stresses, thus facilitating increasing a useful life of nozzle 50.
The above-described turbine nozzle includes a pair of inserts that enable a cooling scheme for the nozzle to be customized to particular applications. Specifically, the inserts bias the distribution of cooling air supplied to the nozzle more to the suction side of each of the airfoil vanes, and more to the trailing airfoil vane in the doublet. As a result, the inserts facilitate controlling thermal stresses induced within the nozzle, and thus, facilitate increasing the useful life of the nozzle in a cost-effective and reliable manner.
While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims.
Powis, Andrew Charles, Clarke, Jonathan Philip, Tressler, Judd Dodge
Patent | Priority | Assignee | Title |
10520194, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Radially stacked fuel injection module for a segmented annular combustion system |
10563869, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Operation and turndown of a segmented annular combustion system |
10584638, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbine nozzle cooling with panel fuel injector |
10584876, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Micro-channel cooling of integrated combustor nozzle of a segmented annular combustion system |
10584880, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Mounting of integrated combustor nozzles in a segmented annular combustion system |
10605459, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Integrated combustor nozzle for a segmented annular combustion system |
10641175, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Panel fuel injector |
10641176, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Combustion system with panel fuel injector |
10641491, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Cooling of integrated combustor nozzle of segmented annular combustion system |
10655541, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Segmented annular combustion system |
10690056, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Segmented annular combustion system with axial fuel staging |
10690350, | Nov 28 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Combustor with axially staged fuel injection |
10724441, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Segmented annular combustion system |
10830442, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Segmented annular combustion system with dual fuel capability |
11002190, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Segmented annular combustion system |
11156362, | Nov 28 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Combustor with axially staged fuel injection |
11248479, | Jun 11 2020 | GE INFRASTRUCTURE TECHNOLOGY LLC | Cast turbine nozzle having heat transfer protrusions on inner surface of leading edge |
11255545, | Oct 26 2020 | GE INFRASTRUCTURE TECHNOLOGY LLC | Integrated combustion nozzle having a unified head end |
11371702, | Aug 31 2020 | GE INFRASTRUCTURE TECHNOLOGY LLC | Impingement panel for a turbomachine |
11428413, | Mar 25 2016 | GE INFRASTRUCTURE TECHNOLOGY LLC | Fuel injection module for segmented annular combustion system |
11460191, | Aug 31 2020 | GE INFRASTRUCTURE TECHNOLOGY LLC | Cooling insert for a turbomachine |
11614233, | Aug 31 2020 | GE INFRASTRUCTURE TECHNOLOGY LLC | Impingement panel support structure and method of manufacture |
11767766, | Jul 29 2022 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbomachine airfoil having impingement cooling passages |
8651799, | Jun 02 2011 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbine nozzle slashface cooling holes |
8684668, | Nov 13 2012 | FLORIDA TURBINE TECHNOLOGIES, INC | Sequential cooling insert for turbine stator vane |
8864445, | Jan 09 2012 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbine nozzle assembly methods |
8876464, | Nov 13 2012 | FLORIDA TURBINE TECHNOLOGIES, INC | Sequential cooling insert for turbine stator vane |
8944751, | Jan 09 2012 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbine nozzle cooling assembly |
9011078, | Jan 09 2012 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbine vane seal carrier with slots for cooling and assembly |
9011079, | Jan 09 2012 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbine nozzle compartmentalized cooling system |
9039350, | Jan 09 2012 | GE INFRASTRUCTURE TECHNOLOGY LLC | Impingement cooling system for use with contoured surfaces |
9133724, | Jan 09 2012 | GE INFRASTRUCTURE TECHNOLOGY LLC | Turbomachine component including a cover plate |
Patent | Priority | Assignee | Title |
4126405, | Dec 16 1976 | General Electric Company | Turbine nozzle |
4252501, | Nov 15 1973 | Rolls-Royce Limited | Hollow cooled vane for a gas turbine engine |
4297077, | Jul 09 1979 | Siemens Westinghouse Power Corporation | Cooled turbine vane |
4697985, | Mar 13 1984 | Kabushiki Kaisha Toshiba | Gas turbine vane |
5249920, | Jul 09 1992 | General Electric Company | Turbine nozzle seal arrangement |
5372476, | Jun 18 1993 | General Electric Company | Turbine nozzle support assembly |
5620300, | Nov 16 1995 | General Electric Co.; General Electric Company | Method of constructing a turbine nozzle to prevent structurally induced excitation forces |
5662160, | Oct 12 1995 | General Electric Co. | Turbine nozzle and related casting method for optimal fillet wall thickness control |
5669757, | Nov 30 1995 | General Electric Company | Turbine nozzle retainer assembly |
5848854, | Nov 30 1995 | General Electric Company | Turbine nozzle retainer assembly |
6099245, | Oct 30 1998 | General Electric Company | Tandem airfoils |
6164656, | Jan 29 1999 | General Electric Company | Turbine nozzle interface seal and methods |
6183192, | Mar 22 1999 | General Electric Company | Durable turbine nozzle |
6193465, | Sep 28 1998 | General Electric Company | Trapped insert turbine airfoil |
6318963, | Jun 09 1999 | Rolls-Royce plc | Gas turbine airfoil internal air system |
6382906, | Jun 16 2000 | General Electric Company | Floating spoolie cup impingement baffle |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 23 2005 | General Electric Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 23 2009 | ASPN: Payor Number Assigned. |
Feb 23 2009 | RMPN: Payer Number De-assigned. |
May 25 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 25 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 10 2012 | 4 years fee payment window open |
Sep 10 2012 | 6 months grace period start (w surcharge) |
Mar 10 2013 | patent expiry (for year 4) |
Mar 10 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 10 2016 | 8 years fee payment window open |
Sep 10 2016 | 6 months grace period start (w surcharge) |
Mar 10 2017 | patent expiry (for year 8) |
Mar 10 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 10 2020 | 12 years fee payment window open |
Sep 10 2020 | 6 months grace period start (w surcharge) |
Mar 10 2021 | patent expiry (for year 12) |
Mar 10 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |