A method of establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices, the method comprising utilizing a tree search method to attempt to identify individual ones of the multiple wireless identification devices so as to be able to perform communications, without collision, between the interrogator and individual ones of the multiple wireless identification devices, a search tree being defined for the tree search method, the tree having multiple nodes respectively representing subgroups of the multiple wireless identification devices, wherein the interrogator transmits a command at a node, requesting that devices within the subgroup represented by the node respond, wherein the interrogator determines if a collision occurs in response to the command and, if not, repeats the command at the same node. An interrogator configured to transmit a command at a node, requesting the devices within the subgroup represented by the node respond, the interrogator further being configured to determine if a collision occurs in response to the command and, if not, to repeat the command at the same node.
|
0. 50. An arbitration method comprising:
sending a first command from an interrogator to a plurality of wireless identification devices;
receiving a reply from a first wireless identification device of the plurality of wireless identification devices, and detecting no collisions, in response to the first command; and
resending the first command from the interrogator to the plurality of wireless identification devices in response to receiving the reply and detecting no collisions.
0. 45. A method comprising:
performing arbitration including sending a first command from an interrogator to a plurality of wireless identification devices;
receiving a good reply from a first wireless identification device of the plurality of wireless identification devices in response to the first command;
sending a second command from the interrogator to silence the first wireless identification device; and
resending the first command from the interrogator to the plurality of wireless identification devices.
1. A method of establishing wireless communications between an interrogator and wireless identification devices, the method comprising utilizing a tree search technique to establish communications, without collision, between the interrogator and individual ones of the multiple wireless identification devices, the method including using a search tree having multiple nodes respectively representing subgroups of the multiple wireless identification devices, the method further comprising, for a node, transmitting a command, using the interrogator, requesting that devices within the subgroup represented by the node respond, determining with the interrogator if a collision occurred in response to the command and, if not, repeating the command at the same node.
0. 39. A method of establishing wireless communications between an interrogator and wireless identification devices, the method comprising:
transmitting a first interrogation command, using the interrogator, to a first plurality of wireless identification devices, said command requesting that devices receiving the command respond to the interrogator;
detecting with the interrogator if a collision occurred in response to the interrogation command;
sending an interrogation command to at least a portion of said first plurality of wireless identification devices until no collision is detected; and
once no collision is detected, sending another interrogation command to at least a portion of said first plurality of wireless identification devices.
0. 44. A method of establishing wireless communications between an interrogator and wireless identification devices, the method comprising:
transmitting a first interrogation command, using the interrogator, to a first plurality of wireless identification devices, said command requesting that devices receiving the command respond to the interrogator;
detecting if a collision occurred in response to the interrogation command;
in the event of detection of a collision, sending a signal to at least one wireless identification device to avoid a subsequent collision;
sending an interrogation command to at least a portion of said first plurality of wireless identification devices until no collision is detected; and
once no collision is detected, sending another interrogation command to said first plurality of wireless identification devices.
21. A communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator using RF, the interrogator being configured to employ tree searching to attempt to identify individual ones of the multiple wireless identification devices, so as to be able to perform communications without collision between the interrogator and individual ones of the multiple wireless identification devices, the interrogator being configured to follow a search tree, the tree having multiple nodes respectively representing subgroups of the multiple wireless identification devices, the interrogator being configured to transmit a command at a node, requesting that devices within the subgroup represented by the node respond, the interrogator further being configured to determine if a collision occurs in response to the command and, if not, to repeat the command at the same node.
27. A system comprising:
an interrogator;
a number of communications devices capable of wireless communications with the interrogator;
means for establishing for respective devices unique identification numbers respectively having the first predetermined number of bits;
means for causing the devices to select random values, wherein respective devices choose random values independently of random values selected by the other devices;
means for causing the interrogator to transmit a command requesting devices having random values within a specified group of random values to respond;
means for causing devices receiving the command to determine if their chosen random values fall within the specified group and, if so, to send a reply to the interrogator; and
means for causing the interrogator to determine if a collision occurred between devices that sent a reply and, if so, to create a new, smaller, specified group; and, if not, transmit a command requesting devices having random values within the same specified group of random values to respond.
7. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices, the method comprising:
establishing for respective devices unique identification numbers;
causing the devices to select random values, wherein respective devices choose random values independently of random values selected by the other devices;
transmitting a communication, from the interrogator, requesting devices having random values within a first specified group of random values to respond;
receiving the communication at multiple devices, devices receiving the communication respectively determining if the random value chosen by the device falls within the first specified group and, if so, sending a reply to the interrogator; and
determining using the interrogator if a collision occurred between devices that sent a reply and, if so, creating a second specified group smaller than the first specified group; and, if not, again transmitting a communication requesting devices having random values within the first specified group of random values to respond.
35. A system comprising:
an interrogator configured to communicate to a selected one or more of a number of RFID devices;
a plurality of RFID devices, respective devices being configured to store a unique identification number, respective devices being further configured to store a random value;
the interrogator being configured to transmit a command requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, the specified group being defined as being at one of the nodes;
devices receiving the command respectively being configured to determine if their chosen random values fall within the specified group and, if so, send a reply to the interrogator; and, if not, not send a reply; and
the interrogator being configured to determine if a collision occurred between devices that sent a reply and, if so, to create a new, smaller, specified group by descending in the tree; and, if not, to transmit a command at the same node.
11. A method of addressing messages from a transponder to a selected one or more of a number of communications device, the method comprising:
establishing unique identification numbers for respective devices;
causing the devices to select random values, wherein respective devices choose random values independently of random values selected by the other devices;
transmitting a communication from the transponder requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, the specified group being defined as being at one of the nodes;
receiving the communication command at multiple devices, devices receiving the communication command respectively determining if the random value chosen by the device falls within the specified group and, if so, sending a reply to the transponder interrogator; and, if not, not sending a reply; and
determining using the transponder if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group by descending in the tree; and, if not, transmitting a communication at the same node.
31. A system comprising:
an interrogator configured to communicate to a selected one or more of a number of communications devices; and
a plurality of communications devices; the devices being configured to select random values, wherein respective devices choose random values independently of random values selected by the other devices; the interrogator being configured to transmit a command requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the specified group being less than the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels, the specified group being defined as being at one of the nodes; devices receiving the command being configured to respectively determine if their chosen random values fall within the specified group and, only if so, send a reply to the interrogator, wherein sending a reply to the interrogator comprises transmitting the unique identification number of the device sending the reply; the interrogator being configured to determine if a collision occurred between devices that sent a reply and, if so, create a new, smaller, specified group using a different level of the tree, the interrogator being configured to transmit a command requesting devices having random values within the new specified group of random values to respond; and, if not, the interrogator being configured to re-transmit a command requesting devices having random values within the first mentioned specified group of random values to respond.
14. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices, the method comprising:
establishing for respective devices unique identification numbers;
causing the devices to select random values, wherein respective devices choose random values independently of random values selected by the other devices;
transmitting a command using the interrogator requesting devices having random values within a specified group of a plurality of possible groups of random values to respond, the specified group being equal to or less than the entire set of random values, the plurality of possible groups being organized in a binary tree defined by a plurality of nodes at respective levels;
receiving the command at multiple RFID devices, RFID devices receiving the command respectively determining if their chosen random values fall within the specified group and, only if so, sending a reply to the interrogator, wherein sending a reply to the interrogator comprises transmitting the unique identification number of the device sending the reply;
determining using the interrogator if a collision occurred between devices that sent a reply and, if so, creating a new, smaller, specified group using a different level of the tree, the interrogator transmitting a command requesting devices having random values within the new specified group of random values to respond; and, if not, the interrogator re-transmitting a command requesting devices having random values within the first mentioned specified group of random values to respond; and
if a reply without collision is received from a device, the interrogator subsequently sending a command individually addressed to that device.
2. A method in accordance with
3. A method in accordance with
4. A method in accordance with
5. A method in accordance with
6. A method in accordance with
8. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with
9. A method in accordance with
10. A method of addressing messages from an interrogator to a selected one or more of a number of communications devices in accordance with
12. A method of addressing messages from a transponder to a selected one or more of a number of communications devices in accordance with
13. A method of addressing messages from a transponder to a selected one or more of a number of communications devices in accordance with
15. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with
16. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with
17. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with
18. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with
19. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with
devices receiving the command respectively determining if their chosen random values fall within the new smaller specified group and, if so, sending a reply to the interrogator.
20. A method of addressing messages from an interrogator to a selected one or more of a number of RFID devices in accordance with
determining if a collision occurred between devices that sent a reply and, if so, creating a new specified group and repeating the transmitting of the command requesting devices having random values within a specified group of random values to respond using different specified groups until all of the devices capable of communicating with the interrogator are identified.
22. A communications system in accordance with
23. A communications system in accordance with
24. A communications system in accordance with
25. A communications system in accordance with
26. A communications system in accordance with
28. A system in accordance with
29. A system in accordance with
30. A system in accordance with
32. A system in accordance with
33. A system in accordance with
34. A system in accordance with
36. A system in accordance with
37. A system in accordance with
38. A system in accordance with
0. 40. The method of
0. 41. The method of
0. 42. The method of
0. 43. The method of
0. 46. The method of
0. 47. The method of
0. 48. The method of
0. 49. The method of
0. 51. The method of
0. 52. The method of
0. 53. The method of
sending a third command from the interrogator to the plurality of wireless identification devices;
receiving a reply from a second wireless identification device of the plurality of wireless identification devices, and detecting no collisions, in response to the third command; and
resending the third command from the interrogator to the plurality of wireless identification devices in response to receiving the reply from the second wireless identification device and detecting no collisions.
0. 54. The method of
0. 55. The method of
0. 56. The method of
0. 57. The method of
0. 58. The method of
0. 59. The method of
0. 60. The method of
|
This is a Continuation of U.S. patent application Ser. No. 09/026,050, filed Feb. 19, 1998, now U.S. Pat. No. 6,061,344 and titled “Method of Addressing Messages and Communications System”.
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,282,186. The reissue applications are the initial reissue application Ser. No. 10/652,573 filed Aug. 28, 2003, a continuation reissue application Ser. No. 11/862,121 filed Sep. 26, 2007, a continuation reissue application Ser. No. 11/862,124 filed Sep. 26, 2007, and a continuation reissue application Ser. No. 11/862,130 filed Sep. 26, 2007.
This invention relates to communications protocols and to digital data communications. Still more particularly, the invention relates to data communications protocols in mediums such as radio communication or the like. The invention also relates to radio frequency identification devices for inventory control, object monitoring, determining the existence, location or movement of objects, or for remote automated payment.
Communications protocols are used in various applications. For example, communications protocols can be used in electronic identification systems. As large numbers of objects are moved in inventory, product manufacturing, and merchandising operations, there is a continuous challenge to accurately monitor the location and flow of objects. Additionally, there is a continuing goal to interrogate the location of objects in an inexpensive and streamlined manner. One way of tracking objects is with an electronic identification system.
One presently available electronic identification system utilizes a magnetic coupling system. In some cases, an identification device may be provided with a unique identification code in order to distinguish between a number of different devices. Typically, the devices are entirely passive (have no power supply), which results in a small and portable package. However, such identification systems are only capable of operation over a relatively short range, limited by the size of a magnetic field used to supply power to the devices and to communicate with the devices.
Another wireless electronic identification system utilizes a large, board level, active transponder device affixed to an object to be monitored which receives a signal from an interrogator. The device receives the signal, then generates and transmits a responsive signal. The interrogation signal and the responsive signal are typically radio-frequency (RF) signals produced by an RF transmitter circuit. Because active devices have their own power sources, and do not need to be in close proximity to an interrogator or reader to receive power via magnetic coupling. Therefore, active transponder devices tend to be more suitable for applications requiring tracking of a tagged device that may not be in close proximity to an interrogator. For example, active transponder devices tend to be more suitable for inventory control or tracking.
Electronic identification systems can also be used for remote payment. For example, when a radio frequency identification device passes an interrogator at a toll booth, the toll both can determine the identity of the radio frequency identification device, and thus of the owner of the device, and debit an account held by the owner for payment of toll or can receive a credit card number against which the toll can be charged. Similarly, remote payment is possible for a variety of other goods or services.
A communication system typically includes two transponders: a commander station or interrogator, and a responder station or transponder device which replies to the interrogator.
If the interrogator has prior knowledge of the identification number of a device which the interrogator is looking for, it can specify that a response is requested only from the device with that identification number. Sometimes, such information is not available. For example, there are occasions where the interrogator is attempting to determine which of multiple devices are within communication range.
When the interrogator sends a message to a transponder device requesting a reply, there is a possibility that multiple transponder devices will attempt to respond simultaneously, causing a collision, and thus causing an erroneous message to be received by the interrogator. For example, if the interrogator sends out a command requesting that all devices within a communications range identify themselves, and gets a large number of simultaneous replies, the interrogator may not be able to interpret any of these replies. Thus, arbitration schemes are employed to permit communications free of collisions.
In one arbitration scheme or system, described in commonly assigned U.S. Pat. Nos. 5,627,544; 5,583,850; 5,500,650; and 5,365,551, all to Snodgrass et al. and all incorporated herein by reference, the interrogator sends a command causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number. By transmitting requests for identification to various subsets of the full range of arbitration numbers, and checking for an error-free response, the interrogator determines the arbitration number of every responder station capable of communicating at the same time. Therefore, the interrogator is able to conduct subsequent uninterrupted communication with devices, one at a time, by addressing only one device.
Another arbitration scheme is referred to as the Aloha or slotted Aloha scheme. This scheme is discussed in various references relating to communications, such as Digital Communications: Fundamentals and Application, Bernard Sklar, published January 1988 by Prentice Hall. In this type of scheme, a device will respond to an interrogator using one of many time domain slots selected randomly by the device. A problem with the Aloha scheme is that if there are many devices, or potentially many devices in the field (i.e. in communications range, capable of responding) then there must be many available slots or many collisions will occur. Having many available slots slows down replies. If the magnitude of the number of devices in a field is unknown, then many slots are needed. This results in the system slowing down significantly because the reply time equals the number of slots multiplied by the time period required for one reply.
An electronic identification system which can be used as a radio frequency identification device, arbitration schemes, and various applications for such devices are described in detail in commonly assigned U.S. patent application Ser. No. 08/705,043, filed Aug. 29, 1996, and incorporated herein by reference.
The invention provides a wireless identification device configured to provide a signal to identify the device in response to an interrogation signal.
One aspect of the invention provides a method of establishing wireless communications between an interrogator and individual ones of multiple wireless identification devices. The method comprises utilizing a tree search method to attempt to identify individual ones of the multiple wireless identification devices so as to be able to perform communications, without collision, between the interrogator and individual ones of the multiple wireless identification devices. A search tree is defined for the tree search method. The tree has multiple nodes respectively representing subgroups of the multiple wireless identification devices. The interrogator transmits a command at a node, requesting that devices within the subgroup represented by the node respond. The interrogator determines if a collision occurs in response to the command and, if not, repeats the command at the same node.
Another aspect of the invention provides a communications system comprising an interrogator, and a plurality of wireless identification devices configured to communicate with the interrogator in a wireless fashion. The interrogator is configured to employ tree searching to attempt to identify individual ones of the multiple wireless identification devices, so as to be able to perform communications without collision, between the interrogator and individual ones of the multiple wireless identification devices. The interrogator is configured to follow a search tree, the tree having multiple nodes respectively representing subgroups of the multiple wireless identification devices. The interrogator is configured to transmit a command at a node, requesting that devices within the subgroup represented by the node respond. The interrogator is further configured to determine if a collision occurs in response to the command and, if not, to repeat the command at the same node.
One aspect of the invention provides a radio frequency identification device comprising an integrated circuit including a receiver, a transmitter, and a microprocessor. In one embodiment, the integrated circuit is a monolithic single die single metal layer integrated circuit including the receiver, the transmitter, and the microprocessor. The device of this embodiment includes an active transponder, instead of a transponder which relies on magnetic coupling for power and therefore has a much greater range.
Preferred embodiments of the invention are described below with reference to the following accompanying drawings.
FIG. 5. is a diagram illustrating a modified tree splitting sort method for establishing communication with a radio frequency identification device in a field of a plurality of such devices.
This disclosure of the invention is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).
The device 12 transmits and receives radio frequency communications to and from an interrogator 26. An exemplary interrogator is described in commonly assigned U.S. patent application Ser. No. 08/907,689, filed Aug. 8, 1997 and incorporated herein by reference. Preferably, the interrogator 26 includes an antenna 28, as well as dedicated transmitting and receiving circuitry, similar to that implemented on the integrated circuit 16.
Generally, the interrogator 26 transmits an interrogation signal or command 27 via the antenna 28. The device 12 receives the incoming interrogation signal via its antenna 14. Upon receiving the signal 27, the device 12 responds by generating and transmitting a responsive signal or reply 29. The responsive signal 29 typically includes information that uniquely identifies, or labels the particular device 12 that is transmitting, so as to identify any object or person with which the device 12 is associated. Although only one device 12 is shown in
The radio frequency data communication device 12 can be included in any appropriate housing or packaging. Various methods of manufacturing housings are described in commonly assigned U.S. patent application Ser. No. 08/800,037, filed Feb. 13, 1997, and incorporated herein by reference.
If the power supply 18 is a battery, the battery can take any suitable form. Preferably, the battery type will be selected depending on weight, size, and life requirements for a particular application. In one embodiment, the battery 18 is a thin profile button-type cell forming a small, thin energy cell more commonly utilized in watches and small electronic devices requiring a thin profile. A conventional button-type cell has a pair of electrodes, an anode formed by one face and a cathode formed by an opposite face. In an alternative embodiment, the power source 18 comprises a series connected pair of button type cells. In other alternative embodiments, other types of suitable power source are employed.
The circuitry 16 further includes a backscatter transmitter and is configured to provide a responsive signal to the interrogator 26 by radio frequency. More particularly, the circuitry 16 includes a transmitter, a receiver, and memory such as is described in U.S. patent application Ser. No. 08/705,043.
Radio frequency identification has emerged as a viable and affordable alternative to tagging or labeling small to large quantities of items. The interrogator 26 communicates with the devices 12 via an electromagnetic link, such as via an RF link (e.g., at microwave frequencies, in one embodiment), so all transmissions by the interrogator 26 are heard simultaneously by all devices 12 within range.
If the interrogator 26 sends out a command requesting that all devices 12 within range identify themselves, and gets a large number of simultaneous replies, the interrogator 26 may not be able to interpret any of these replies. Therefore, arbitration schemes are provided.
If the interrogator 26 has prior knowledge of the identification number of a device 12 which the interrogator 26 is looking for, it can specify that a response is requested only from the device 12 with that identification number. To target a command at a specific device 12, (i.e., to initiate point-on-point communication), the interrogator 26 must send a number identifying a specific device 12 along with the command. At start-up, or in a new or changing environment, these identification numbers are not known by the interrogator 26. Therefore, the interrogator 26 must identify all devices 12 in the field (within communication range) such as by determining the identification numbers of the devices 12 in the field. After this is accomplished, point-to-point communication can proceed as desired by the interrogator 26.
Generally speaking, RFID systems are a type of multiaccess communication system. The distance between the interrogator 26 and devices 12 within the field is typically fairly short (e.g., several meters), so packet transmission time is determined primarily by packet size and baud rate. Propagation delays are negligible. In such systems, there is a potential for a large number of transmitting devices 12 and there is a need for the interrogator 26 to work in a changing environment, where different devices 12 are swapped in and out frequently (e.g., as inventory is added or removed). In such systems, the inventors have determined that the use of random access methods work effectively for contention resolution (i.e., for dealing with collisions between devices 12 attempting to respond to the interrogator 26 at the same time).
RFID systems have some characteristics that are different from other communications systems. For example, one characteristic of the illustrated RFID systems is that the devices 12 never communicate without being prompted by the interrogator 26. This is in contrast to typical multiaccess systems where the transmitting units operate more independently. In addition, contention for the communication medium is short lived as compared to the ongoing nature of the problem in other multiaccess systems. For example, in a RFID system, after the devices 12 have been identified, the interrogator can communicate with them in a point-to-point fashion. Thus, arbitration in a RFID system is a transient rather than steady-state phenomenon. Further, the capability of a device 12 is limited by practical restrictions on size, power, and cost. The lifetime of a device 12 can often be measured in terms of number of transmissions before battery power is lost. Therefore, one of the most important measures of system performance in RFID arbitration is total time required to arbitrate a set of devices 12. Another measure is power consumed by the devices 12 during the process. This is in contrast to the measures of throughput and packet delay in other types of multiaccess systems.
Three variables are used: an arbitration value (AVALUE), an arbitration mask (AMASK), and a random value ID (RV). The interrogator sends an Identify command (IdentifyCmnd) causing each device of a potentially large number of responding devices to select a random number from a known range and use it as that device's arbitration number. The interrogator sends an arbitration value (AVALUE) and an arbitration mask (AMASK) to a set of devices 12. The receiving devices 12 evaluate the following equation: (AMASK & AVALUE)==(AMASK & RV) wherein “&” is a bitwise AND function, and wherein “==” is an equality function. If the equation evaluates to “1” (TRUE), then the device 12 will reply. If the equation evaluates to “0” (FALSE), then the device 12 will not reply. By performing this in a structured manner, with the number of bits in the arbitration mask being increased by one each time, eventually a device 12 will respond with no collisions. Thus, a binary search tree methodology is employed.
An example using actual numbers will now be provided using only four bits, for simplicity, reference being made to FIG. 4. In one embodiment, sixteen bits are used for AVALUE and AMASK. Other numbers of bits can also be employed depending, for example, on the number of devices 12 expected to be encountered in a particular application, on desired cost points, etc.
Assume, for this example, that there are two devices 12 in the field, one with a random value (RV) of 1100 (binary), and another with a random value (RV) of 1010 (binary). The interrogator is trying to establish communications without collisions being caused by the two devices 12 attempting to communicate at the same time.
The interrogator sets AVALUE to 0000 (or “don't care” for all bits, as indicated by the character “X” in
Next, the interrogator sets AMASK to 0001 and AVALUE to 0000 and transmits an identify command. Both devices 12 in the field have a zero for their least significant bit, and (AMASK & AVALUE)==(AMASK & RV) will be true for both devices 12. For the device 12 with a random value of 1100, the left side of the equation is evaluated as follows (0001 & 0000)=0000.
The right side is evaluated as (0001 & 1100)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1100. For the device 12 with a random value of 1010, the left side of the equation is evaluated as (0001 & 0000)=0000. The right side is evaluated as (0001 & 1010)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1010. Because the equation is true for both devices 12 in the field, both devices 12 in the field respond, and there is another collision.
Recursively, the interrogator next sets AMASK to 0011 with AVALUE still at 0000 and transmits an Identify command. (AMASK & AVALUE)==(AMASK & RV) is evaluated for both devices 12. For the device 12 with a random value of 1100, the left side of the equation is evaluated as follows (0011 & 0000)=0000. The right side is evaluated as (0011 & 1100)=0000. The left side equals the right side, so the equation is true for the device 12 with the random value of 1100, so this device 12 responds. For the device 12 with a random value of 1010, the left side of the equation is evaluated as (0011 & 0000)=0000. The right side is evaluated as (0011 & 1010)=0010. The left side does not equal the right side, so the equation is false for the device 12 with the random value of 1010, and this device 12 does not respond. Therefore, there is no collision, and the interrogator can determine the identity (e.g., an identification number) for the device 12 that does respond.
De-recursion takes place, and the devices 12 to the right for the same AMASK level are accessed when AVALUE is set at 0010, and AMASK is set to 0011.
The device 12 with the random value of 1010 receives a command and evaluates the equation (AMASK & AVALUE)==(AMASK & RV). The left side of the equation is evaluated as (0011 & 0010)=0010. The right side of the equation is evaluated as (0011 & 1010)=0010. The right side equals the left side, so the equation is true for the device 12 with the random value of 1010. Because there are no other devices 12 in the subtree, a good reply is returned by the device 12 with the random value of 1010. There is no collision, and the interrogator 26 can determine the identity (e.g., an identification number) for the device 12 that does respond.
By recursion, what is meant is that a function makes a call to itself. In other words, the function calls itself within the body of the function. After the called function returns, de-recursion takes place and execution continues at the place just after the function call; i.e. at the beginning of the statement after the function call.
For instance, consider a function that has four statements (numbered 1,2,3,4) in it, and the second statement is a recursive call. Assume that the fourth statement is a return statement. The first time through the loop (iteration 1) the function executes the statement 2 and (because it is a recursive call) calls itself causing iteration 2 to occur. When iteration 2 gets to statement 2, it calls itself making iteration 3. During execution in iteration 3 of statement 1, assume that the function does a return. The information that was saved on the stack from iteration 2 is loaded and the function resumes execution at statement 3 (in iteration 2), followed by the execution of statement 4 which is also a return statement. Since there are no more statements in the function, the function de-recurses to iteration 1. Iteration 1, had previously recursively called itself in statement 2. Therefore, it now executes statement 3 (in iteration 1). Following that it executes a return at statement 4. Recursion is known in the art.
Consider the following code which can be used to implement operation of the method shown in FIG. 4 and described above.
Arbitrate(AMASK,AVALUE)
{
collision=IdentifyCmnd(AMASK, AVALUE) if
(collision) then
{
/* recursive call for left side */ Arbitrate
((AMASK<<1)+1, AVALUE)
/* recursive call for right side */ Arbitrate
((AMASK<<1)+1, AVALUE+(AMASK+1))
} /* endif */
}/* return */
The symbol “<<” represents a bitwise left shift. “<<1” means shift left by one place. Thus, 0001<<1 would be 0010. Note, however, that AMASK is originally called with a value of zero, and 0000<<1 is still 0000. Therefore, for the first recursive call, AMASK=(AMASK<<1)+1. So for the first recursive call, the value of AMASK is 0000+0001=0001. For the second call, AMASK=(0001<<)+1=0010+1=0011. For the third recursive call, AMASK=(0011<<1)+1=0110+1=0111.
The routine generates values for AMASK and AVALUE to be used by the interrogator in an Identify command “IdentifyCmnd.” Note that the routine calls itself if there is a collision. De-recursion occurs when there is no collision. AVALUE and AMASK would have values such as the following assuming collisions take place all the way down to the bottom of the tree.
AVALUE
AMASK
0000
0000
0000
0001
0000
0011
0000
0111
0000
1111*
1000
1111*
0100
0111
0100
1111*
1100
1111*
This sequence of AMASK, AVALUE binary numbers assumes that there are collisions all the way down to the bottom of the tree, at which point the Identify command sent by the interrogator is finally successful so that no collision occurs. Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”. Note that if the Identify command was successful at, for example, the third line in the table then the interrogator would stop going down that branch of the tree and start down another, so the sequence would be as shown in the following table.
AVALUE
AMASK
0000
0000
0000
0001
0000
0011*
0010
0111
—
—
This method is referred to as a splitting method. It works by splitting groups of colliding devices 12 into subsets that are resolved in turn. The splitting method can also be viewed as a type of tree search. Each split moves the method one level deeper in the tree. Either depth-first or breadth-first traversals of the tree can be employed. Depth first traversals are performed by using recursion, as is employed in the code listed above. Breadth-first traversals are accomplished by using a queue instead of recursion.
Either depth-first or breadth-first traversals of the tree can be employed. Depth first traversals are performed by using recursion, as is employed in the code listed above. Breadth-first traversals are accomplished by using a queue instead of recursion. The following is an example of code for performing a breadth-first traversal.
Arbitrate(AMASK,AVALUE)
{
enqueue(0,0)
while (queue I= empty)
(AMASK,AVALUE) = dequeue( )
collision=IdentifyCmnd(AMASK, AVALUE)
if (collision) then
{
TEMP = AMASK+1
NEW_AMASK = (AMASK<<1)+1
enqueue(NEW_AMASK, AVALUE)
enqueue(NEW_AMASK, AVALUE+TEMP)
} /* endif */
endwhile
}/* return */
The symbol “!=” means not equal to. AVALUE and AMASK would have values such as those indicated in the following table for such code.
AVALUE
AMASK
0000
0000
0000
0001
0001
0001
0000
0011
0010
0011
0001
0011
0011
0011
0000
0111
0100
0111
—
—
Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”.
The interrogator performs a tree search, either depth-first or breadth-first in a manner such as that described in connection with
When a single reply is read by the interrogator, for example, in node 52, the method described in connection with
AVALUE and AMASK would have values such as the following for a depth-first traversal in a situation similar to the one described above in connection with FIG. 4.
AVALUE
AMASK
0000
0000
0000
0001
0000
0011
0000
0111
0000
1111*
0000
1111*
1000
1111*
1000
1111*
0100
0111
0100
1111*
0100
1111*
1100
1111*
1100
1111*
Rows in the table for which the interrogator is successful in receiving a reply without collision are marked with the symbol “*”.
In operation, the interrogator transmits a command at a node, requesting that devices within the subgroup represented by the node respond. The interrogator determines if a collision occurs in response to the command and, if not, repeats the command at the same node.
In one alternative embodiment, the upper bound of the number of devices in the field (the maximum possible number of devices that could communicate with the interrogator) is determined, and the tree search method is started at a level 32, 34, 36, 38, or 40 in the tree depending on the determined upper bound. The level of the search tree on which to start the tree search is selected based on the determined maximum possible number of wireless identification devices that could communicate with the interrogator. The tree search is started at a level determined by taking the base two logarithm of the determined maximum possible number. More particularly, the tree search is started at a level determined by taking the base two logarithm of the power of two nearest the determined maximum possible number of devices 12. The level of the tree containing all subgroups of random values is considered level zero, and lower levels are numbered 1, 2, 3, 4, etc. consecutively.
Methods involving determining the upper bound on a set of devices and starting at a level in the tree depending on the determined upper bound are described in a commonly assigned patent application (attorney docket MI40-118) naming Clifton W. Wood, Jr. as an inventor, titled “Method of Addressing Messages and Communications System,” filed concurrently herewith, and incorporated herein by reference.
In one alternative embodiment, a method involving starting at a level in the tree depending on a determined upper bound (such as the method described in the commonly assigned patent application mentioned above) is combined with a method comprising re-trying on the same node that gave a good reply, such as the method shown and described in connection with FIG. 5.
Another arbitration method that can be employed is referred to as the “Aloha” method. In the Aloha method, every time a device 12 is involved in a collision, it waits a random period of time before retransmitting. This method can be improved by dividing time into equally sized slots and forcing transmissions to be aligned with one of these slots. This is referred to as “slotted Aloha.” In operation, the interrogator asks all devices 12 in the field to transmit their identification numbers in the next time slot. If the response is garbled, the interrogator informs the devices 12 that a collision has occurred, and the slotted Aloha scheme is put into action. This means that each device 12 in the field responds within an arbitrary slot determined by a randomly selected value. In other words, in each successive time slot, the devices 12 decide to transmit their identification number with a certain probability.
The Aloha method is based on a system operated by the University of Hawaii. In 1971, the University of Hawaii began operation of a system named Aloha. A communication satellite was used to interconnect several university computers by use of a random access protocol. The system operates as follows. Users or devices transmit at any time they desire. After transmitting, a user listens for an acknowledgment from the receiver or interrogator. Transmissions from different users will sometimes overlap in time (collide), causing reception errors in the data in each of the contending messages. The errors are detected by the receiver, and the receiver sends a negative acknowledgment to the users. When a negative acknowledgment is received, the messages are retransmitted by the colliding users after a random delay. If the colliding users attempted to retransmit without the random delay, they would collide again. If the user does not receive either an acknowledgment or a negative acknowledgment within a certain amount of time, the user “times out” and retransmits the message.
There is a scheme known as slotted Aloha which improves the Aloha scheme by requiring a small amount of coordination among stations. In the slotted Aloha scheme, a sequence of coordination pulses is broadcast to all stations (devices). As is the case with the pure Aloha scheme, packet lengths are constant. Messages are required to be sent in a slot time between synchronization pulses, and can be started only at the beginning of a time slot. This reduces the rate of collisions because only messages transmitted in the same slot can interfere with one another. The retransmission mode of the pure 11 Aloha scheme is modified for slotted Aloha such that if a negative acknowledgment occurs, the device retransmits after a random delay of an integer number of slot times.
Aloha methods are described in a commonly assigned patent application (attorney docket MI40-089) naming Clifton W. Wood, Jr. as an inventor, titled “Method of Addressing Messages and Communications System,” filed concurrently herewith, and incorporated herein by reference.
In one alternative embodiment, an Aloha method (such as the method described in the commonly assigned patent application mentioned above) is combined with a method involving re-trying on the same node that gave a good reply, such as the method shown and described in connection with FIG. 5.
In another embodiment, levels of the search tree are skipped. Skipping levels in the tree, after a collision caused by multiple devices 12 responding, reduces the number of subsequent collisions without adding significantly to the number of no replies. In real-time systems, it is desirable to have quick arbitration sessions on a set of devices 12 whose unique identification numbers are unknown. Level skipping reduces the number of collisions, both reducing arbitration time and conserving battery life on a set of devices 12. In one embodiment, every other level is skipped. In alternative embodiments, more than one level is skipped each time.
The trade off that must be considered in determining how many (if any) levels to skip with each decent down the tree is as follows. Skipping levels reduces the number of collisions, thus saving battery power in the devices 12. Skipping deeper (skipping more than one level) further reduces the number of collisions. The more levels that are skipped, the greater the reduction in collisions. However, skipping levels results in longer search times because the number of queries (Identify commands) increases. The more levels that are skipped, the longer the search times. Skipping just one level has an almost negligible effect on search time, but drastically reduces the number of collisions. If more than one level is skipped, search time increases substantially. Skipping every other level drastically reduces the number of collisions and saves battery power without significantly increasing the number of queries.
Level skipping methods are described in a commonly assigned patent application (attorney docket MI40-117) naming Clifton W. Wood, Jr. and Don Hush as inventors, titled “Method of Addressing Messages, Method of Establishing Wireless Communications, and Communications System,” filed concurrently herewith, and incorporated herein by reference.
In one alternative embodiment, a level skipping method is combined with a method involving re-trying on the same node that gave a good reply, such as the method shown and described in connection with FIG. 5.
In yet another alternative embodiment, any two or more of the methods described in the commonly assigned, concurrently filed, applications mentioned above are combined.
In compliance with the statute, the invention has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the invention is not limited to the specific features shown and described, since the means herein disclosed comprise preferred forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.
Patent | Priority | Assignee | Title |
7936706, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications system |
8645222, | Mar 20 2009 | JPMORGAN CHASE BANK, N.A. | System and methods for mobile ordering and payment |
9014077, | Feb 19 1998 | Round Rock Research, LLC | Methods and apparatus for conducting financial transactions |
9230259, | Mar 20 2009 | JPMORGAN CHASE BANK, N.A. | Systems and methods for mobile ordering and payment |
9832769, | Sep 25 2009 | Northwestern University | Virtual full duplex network communications |
9886706, | Mar 20 2009 | JPMORGAN CHASE BANK, N.A. | Systems and methods for mobile ordering and payment |
RE42599, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications system |
RE43254, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications systems |
RE43382, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications systems |
RE44411, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages, method of establishing wireless communications and communications system |
Patent | Priority | Assignee | Title |
4075632, | Aug 27 1974 | The United States of America as represented by the United States | Interrogation, and detection system |
4761778, | Apr 11 1985 | Massachusetts Institute of Technology | Coder-packetizer for random accessing in digital communication with multiple accessing |
4799059, | Mar 14 1986 | Itron, Inc | Automatic/remote RF instrument monitoring system |
4845504, | Apr 08 1987 | AMP Incorporated; AMP INVESTMENTS, INC ; WHITAKER CORPORATION, THE | Mobile radio network for nationwide communications |
4862453, | Oct 03 1986 | MARCONI COMPANY LIMITED, THE, THE GROVE, WARREN LANE, STANMORE, MIDDLESEX HA7 4LY, UNITED KINGDOM | Communication system |
4926182, | May 30 1986 | Sharp Kabushiki Kaisha | Microwave data transmission apparatus |
4955018, | Nov 10 1987 | Echelon Systems Corporation | Protocol for network having plurality of intelligent cells |
4969146, | Nov 10 1987 | Echelon Systems Corporation | Protocol for network having a plurality of intelligent cells |
5019813, | Apr 13 1987 | N V NEDERLANDSCHE APPARATENFABRIEK NEDAP, A CORP OF THE NETHERLANDS | System for the contactless exchange of data |
5025486, | Dec 09 1988 | Dallas Semiconductor Corporation | Wireless communication system with parallel polling |
5046066, | Feb 09 1987 | Cisco Technology, Inc | Wireless local area network |
5055968, | Jul 04 1988 | Sony Corporation | Thin electronic device having an integrated circuit chip and a power battery and a method for producing same |
5121407, | Sep 27 1990 | PITTWAY CORPORATION, A CORP OF PA | Spread spectrum communications system |
5124697, | Oct 16 1989 | Motorola, Inc. | Acknowledge-back pager |
5142694, | Jul 24 1989 | Motorola, Inc. | Reporting unit |
5144313, | Apr 24 1991 | Q-Free ASA | Method for processing transmitted and reflected signals for removing unwanted signals and noise from wanted signals |
5144668, | Jan 25 1991 | Motorola, Inc.; MOTOROLA, INC , A CORP OF DE | Signal overlap detection in a communication system |
5150114, | Nov 10 1989 | NXP B V | Polling-type information transmission system |
5150310, | Aug 30 1989 | AMPERSAND SPECIALTY MATERIALS VENTURES, L P ; MORGAN, HOLLAND FUND II, L P | Method and apparatus for position detection |
5164985, | Oct 27 1987 | CEDCOM NETWORK SYSTEMS PTY LIMITED | Passive universal communicator system |
5168510, | Mar 06 1984 | DBI Corporation | Spread spectrum-time diversity communications systems and transceivers for multidrop area networks |
5194860, | Nov 16 1989 | ABB METERING SYSTEMS LIMITED | Radio telemetry systems with channel selection |
5231646, | Mar 16 1992 | Kyros Corporation | Communications system |
5266925, | Sep 30 1991 | Round Rock Research, LLC | Electronic identification tag interrogation method |
5307463, | Mar 08 1990 | Allen-Bradley Company, Inc. | Programmable controller communication module |
5365551, | Dec 15 1992 | Round Rock Research, LLC | Data communication transceiver using identification protocol |
5373503, | Apr 30 1993 | Information Technology, Inc. | Group randomly addressed polling method |
5479416, | Sep 30 1993 | Round Rock Research, LLC | Apparatus and method for error detection and correction in radio frequency identification device |
5500650, | Dec 15 1992 | Round Rock Research, LLC | Data communication method using identification protocol |
5583850, | Dec 15 1992 | Round Rock Research, LLC | Data communication system using identification protocol |
5608739, | Sep 30 1993 | Round Rock Research, LLC | Apparatus and method for error detection and correction in radio frequency identification device |
5619648, | Nov 30 1994 | Alcatel Lucent | Message filtering techniques |
5621412, | Apr 26 1994 | Texas Instruments Incorporated | Multi-stage transponder wake-up, method and structure |
5625628, | Mar 15 1995 | U S BANK NATIONAL ASSOCIATION | Aloha optimization |
5627544, | Dec 15 1992 | Round Rock Research, LLC | Data communication method using identification protocol |
5640151, | Jun 15 1990 | OL SECURITY LIMITED LIABILITY COMPANY | Communication system for communicating with tags |
5649296, | Jun 19 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Full duplex modulated backscatter system |
5790946, | Jul 15 1993 | Round Rock Research, LLC | Wake up device for a communications system |
5805586, | May 02 1995 | Motorola, Inc | Method, device and data communication system for multilink polling |
5841770, | Dec 15 1992 | Round Rock Research, LLC | Data communication system using indentification protocol |
5914671, | Feb 27 1997 | Round Rock Research, LLC | System and method for locating individuals and equipment, airline reservation system, communication system |
5936560, | Dec 04 1996 | HANGER SOLUTIONS, LLC | Data compression method and apparatus performing high-speed comparison between data stored in a dictionary window and data to be compressed |
5940006, | Dec 12 1995 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Enhanced uplink modulated backscatter system |
5942987, | Sep 09 1994 | INTERMEC IP CORP , A CORPORATION OF DELAWARE | Radio frequency identification system with write broadcast capability |
5952922, | Dec 31 1996 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | In-building modulated backscatter system |
5966471, | Dec 23 1997 | United States of America | Method of codebook generation for an amplitude-adaptive vector quantization system |
5974078, | Mar 17 1993 | Round Rock Research, LLC | Modulated spread spectrum in RF identification systems method |
5988510, | Feb 13 1997 | Round Rock Research, LLC | Tamper resistant smart card and method of protecting data in a smart card |
6038455, | Sep 25 1995 | Cirrus Logic, INC | Reverse channel reuse scheme in a time shared cellular communication system |
6061344, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications system |
6072801, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages, method of establishing wireless communications, and communications system |
6075973, | May 18 1998 | Round Rock Research, LLC | Method of communications in a backscatter system, interrogator, and backscatter communications system |
6104333, | Dec 19 1996 | Round Rock Research, LLC | Methods of processing wireless communication, methods of processing radio frequency communication, and related systems |
6118789, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications system |
6130602, | May 13 1996 | Round Rock Research, LLC | Radio frequency data communications device |
6157633, | Jun 10 1996 | AT&T MOBILITY II LLC | Registration of mobile packet data terminals after disaster |
6169474, | Apr 23 1998 | Round Rock Research, LLC | Method of communications in a backscatter system, interrogator, and backscatter communications system |
6192222, | Sep 03 1998 | Round Rock Research, LLC | Backscatter communication systems, interrogators, methods of communicating in a backscatter system, and backscatter communication methods |
6216132, | Nov 20 1997 | IBM Corporation | Method and system for matching consumers to events |
6226300, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages, and establishing communications using a tree search technique that skips levels |
6229987, | May 18 1998 | Round Rock Research, LLC | Method of communications in a backscatter system, interrogator, and backscatter communications system |
6265963, | Dec 19 1996 | Round Rock Research, LLC | Methods of processing wireless communication, methods of processing radio frequency communication, and related systems |
6275476, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications system |
6282186, | Feb 19 1998 | Round Rock Research, LLC | Method of addressing messages and communications system |
6289209, | Dec 18 1996 | Round Rock Research, LLC | Wireless communication system, radio frequency communications system, wireless communications method, radio frequency communications method |
6307848, | Apr 18 2000 | Round Rock Research, LLC | Method of addressing messages, method of establishing wireless communications, and communications system |
6324211, | Apr 24 1998 | Round Rock Research, LLC | Interrogators communication systems communication methods and methods of processing a communication signal |
6459726, | Apr 24 1998 | Round Rock Research, LLC | Backscatter interrogators, communication systems and backscatter communication methods |
6566997, | Dec 03 1999 | ASSA ABLOY AB | Interference control method for RFID systems |
6707376, | Aug 09 2002 | SENSORMATIC ELECTRONICS, LLC | Pulsed power method for increased read range for a radio frequency identification reader |
6714559, | Dec 04 1991 | INNOVATIO IP VENTURES | Redundant radio frequency network having a roaming terminal communication protocol |
6771634, | Jun 10 1996 | AT&T MOBILITY II LLC | Registration of mobile packet data terminals after disaster |
6850510, | Oct 05 1995 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones |
7026935, | Nov 10 2003 | IMPINJ, INC | Method and apparatus to configure an RFID system to be adaptable to a plurality of environmental conditions |
20060022800, | |||
20060022801, | |||
20060022815, | |||
EP779520, | |||
WO9748216, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 28 2003 | Keystone Technology Solutions, LLC | (assignment on the face of the patent) | / | |||
Aug 29 2003 | MURATA, RONALD N | Boeing Company, the | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014501 | /0876 | |
Jun 28 2007 | Micron Technology, Inc | Keystone Technology Solutions, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019825 | /0542 | |
Dec 22 2009 | Keystone Technology Solutions, LLC | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023839 | /0881 | |
Dec 23 2009 | Micron Technology, Inc | Round Rock Research, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023786 | /0416 |
Date | Maintenance Fee Events |
Jan 30 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 31 2012 | 4 years fee payment window open |
Oct 01 2012 | 6 months grace period start (w surcharge) |
Mar 31 2013 | patent expiry (for year 4) |
Mar 31 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2016 | 8 years fee payment window open |
Oct 01 2016 | 6 months grace period start (w surcharge) |
Mar 31 2017 | patent expiry (for year 8) |
Mar 31 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2020 | 12 years fee payment window open |
Oct 01 2020 | 6 months grace period start (w surcharge) |
Mar 31 2021 | patent expiry (for year 12) |
Mar 31 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |