An apparatus 10 for compacting and baling leaves, grass clippings, sticks, pine straw and other debris on lawns, yards, or fields is provided. The apparatus 10 may have diagonal brushes 26 to gather debris for processing though a crusher 28, a conveyor belt 30 to transport the crushed debris, and a baler 32 to compact and bale the debris. The baler 32 may compact the debris by rotating the debris in a continuous band 52, into which baling material 72 may be inserted to bale the debris. Alternatively, the debris may be gathered and feed into a crusher 28 that deposits the crushed debris directly into the baler 32 for compacting and baling. Further still, the apparatus 10 may gather the debris with brushes 26 and feed it onto a conveyor mechanism 30 that then introduces it into a crusher 28. The crushed debris may then be feed into a baling mechanism 32 that compacts and bales the debris for easy removal and disposal. In its various embodiments, the present invention may be connected to a prime mover 20 or alternatively connected to a portable base with a motor for driving the device 10.
|
16. A method of compacting and baling leaves and yard debris, comprising the steps of:
a) gathering said leaves and yard debris;
b) crushing said leaves and yard debris in a crusher assembly, wherein said crusher assembly comprises at least one pair of crushing rollers, each of said rollers having a plurality of paired and corresponding crushing vanes and at least one scissoring roller, said at least one scissoring roller having a plurality of paired scissoring vanes, wherein one of each pair of said plurality of paired scissoring vanes is stationary and its corresponding vane rotates with comprising a rotating cutting vane and a corresponding stationary cutting vane, and wherein each said rotating cutting vane is rotated by said the scissoring roller;
c) depositing said crushed leaves and yard debris into a baler assembly;
d) compacting said crushed leaves and yard debris within a rotating continuous baling band; and
e) inserting baling material into said rotating band to bale said crushed leaves and yard debris.
9. A yard waste gathering and baling apparatus, comprising:
a) a crusher assembly; wherein said crusher assembly comprises comprising at least one pair of crusher rollers which rotate in the same direction, each of said rollers having a corresponding set of interdigitating crushing vanes which rotate in the same direction , and at least one rotating scissoring roller, wherein said scissoring roller has having a plurality of paired scissoring vanes and wherein one of each paired scissoring vane of said plurality of paired scissoring vanes is comprising a rotating cutting vane and an associated stationary cutting vane and its corresponding vane rotates wherein each said rotating cutting vane is rotated with said scissoring roller to engage said associated stationary cutting vane to generate a scissoring action;
b) a baling assembly, wherein said baling assembly further comprises a continuous baling band for receipt of said crushed yard waste and wherein said yard waste is compacted and baled within said band; and
c) wherein both of said crusher and baling assemblies are affixed within a frame of said apparatus.
1. A leaf and yard debris collection and baling apparatus, comprising:
a) at least one brush for gathering said leaves and yard debris, said brush rotatably connected to a frame of said apparatus and rotating so as to direct said leaves and yard debris along the a centerline of said apparatus;
b) a crusher assembly, said crusher assembly comprising
at least one pair of crushing rollers rotatably connected to said frame of said apparatus, each of said crushing roller rollers further comprising a plurality of crushing vanes,
a scissoring roller rotatable rotatably connected to said frame of said apparatus, said scissoring roller comprising a plurality of paired scissoring vanes, wherein one of each paired scissoring vane of said plurality of paired scissoring vanes is having a stationary and its paired scissoring vane rotates cutting vane and a rotating cutting vane, said rotating cutting vane is rotated by said scissoring roller and associated with said scissoring roller stationary cutting vane to generate a scissoring action, and
a plurality of paddles rotatably connected to said frame of said apparatus and interleaved between each of said plurality of paired scissoring vanes;
c) a conveyor assembly, said conveyor assembly comprising a conveyor belt, said conveyor belt including a plurality of finger-like projections to aid in maintaining said crushed leaves and yard debris on said conveyor belt;
d) a baling assembly, said baling assembly comprising
a fixed baling roller,
a moveable baling roller, wherein each of said fixed and moveable baling rollers are rotatably connected to said frame of said apparatus and
a continuous baling band located about said fixed and moveable baling rollers, and wherein said fixed and moveable baling rollers serve to admit and maintain said crushed leaves and yard debris within said continuous baling band for additional compaction and baling.
2. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
7. The apparatus of
8. The apparatus of
10. The apparatus of
0. 11. The apparatus of
12. The apparatus of claim 11 9, wherein said baling assembly further comprises a fixed baling roller and a moveable baling roller within said continuous baling band for use in both maintaining open or dosing closing said band, as well as, translating rotational motion to said band.
13. The apparatus of
14. The apparatus of
15. The apparatus of
17. The method of
18. The method of
|
This application is a Continuation-in-Part of and claims priority to Non-Provisional Patent Application, U.S. Ser. No., 09/971,402, entitled “Leaf Compactor and Baler” filed Oct. 5, 2001, now abandoned, which is fully incorporated herein by reference.
1. Field of Invention
This invention relates to leaf gathering machines and to leaf balers and, more particularly, to an apparatus that will gather, crush, compress, and bale leaves and other debris.
2. Technical Background
The gathering and disposal of leaves is an essential activity to maintain the cleanliness and appearance of a variety of public lands, golf courses, and homes, including lawns and natural areas. Leaf gathering and disposal usually occurs in the fall in the northern hemisphere but can occur at other times of the year if plant-like material accumulates, such as pine cones, pine needles, tall grasses, shrubbery, weeds, and the like. Leaves and other related yard debris are usually separated from garbage and general household trash. Leaves and other yard debris can be used for composting so that landfill space is reserved for trash that is not suitable for composting. A common method of gathering and disposing of leaves by homeowners is to rake the leaves and to place them into trash bags, which is a burdensome chore. Raking leaves, picking them up, and placing them in bags is stressful work and is often beyond the ability of many older individuals or individuals with compromised health.
In some communities, the homeowners can rake leaves into a pile on the side of the street. Generally the leaves and other yard materials are deposited in a window adjacent to or on the edge of the street. A vehicle with a collection bin and a vacuum pickup the leaves and yard debris and hold these materials in a bin. The vacuum pickup is usually manipulated manually while gathering leaves. The bin tends to fill rapidly because in this process the leaves are not compressed. When the bin is fill, the machine stops gathering leaves and moves to a disposal site or transfer station where the bin is unloaded. During transport and unloading, the machine is not available to pickup leaves, which limits the rate at which leaves can be picked up and removed throughout the day.
Full capacity bagger attachments are known for use on lawn moving machines. Some or these employ an auger to feed leaf material into a bag and compress the material in the bag. These mowing machines have limited capacity to pickup leaves. They are slow and frequently plug with leaves. Once the bag is full, the mowing machine is stopped, the operator dismounts from the machine, closes the bag manually, removes the filled bag from the machines, mounts an empty bag in position to be filled, and then returns to the machine to resume the leaf bagging operation. The stationary bagging machines and the bagger attachments for lawn mowing machines fill relatively small bags. All bags are handled manually after they are filled. The major drawbacks of these bagging machine systems are the cost of the bags and the fact that the systems can be relatively labor intensive.
Full capacity machines are known which will gather leaves, shred the leaves, deposit the leaves to an auger, and the auger will direct the leaves to a bag. In these machines, the leaf gathering mechanism is a paddle like device and the shredder employs knife-like elements. The drawbacks of devices such as these are that sticks and similar debris amongst the leaves can cause the gathering mechanism or the shredder to jam. Sticks and the like can also jam between the auger and its housing. The present invention overcomes these drawbacks by providing a leaf gathering, crushing, compacting, and baling system which does not require the use of an auger and will bale the leaves automatically without the use of a bag.
The present invention recognizes and addresses various of the foregoing limitations and drawbacks, and others, concerning leaf and debris gathering and bagging apparatuses. Therefore, the present invention is directed to a leaf gathering and baling apparatus which compacts the leaves and related debris by crushing and compressing the debris.
A first advantage of the present invention is that it crushes leaves, sticks, pine straw, pinecones and related debris on lawns, yards, and fields. Yet another advantage of the present invention is that it has unlimited capacity because it continuously bales and eliminates leaves. In such context, the present invention produces bales that can be conveniently lifted and carried.
Still another advantage of the present invention is that it automatically gathers leaves thereby avoiding raking. Further, another advantage of the present invention is that it is hydraulically driven. Still further, another advantage of the present invention is that it does not have augers which require a housing.
Another advantage of the present invention is that it is removably attachable to a prime mover. Finally, another advantage of the present invention is that can be used without the compactor and baler to produce mulch.
In one exemplary embodiment, there may be provided a gathering and baling apparatus capable of crushing sticks and similar material associated with the leaves. The apparatus is reversibly attached to a prime mover that can move the apparatus across lawns and fields as needed. In a first embodiment of the present invention, the front portion of the apparatus may have brushes extending diagonally at an angle to the centerline of the apparatus. The brushes roll inwardly on their bottom edges to gather leaves towards the front of the apparatus. The roller brushes direct and lift the leaves to a crusher. The crusher has one or more pairs of crushing rollers. Each crushing roller in a pair has crushing vanes and the crushing vane of one crushing roller inter-digitate or meshes with the crushing vane of the other crushing roller. The crushing rollers are driven by a motor to rotate towards one another so that the leaves and sticks and related debris from the brushes will be fed into the crushing roller pair and be crushed by the crushing vanes as the crushing rollers rotate. Crushed material can pass through one or more additional pairs of like crushing rollers, but will eventually fall and be pushed to the bottom of the crusher where it will be forced out of the crusher by a similar pair of crushing rollers with crushing vanes and be deposited onto a conveyor mechanism. The conveyor mechanism moves the crushed debris to a baler assembly. The baler assembly has two compacting rollers contained within a continuous band. One of the baler assembly compacting rollers is fixed and the other compacting roller is movable. When the movable compacting roller is moved away from the fixed compacting roller, the band can receive the crushed debris from the conveyor mechanism. Once the crushed debris is deposited on the band, the adjustable compacting roller is moved toward the fixed compacting roller, thereby compressing the debris further. The compacting rollers are rotated in the same direction by motors, causing the crushed compressed debris to rotate within the band. As the crushed debris rotates within the band, baling material such as paper is inserted between the compacting rollers and is directed by the moving band around the rotating debris. The paper tightly encircles the rotating debris, thus baling it. The movable roller within the compactor is moved away from the fixed roller, the baler assembly is rotated, and the baled debris is expelled. This sequence of gathering, crushing, conveying, compacting, and baling debris is produced continuously and automatically as the apparatus moves forward gathering leaves.
In a second exemplary embodiment of the present invention, the front portion of the apparatus may be brushes extending diagonally at an angle to the centerline of the apparatus. The brushes roll inwardly on their bottom edges to gather leaves towards the front of the apparatus. The roller brushes direct and lift the leaves to a conveyor mechanism. The conveyor mechanism moves the crushed debris to a crusher. The crusher has one or more pairs of crushing rollers. Each crushing roller in a pair has crushing vanes and the crushing vane of one crushing roller inter-digitate or meshes with the crushing vane of the other crushing roller. The crushing rollers are driven by a motor to rotate towards one another so that the leaves and sticks and related debris from the brushes will be fed into the crushing roller pair and be crushed by the crushing vanes as the crushing rollers rotate. Crushed material can pass through one or more additional pairs of like crushing rollers, but will eventually fall and be pushed to the bottom of the crusher where it will be forced out of the crusher by a similar pair of crushing rollers with crushing vanes and be deposited into a baler assembly. The baler assembly has two compacting rollers contained within a continuous band. One of the baler assembly compacting rollers is fixed and the other compacting roller is movable. When the movable compacting roller is moved away from the fixed compacting roller, the band can receive the crushed debris from the conveyor mechanism. Once the crushed debris is deposited on the band, the adjustable compacting roller is moved toward the fixed compacting roller, thereby compressing the debris further. The compacting rollers are rotated in the same direction by motors, causing the crushed compressed debris to rotate within the band. As the crushed debris rotates within the band, baling material, such as paper is inserted between the compacting rollers and is directed by the moving band around the rotating debris. The paper tightly encircles the rotating debris, thus baling it. The movable roller within the compactor is moved away from the fixed roller, the baler assembly is rotated, and the baled debris is expelled. This sequence of gathering, conveying, crushing, compacting, and baling debris is produced continuously and automatically as the apparatus moves forward gathering leaves.
In a third exemplary embodiment of the present invention, the apparatus is attached to a prime mover, such as a lawn mower base. Unlike the other alternative embodiments, the present embodiment lacks brushes extending diagonally at an angle to the centerline of the apparatus for the collection of debris. In the present embodiment, debris is manually introduced by the operator into the crusher. The crusher has one or more pairs of crushing rollers. Each crushing roller in a pair has crushing vanes and the crushing vane of one crushing roller interdigitate or meshes with the crushing vane of the other crushing roller. The crushing rollers are driven by a motor to rotate towards one another so that the leaves and sticks and related debris from the brushes will be fed into the crushing roller pair and be crushed by the crushing vanes as the crushing rollers rotate. Crushed material can pass through one or more additional pairs of like crushing rollers, but will eventually fall and be pushed to the bottom of the crusher where it will be forced out of the crusher by a similar pair of crushing rollers with crushing vanes and be deposited into a baler assembly. The baler assembly has two compacting rollers contained within a continuous band. One of the baler assembly compacting rollers is fixed and the other compacting roller is movable. When the movable compacting roller is moved away from the fixed compacting roller, the band can receive the crushed debris from the conveyor mechanism. Once the crushed debris is deposited on the band, the adjustable compacting roller is moved toward the fixed compacting roller, thereby compressing the debris further. The compacting rollers are rotated in the same direction by motors, causing the crushed compressed debris to rotate within the band. As the crushed debris rotates within the band, baling material, such as paper is inserted between the compacting rollers and is directed by the moving band around the rotating debris. The paper tightly encircles the rotating debris, thus baling it. The movable roller within the compactor is moved away from the fixed roller, the baler assembly is rotated, and the baled debris is expelled. The crushing, compacting, and baling sequence is guided by the user during the operation of the apparatus. The present embodiment is significantly smaller in size than the alternative embodiments and while motor driven is primarily manual in its continuous operation.
Additional objects and advantages of the invention are set forth in, or will be apparent to those of ordinary skill in the art from the detailed description as follows. Also, it should be further appreciated that modifications and variations to the specifically illustrated and discussed features and materials hereof may be-practiced in various embodiments and uses of this invention without departing from the spirit and scope thereof, by virtue of present reference thereto. Such variations may include, but are not limited to, substitutions of the equivalent means, features, and materials for those shown or discussed, and the functional or positional reversal of various parts, features, or the like.
Still further, it is to be understood that different embodiments, as well as different presently preferred embodiments, of this invention, may include various combinations or configurations of presently disclosed features, elements, or their equivalents (including combinations of features or configurations thereof not expressly shown in the figures or stated in the detailed description).
These and other features, aspects and advantages of the present invention will become better understood with reference to the following descriptions and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate an embodiment of the invention and, together with the descriptions, serve to explain the principles of the invention.
A fill and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures, in which:
Repeat use of reference characters throughout the present specification and appended drawings is intended to represent the same or analogous features or elements of the invention.
Reference will now be made in detail to presently preferred embodiments of the invention, examples of which are fully represented in the accompanying drawings. Such examples are provided by way of an explanation of the invention, not limitation thereof. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention, without departing from the spirit and scope thereof. For instance, features illustrated or described as part of one embodiment can be used on another embodiment to yield a still further embodiment. Still further, variations in selection of materials and/or characteristics may be practiced, to satisfy particular desired user criteria. Thus, it is intended that the present invention cover such modifications and variations as come within the scope of the present features and their equivalents.
As shown in
From the crusher assembly 28 the debris is fed onto a conveyor assembly 30. The conveyor assembly 30 has a continuous conveyor belt 44 supported by multiple rollers, and finger like projections 46 on said conveyor belt 44. The conveyor assembly 30 is supported at its front end by attachment to the crusher assembly 28 and brush frames and at its back end by attachment to the prime mover 20. Hydraulic motors power the plurality of brushes 34, the rotation of the crusher rollers 38 and 40 and also drive the conveyor belt 44.
The baler assembly 32 is located at the distal end of the conveyor belt 44. The baler assembly 32 consists of a fixed position baling roller 48 and a movable baling roller 50 (as best seen in FIGS. 7A-10B). The baling rollers 48 and 50 are contained within a continuous baling band 52. The baling assembly 32 is attached to the prime mover 20 by suitable framing. The compacting and baling apparatus 10 also has a baling material feed assembly that feeds baling material into the baling band 52. The baling material 72 binds and retains the crushed and compacted debris in a small, lightweight roll. The baler assembly 32 is capable of rotating to eject the completed bale by way of a hole 64 in the underside of the baler assembly 32 (as best seen in FIG. 8B).
As best seen in
While the dimensions of the present invention form no particular aspect of the invention, the relative size of the various components may give rise to a better understanding of the capacity of the present invention to deal with a generally understood quantity of yard waste. To such end, the finger-like projections 46 of the conveyor assembly 30 may be generally between about 1 to 8 inches in length, most preferably about 2 inches in length and may be separated along the conveyor belt 44 generally between about 1 to 12 inches apart, most preferably about 8 inches apart. The debris-gathering brushes 26 may be between about 12 to 96 inches in length, most preferably about 24 inches, and generally between about 3 to 36 inches in diameter, most preferably about 12 inches in diameter. The upper surface of the conveyor belt 44 may be between about 24 to 96 inches in length, most preferably about 48 inches, and may be generally between about 12 to 96 inches in width, most preferably about 24 inches.
The scissoring roller 40, as depicted in
The fixed baling roller 48 is affixed to the paired main drive gears 66 of the baler assembly 32 and move with the paired main drive gears 66 as they rotate. Generally, when the fixed baling roller 48 is at or near the front of the baler assembly 32, the baler assembly 32 is considered in the open position, as shown in
The baling rollers 48 and 50 are contained within a continuous baling band 52.
With the crushing, compaction and baling of the leaves/debris complete, there remains but one function for the apparatus 10 to perform—the expulsion of the baled material from the baler assembly 32.
A motor (not shown) drives one of the paired main drive gears 66. These powered main drive gears 66 have a track that moves movable baling roller 50 along its opening 56 as the main drive gears 66 rotate the baler assembly 32. The opposing side of the baler assembly 32 houses a reversable motor that turns a gear on the end of the movable baling roller 50. This reversible motor rotates movable baling roller 50, which in conjunction with spring-biased friction roller 68, rotates the continuous baling band 52 and the fixed baling roller 48. As shown in
Although a preferred embodiment of the invention has been described using specific terms and devices, such description is for illustrative purposes only. The words used are words of description rather than of limitation. It is to be understood that changes and variations may be made by those of ordinary skill in the art without departing from the spirit or the scope of the present invention, which is set forth in the following claims. In addition, it should be understood that aspects of various other embodiments may be interchanged both in whole or in part. Therefore, the spirit and scope of the appended claims should not be limited to the description of the preferred version contained herein.
Patent | Priority | Assignee | Title |
8800255, | Jul 01 2011 | BLUE LEAF I P , INC , | Arrangement and control of precompression rolls in balers |
8820040, | Jul 01 2011 | BLUE LEAF I P , INC , | Compression rolls on baler pick up |
9155250, | Jul 01 2011 | BLUE LEAF I P , INC | Compression rolls on baler pick up |
9173347, | Jul 01 2011 | BLUE LEAF I P , INC | Balers and methods for forming high density bales |
9642311, | Jul 01 2011 | BLUE LEAF I P , INC | Arrangement and control of precompression rolls in balers |
Patent | Priority | Assignee | Title |
1706935, | |||
2415910, | |||
3107475, | |||
3229320, | |||
3474973, | |||
3641754, | |||
3736736, | |||
3895573, | |||
3911519, | |||
3911933, | |||
3964719, | Apr 18 1973 | Mobile stone crushing plant | |
4367622, | Apr 15 1980 | Belrecolt S.A. | Pick-up device |
4809380, | Oct 22 1987 | FORD NEW HOLLAND, INC , A CORP DE | Leaf loading machine with counterrotating beater and broom |
4825495, | Oct 22 1987 | Ford New Holland, Inc. | Leaf loading machine with cooperating shroud and housing |
4914774, | Oct 22 1987 | Ford New Holland, Inc. | Leaf loading machine for use with towing machine |
5195429, | Feb 28 1991 | Assembly for perforating, crushing and baling crushable objects | |
5255501, | Feb 28 1992 | Baler for forming cylindrical bales | |
5343679, | Dec 01 1993 | Leaf baler | |
5365836, | Mar 14 1994 | BLUE LEAF I P , INC | Apparatus for wrapping round bales |
5634396, | Dec 11 1995 | Apparatus for forming sushi rolls | |
579897, | |||
6263649, | Feb 01 1999 | Barko Specialty Equipment, LLC | Leaf gathering and compressing machine and method |
6263650, | Sep 23 1999 | Deere & Company | Cotton harvester with accumulator |
6591743, | Feb 01 2001 | Deere & Company | Cotton processing system and method of operation |
20030025017, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jul 09 2012 | REM: Maintenance Fee Reminder Mailed. |
Nov 25 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 23 2012 | 4 years fee payment window open |
Dec 23 2012 | 6 months grace period start (w surcharge) |
Jun 23 2013 | patent expiry (for year 4) |
Jun 23 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2016 | 8 years fee payment window open |
Dec 23 2016 | 6 months grace period start (w surcharge) |
Jun 23 2017 | patent expiry (for year 8) |
Jun 23 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2020 | 12 years fee payment window open |
Dec 23 2020 | 6 months grace period start (w surcharge) |
Jun 23 2021 | patent expiry (for year 12) |
Jun 23 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |