An apparatus in accordance with the invention is directed to an optical inspection apparatus (10) adapted to inspect a liquid sample. The apparatus includes a tray (20) that is adapted to be physically coupled to a first liquid sample carrier (22) and a second liquid sample carrier (40), each of the first and second liquid sample carriers (22, 40) being adapted to hold a liquid sample. The first liquid sample carrier (22) is of a first type and the second liquid sample carrier (40) is of a second type different from the first type. The apparatus (10) has a light source (108) adapted to illuminate one of the liquid samples associated with one of the liquid sample carriers (22 or 40) when the liquid sample carrier (22 or 40) is coupled to the tray (20) at an inspection location and a detector (110) adapted to receive light from the liquid sample when the liquid sample is being illuminated by the light source (108).
|
0. 25. A tray assembly comprising:
a first insert comprising a reagent cassette;
a second insert adapted to support a reagent strip;
a support tray that is adapted to removably and alternately support the first and the second inserts, wherein the support tray has a recess formed therein, wherein at least a portion of the first removable insert is sized to fit within the recess, and wherein at least a portion of the second removable insert is sized to fit within the recess.
0. 18. A tray assembly for use with an apparatus adapted to inspect a liquid sample, the tray assembly comprising:
a first insert being of a first type of liquid-carrying mechanism adapted to hold a liquid sample;
a second insert being of a second type of liquid carrying mechanism different from the first type adapted to hold a liquid sample;
a support tray that is adapted to removably and alternately support the first and the second inserts and be inserted within an inspection location within the liquid sample inspection apparatus so that a light source of the apparatus illuminates a liquid sample associated with one of the first and the second inserts and a detector of the apparatus receives light from the liquid sample when the insert is supported by the support tray at the inspection location.
10. An apparatus adapted to inspect a liquid sample, said apparatus comprising:
a tray (20) that is adapted to be physically coupled to a first liquid sample carrier (22) and a second liquid sample carrier (40), each of said first and second liquid sample carriers (22, 40) being adapted to hold a liquid sample, said first liquid sample carrier (22) being of a first type of liquid-carrying mechanism and said second liquid sample carrier (40) being of a second type of liquid-carrying mechanism different from said first type;
a light source (108) adapted to illuminate one of said liquid samples associated with one of said liquid sample carriers (22 or 40) when said one liquid sample carrier (22 or 40) is coupled to said tray (20) at an inspection location; and
a detector (112) adapted to receive light from said one liquid sample when said one liquid sample is being illuminated by said light source (108).
1. An apparatus adapted to inspect a liquid sample, said apparatus comprising:
a support tray (20) that is adapted to support a first insert (22) and a second insert (40), each of said first and second inserts (22, 40) being removable from said support tray (20), each of said first and second removable inserts (22, 40) being adapted to hold a liquid sample, said first removable insert (22) being of a first type of liquid-carrying mechanism and said second removable insert (40) being of a second type of liquid-carrying mechanism different from said first type;
a light source (108) adapted to illuminate one of said liquid samples associated with one of said removable inserts(22 or 40) when said one removable insert (22 or 40) is supported by said support tray (20) at an inspection location; and
a detector (112) adapted to receive light from said one liquid sample when said one liquid sample is being illuminated by said light source (108).
14. A method of using an optical inspection apparatus (10) having a support tray (20) that supports a liquid sample to be inspected, a light source (108) that illuminates said liquid sample supported by said support tray (20) when said support tray (20) is at an inspection location, and a detector (112) that detects light received from said liquid sample, said method comprising the steps of:
(a) placing onto said support tray (20) a removable insert (22) of a first type that carries a liquid sample;
(b) causing said liquid sample of said step (a) to be illuminated by said light source (108);
(c) causing light received from said liquid sample of said step (a) to be detected by said detector (112);
(d) taking said removable insert (22) off of said support tray (20) after said step (c);
(e) placing onto said support tray (20) a removable insert (40) of a second type that carries a liquid sample, said removable insert (40) of said step (e) having a different physical structure from said removable insert (22) of said step (a);
(f) causing said liquid sample of said step (e) to be illuminated by said light source (108); and
(g) causing light received from said liquid sample of said step (e) to be detected by said detector (112).
2. An apparatus as defined in
3. An apparatus as defined in
4. An apparatus as defined in
5. An apparatus as defined in
6. An apparatus as defined in
7. An apparatus as defined in
8. An apparatus as defined in
9. An apparatus as defined in
11. An apparatus as defined in
12. An apparatus as defined in
13. An apparatus as defined in
15. A method as defined in
16. A method as defined in
17. A method as defined in
0. 19. An assembly as defined in
0. 20. An assembly as defined in
0. 21. An assembly as defined in
0. 22. An assembly as defined in
0. 23. An assembly as defined in
0. 24. An assembly as defined in
0. 26. An assembly as defined in
0. 27. An assembly as defined in
0. 28. An assembly as defined in
|
The present invention relates to an apparatus and method for performing tests on a sample of body fluid to be optically inspected.
It is useful for various medical diagnostic purposes to utilize a reflectance spectroscope to analyze samples of body fluid, for example, to determine the color of a person's urine. A conventional spectroscope may determine the color of a urine sample disposed on a white, non-reactive pad by illuminating the pad and taking a number of reflectance readings from the pad, each having a magnitude relating to a different wavelength of visible light. The color of the urine on the pad may then be determined based upon the relative magnitudes of red, green, blue and infrared reflectance signals.
Conventional spectroscopes may be used to perform a number of different urinalysis tests utilizing a reagent strip on which a number of different reagent pads are disposed. Each reagent pad may be provided with a different reagent which causes a color change in response to the presence of a certain type of constituent in urine, such as leukocytes (white blood cells) or red blood cells. Such a reagent strip may have ten or more different types of reagent pads.
In a conventional spectroscope, the process of inspecting a reagent strip may be performed by dipping the reagent strip in a urine sample, blotting excess urine from the reagent strip, placing the reagent strip at a designated location in the spectrophotometer, and pressing a start button which causes the spectroscope to begin automatic processing and inspection of the reagent strip.
It is an object of the invention to overcome the disadvantages of the prior art. This object is solved by a combination of features of the main claim. The sub-claims disclose further advantageous embodiments of the invention.
The summary of the invention does not necessarily describe all necessary features of the invention, and the invention may also reside in a sub-combination of described features. The “Summary of the Invention,” thus incorporated, presents, therefore, only an example, but not a limitation of the subject matter.
The invention is directed to an apparatus and method which allow different types of liquid carriers to be utilized in an optical inspection apparatus in a simple and convenient manner.
An apparatus in accordance with the invention is directed to an optical inspection apparatus adapted to inspect a liquid sample, such as a body fluid sample. The apparatus includes a tray that is adapted to be physically coupled to a first liquid sample carrier and a second liquid sample carrier, each of the first and second liquid sample carriers being adapted to hold a liquid sample. The first liquid sample carrier is of a first type and the second liquid sample carrier is of a second type different from the first type. The apparatus has a light source adapted to illuminate one of the liquid samples associated with one of the liquid sample carriers when the liquid sample carrier is coupled to the tray at an inspection location and a detector adapted to receive light from the liquid sample when the liquid sample is being illuminated by the light source.
The first liquid sample carrier may be in the form of a disposable reagent cassette, and the second liquid sample carrier may be adapted to support a reagent strip having a plurality of reagent pads disposed thereon, with the first liquid sample carrier having an elongated channel formed therein, the channel being sized to accommodate the reagent strip.
The invention is also directed to a method of using an optical inspection apparatus having a support tray that supports a liquid sample to be inspected, a light source that illuminates the liquid sample supported by the support tray when the support tray is at an inspection location, and a detector that detects light received from the liquid sample.
The method includes the steps of (a) placing onto the support tray a removable insert of a first type that carries a liquid sample, (b) causing the liquid sample to be illuminated by the light source, (c) causing light received from the liquid sample to be detected by the detector, (d) taking the removable insert off of the support tray, (e) placing onto the support tray a removable insert of a second type that carries a liquid sample, the second type of removable insert having a different physical structure from the first type of removable insert, (f) causing the liquid sample on the second type of removable insert to be illuminated by the light source, and (g) causing light received from the liquid sample to be detected by the detector.
The features and advantages of the present invention will be apparent to those of ordinary skill in the art in view of the detailed description of the preferred embodiment, which is made with reference to the drawings, a brief description of which is provided below.
The inspection apparatus 10 has a housing 17 with an opening 18 formed therein into which a support tray 20 may be retracted. Referring to
As shown in
Referring to
Referring to
As shown in
The reagent strip holder 40 has a central channel 43 formed therein which is sized to conform to the shape of a reagent strip 46 (FIG. 6). The reagent strip holder 40 may have a raised lip 44 which is disposed around The periphery of the reagent strip holder 40 to reduce the likelihood of body fluid samples contaminating the support tray 20.
Referring to
When the support tray 20 is disposed so that either the reagent cassette 22 or the reagent strip holder 40 is disposed at an inspection location within the inspection apparatus 10, the controller 100 turns on a light source 108, which may be a light bulb or a light-emitting diode for example, via a switch 110 connected to the controller 100. The light source 108 may be turned on a period of time prior to the performance of an optical inspection so that it will be sufficiently warmed up. If the light source 108 is not needed to provide illumination within a period of time following a test, it may be turned off to conserve its life.
When the fluid sample in either the reagent cassette 22 or on the reagent strip holder 40 is illuminated by the light source 108, a detection apparatus 112 is used to detect light from the fluid sample. The detection apparatus 112 may be composed, for example, of a number of detectors disposed in a detector array, with each of the detectors generating a respective electrical reflectance signal which may be provided to a routing circuit in the form of a multiplexer 114, for example.
Each reflectance signal has a magnitude that depends on the amount of light detected by the associated detector. The controller 100 can selectively read any one of the reflectance signals by transmitting a select signal to the multiplexer 114. The multiplexer 114 then transmits the selected reflectance signal to an amplifier 116 and an analog-to-digital (A/D) converter 118, which transmits the binary signal corresponding to the analog reflectance signal output by the amplifier 116 to the controller 100.
The inspection apparatus 10 may be used to optically inspect multiple reagent cassettes 22 and multiple reagent strips 46 in any order desired by the user, since the reagent cassettes 22 and the reagent strip holder 40 have the same outer dimensions and fit within the recess 30 in the support tray 20.
In using the inspection apparatus 10, the user may prepare a reagent cassette 22 for optical inspection by putting a body fluid sample in the well 24 and then placing the cassette 22 in the recess 30 formed in the support tray 20. The user may then press a start button 14 on the keyboard 12 to cause the controller 100 to retract the support tray 20 inwardly so that the window 28 in the reagent cassette 22 is illuminated by the light source 108 and so that one or more reflectance signals are generated by the detection apparatus 112. After the reflectance signals are generated and processed by the controller 100, the test results may be displayed on the display 16 (
In order to then perform one or more optical inspection tests on a reagent strip 46, the user would remove the reagent cassette 22 from the recess 30 in the support tray, discard the cassette 22, and place the reagent strip holder 40 in the recess 30 in the support tray 20.
To prepare a reagent strip 46 for optical inspection, the user would dip the reagent strip 46 into a body fluid sample to be tested so that the reagent pads 50 are immersed in the sample or otherwise apply the sample to the pads 50. After the side of the reagent strip 46 is blotted to remove excess fluid, the user places the strip 46 in the central channel 43 of the holder 40 and presses the start key 14 to initiate optical inspection of the reagent strip 46. The reagent strip holder 40 is then automatically retracted into the housing 17 and may be successively positioned at multiple locations within the inspection apparatus 10 so that each of the reagent pads 50 is optically inspected at an inspection location.
The provision of a support table 20 which is adapted to be used with different types of liquid carriers allows the user to quickly and conveniently change the liquid carrier while allowing the inspection apparatus to optically inspect different types of liquid-carrying mechanisms. It should be noted that the support tray 20 does not have to be removed from the inspection apparatus 10 in order to replace one type of liquid carrier with another type of liquid carrier.
Modifications of the inspection apparatus 10 will be apparent to those of ordinary skill in the art. For example, instead of providing the support tray 20 with the recess 30, the support tray 20 could be adapted to be physically coupled to each of the liquid carriers 22, 40 in alternative ways.
Numerous further modifications and alternative embodiments of the invention will be apparent to those skilled in the art in view of the foregoing description. This description is to be construed as illustrative only, and is for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and methods may be varied substantially without departing from the spirit of the invention, and the exclusive use of all modifications which come within the scope of the appended claims is reserved.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3907503, | |||
4689702, | Apr 13 1983 | Fuji Photo Film Co., Ltd. | Magnetic tape cassette |
5059394, | Aug 13 1986 | LifeScan, Inc. | Analytical device for the automated determination of analytes in fluids |
5231576, | Sep 08 1989 | Terumo Kabushiki Kaisha | Measuring apparatus |
5661563, | May 09 1996 | Siemens Healthcare Diagnostics Inc | Reflectance spectroscope with read head for minimizing singly-reflected light rays |
5945341, | Oct 21 1996 | Siemens Healthcare Diagnostics Inc | System for the optical identification of coding on a diagnostic test strip |
5955028, | Aug 02 1996 | Caliper Life Sciences, Inc | Analytical system and method |
EP806662, | |||
EP871033, | |||
EP1130383, | |||
WO22406, | |||
WO8300926, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 01 2003 | Bayer Corporation | Bayer HealthCare LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022123 | /0585 | |
May 29 2003 | Siemens Healthcare Diagnostics Inc. | (assignment on the face of the patent) | / | |||
Jan 02 2007 | Bayer HealthCare LLC | Siemens Medical Solutions Diagnostics | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 022123 | /0608 | |
Dec 20 2007 | Siemens Medical Solutions Diagnostics | Siemens Healthcare Diagnostics Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 022123 | /0689 |
Date | Maintenance Fee Events |
Nov 06 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 23 2012 | 4 years fee payment window open |
Dec 23 2012 | 6 months grace period start (w surcharge) |
Jun 23 2013 | patent expiry (for year 4) |
Jun 23 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2016 | 8 years fee payment window open |
Dec 23 2016 | 6 months grace period start (w surcharge) |
Jun 23 2017 | patent expiry (for year 8) |
Jun 23 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2020 | 12 years fee payment window open |
Dec 23 2020 | 6 months grace period start (w surcharge) |
Jun 23 2021 | patent expiry (for year 12) |
Jun 23 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |