A positioning device with a drive unit with which an object table is displaceable over a guide which is fastened to a first frame thereof. A stationary part of the drive unit is fastened to a second frame thereof and dynamically isolated from the first frame while a reaction force of the object table arising from a driving force exerted by the drive unit on the object table is transmittable exclusively into the second frame.
|
0. 24. A positioning device with:
an object table; and
a drive unit by which the object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame by a plurality of dynamic isolators, each dynamic isolator comprising a force actuator and a pneumatic spring, wherein a reaction force exerted by the object table on the drive unit during operation and arising from a driving force exerted by the drive unit on the object table is transmittable exclusively into the second frame.
0. 34. A positioning device with:
an object table; and
a drive unit by which the object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame, wherein a reaction force exerted by the object table on the drive unit during operation and arising from a driving force exerted by the drive unit on the object table is transmittable exclusively into the second frame,
wherein the second frame comprises a base portion and a vertical column, and the base portion supports the first frame, and
wherein the vertical column is mounted to the base portion independently of the first frame, and
wherein the object table is a mask table for holding a mask and the stationary part of the drive unit is fastened to the vertical column.
0. 44. A positioning device with:
a first object table, and a first drive unit by which the first object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the first drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame by a plurality of dynamic isolators, each dynamic isolator comprising a force actuator and a pneumatic spring, wherein a reaction force exerted by the first object table on the first drive unit during operation and arising from a driving force exerted by the first drive unit on the first object table is transmittable exclusively into the second frame; and a second object table, and a second drive unit by which the second object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the second drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame and wherein a reaction force exerted by the second object table on the second drive unit during operation and arising from a driving force exerted by the second drive unit on the second object table is transmittable exclusively into the second frame.
0. 23. A lithographic device with a machine frame which, seen parallel to a vertical z-direction, supports in that order a radiation source, a mask holder, a focusing system with a main axis directed parallel to the z-direction, and a substrate holder which is displaceable perpendicularly to the z-direction by means of a positioning device, the positioning device of the substrate holder, including a first object table and a first drive unit by which the first object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the first drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame, wherein the first frame of the positioning device of the substrate holder belongs to the machine frame of the lithographic device, while the second frame of the positioning device of the substrate holder belongs to a force frame of the lithographic device which is dynamically isolated from the machine frame by a plurality of dynamic isolators, each dynamic isolator comprising a force actuator and a pneumatic spring; and wherein a reaction force exerted by the first object table on the first drive unit during operation and arising from a driving force exerted by the first drive unit on the first object table is transmittable exclusively into the second frame, and wherein the mask holder is displaceable perpendicularly to the z-direction by means of a mask holder positioning device with a second object table and a second drive unit by which the second object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the mask holder positioning device while a stationary part of the second drive unit is fastened to a second frame of the mask holder positioning device which is dynamically isolated from the first frame thereof, wherein a reaction force exerted by the second object table on the second drive unit during operation and arising from a driving force exerted by the second drive unit on the second object table is transmittable exclusively into the second frame, wherein the first frame of the positioning device of the mask holder belongs to the machine frame of the lithographic device, while the second frame of the positioning device of the mask holder belongs to the force frame of the lithographic device.
0. 1. A positioning device with an object table and a drive unit by which the object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame, wherein a reaction force exerted by the object table on the drive unit during operation and arising from a driving force exerted by the drive unit on the object table is transmittable exclusively into the second frame.
0. 2. A positioning device as claimed in
0. 3. A positioning device as claimed in
4. A positioning device as claimed in
0. 5. A positioning device as claimed in
0. 6. A positioning device as claimed in
0. 7. A positioning device as claimed in
0. 8. A positioning device as claimed in
0. 9. A positioning device as claimed in
0. 10. A lithographic device with a machine frame which, seen parallel to a vertical z-direction, supports in that order a radiation source, a mask holder, a focusing system with a main axis directed parallel to the z-direction, and a substrate holder which is displaceable perpendicularly to the z-direction by means of a positioning device, the positioning device of the substrate holder, including an object table and a drive unit by which the object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame, wherein the first frame of the positioning device of the substrate holder belongs to the machine frame of the lithographic device, while the second frame of the positioning device of the substrate holder belongs to a force frame of the lithographic device which is dynamically isolated from the machine frame; and wherein a reaction force exerted by the object table on the drive unit during operation and arising from a driving force exerted by the drive unit on the object table is transmittable exclusively into the second frame.
0. 11. A lithographic device with a machine frame which, seen parallel to a vertical z-direction, supports in that order a radiation source, a mask holder which is displaceable perpendicularly to the z-direction by means of a positioning device, a focusing system with a main axis directed parallel to the z-direction, and a substrate holder which is displaceable perpendicularly to the z-direction by means of a further positioning device, the positioning device of the mask holder including an object table and a drive unit by which the object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame, wherein the first frame of the positioning device of the mask holder belongs to the machine frame of the lithographic device, while the second frame of the positioning device of the mask holder belongs to a force frame of the lithographic device which is dynamically isolated from the machine frame; and wherein a reaction force exerted by the object table on the drive unit during operation and arising from a driving force exerted by the drive unit on the object table is transmittable exclusively into the second frame.
0. 12. A lithographic device as claimed in
0. 13. A lithographic device as claimed in
0. 14. A lithographic device as claimed in
0. 15. A positioning device as claimed in
0. 16. A positioning device as claimed in
17. A positioning device as claimed in
0. 18. A positioning device as claimed in
0. 19. A positioning device as claimed in
0. 20. A positioning device as claimed in
0. 21. A positioning device as claimed in
0. 22. A positioning device as claimed in
0. 25. A positioning device according to
0. 26. A positioning device according to
0. 27. A positioning device according to
0. 28. A positioning device according to
a pair of linear motors constructed and arranged to produce gross movements of the object table in a pair of mutually perpendicular directions; and
an actuator, constructed and arranged to produce fine movements of the object table in a pair of mutually perpendicular directions and in a rotational direction.
0. 29. A positioning device according to
0. 30. A positioning device according to
0. 31. A positioning device according to
0. 32. A positioning device as recited in
0. 33. A positioning device as recited in
0. 35. A positioning device according to
0. 36. A positioning device according to
a pair of linear motors constructed and arranged to produce gross movements of the object table in a pair of mutually perpendicular directions; and
an actuator, constructed and arranged to produce fine movements of the object table in a pair of mutually perpendicular directions and in a rotational direction.
0. 37. A positioning device according to
0. 38. A positioning device according to
0. 39. A positioning device according to
0. 40. A positioning device according to
0. 41. A positioning device as recited in
0. 42. A positioning device as recited in
0. 43. A positioning device as recited in
|
The invention relates to a positioning device with an object table and a drive unit by which the object table is displaceable over a guide parallel to at least an X-direction, which guide is fastened to a first frame of the positioning device while a stationary part of the drive unit is fastened to a second frame of the positioning device which is dynamically isolated from the first frame.
The invention further relates to a lithographic device with a machine frame which, seen parallel to a vertical Z-direction, supports in that order a radiation source, a mask holder, a focusing system with a main axis directed parallel to the Z-direction, and a substrate holder which is displaceable perpendicularly to the Z-direction by means of a positioning device.
The invention also relates to a lithographic device with a machine frame which, seen parallel to a vertical Z-direction, supports in that order a radiation source, a mask holder which is displaceable perpendicularly to the Z-direction by means of a positioning device, a focusing system with a main axis directed parallel to the Z-direction, and a substrate holder which is displaceable perpendicularly to the Z-direction by means of a further positioning device.
A positioning device of the kind mentioned in the opening paragraph is known from U.S. Pat. No. 5,260,580. The known positioning device comprises an object table which is supported by and guided over a stationary base which in its turn is supported by a first frame. The known positioning device comprises a drive unit for displacing the object table over the stationary base. The drive unit has a first linear motor of which a stationary part is supported by the stationary base and a second linear motor of which a stationary part is supported by a second frame. The second frame is dynamically isolated from the first frame, so that mechanical forces and vibrations present in the second frame cannot be transmitted to the first frame. The object table of the known positioning device is displaceable during operation by means of the second linear motor into a position which lies close to a desired end position, whereupon it can be moved into the desired end position by the first linear motor. The displacement of the object table by the second linear motor is usually a comparatively great, speed-controlled displacement during which the second linear motor exerts a comparatively great driving force on the object table. The subsequent displacement of the object table by the first linear motor is a comparatively small, position-controlled displacement during which the first linear motor exerts a comparatively small driving force on the object table. Since the stationary part of the second linear motor is supported by the second frame which is dynamically isolated from the first frame, it is prevented that a comparatively great reaction force exerted by the object table on the second linear motor and arising from the driving force exerted by the second linear motor on the object table, as well as mechanical vibrations caused by the reaction force in the second frame are transmitted into the first frame, the stationary base, and the object table. The fact that the stationary base and the object table of the known positioning device thus remain free from the comparatively strong mechanical vibrations caused by the second linear motor means that the object table is displaceable into the desired end position in a quick and accurate manner by means of the first linear motor.
A disadvantage of the known positioning device is that the stationary part of the first linear motor is supported by the stationary base over which the object table is guided. As a result, a reaction force exerted by the object table on the first linear motor and arising from the driving force exerted by the first linear motor on the object table is transmitted into the stationary base and the first frame. The displacement of the object table by means of the first linear motor is comparatively small, it is true, so that the value of said reaction force is comparatively low, but said reaction force has a comparatively high frequency. The frequency of said reaction force is comparable to a material frequency which is characteristic of a usual frame, such as the first frame of the known positioning device, in particular if the displacement of the object table into the desired end position is to take place within a comparatively short time span. Under such circumstances the reaction force of the first linear motor will cause the first frame to resonate, whereby comparatively strong mechanical vibrations arise in the first frame, the stationary base, and the object table, which detract from the positioning accuracy of the first linear motor and lengthen the time required for reaching the desired end position.
It is an object of the invention to provide a positioning device of the kind mentioned in the opening paragraph with which the above disadvantage is prevented as much as possible.
The invention is for this purpose characterized in that a reaction force exerted by the object table on the drive unit during operation and arising from a driving force exerted by the drive unit on the object table is transmittable exclusively into the second frame. Since said reaction force can be transmitted exclusively into the second frame, mechanical vibrations are caused in the second frame only by the reaction force. Since the second frame is dynamically isolated from the first frame, the mechanical vibrations caused in the second frame by the reaction force are not transmitted into the first frame, so that the first frame, the guide, and the object table remain free from mechanical vibrations caused by said reaction force. It is prevented thereby that the first frame is brought into resonance by comparatively high-frequency components of said reaction force which arise when the object table is accurately brought into the desired end position by the drive unit. The fact that the first frame remains free from mechanical vibrations caused by the reaction force implies not only that the positioning accuracy and the time required for positioning are improved owing to the absence of mechanical vibrations in the first frame, but also that the required time is further reduced because comparatively high frequencies of the driving force are admissible during positioning of the object table into the desired end position.
A special embodiment of a positioning device according to the invention is characterized in that the object table is coupled to the stationary part of the drive unit exclusively by a Lorentz force of a magnet system and an electric coil system of the drive unit during operation. Since the object table is coupled to the stationary part of the drive unit exclusively by said Lorentz force, the object table is physically decoupled from the stationary part of the drive unit, i.e. there is no physical contact or physical coupling between the object table and the stationary part of the drive unit. In the present embodiment, said Lorentz force comprises the driving force exerted by the drive unit on the object table. Since the object table is physically decoupled from the stationary part of the drive unit, it is prevented that mechanical vibrations caused in the stationary part of the drive unit by the reaction force arising from the Lorentz force are transmitted via the drive unit to the object table and the first frame.
A further embodiment of a positioning device according to the invention is characterized in that the magnet system and the electric coil system belong to a first linear motor of the drive unit, which drive unit comprises a second linear motor with a stationary part fastened to the second frame and a movable part which is displaceable parallel to the X-direction over a guide of the stationary part, the magnet system of the first linear motor being fastened to the object table and the electric coil system of the first linear motor being fastened to the movable part of the second linear motor. In this further embodiment, the object table is displaceable into a position close to a desired end position over a comparatively great distance parallel to the X-direction by means of the second linear motor, the object table being held in a substantially constant position relative to the movable part of the second linear motor during this by means of a Lorentz force of the first linear motor suitable for this purpose. After this, the object table is displaceable by means of the first linear motor into the desired end position, the movable part of the second linear motor being in a constant position relative to the stationary part during this. Since the object table need be displaced over comparatively small distances only during its positioning into the end position by means of the first linear motor, the magnet system and the electric coil system of the first linear motor need have only comparatively small dimensions. A reaction force on the stationary part of the second linear motor arising from a driving force exerted by the second linear motor is directly transmitted into the second frame. A reaction force on the electric coil system of the first linear motor arising from a Lorentz force exerted by the first linear motor is transmitted into the second frame via the movable part, the guide, and the stationary part of the second linear motor.
A yet further embodiment of a positioning device according to the invention is characterized in that the drive unit comprises a third linear motor with a stationary part which is fastened to the movable part of the second linear motor, and with a movable part which is displaceable parallel to a Y-direction which is perpendicular to the X-direction over a guide of the stationary part of the third linear motor, the electric coil system of the first linear motor being fastened to the movable part of the third linear motor. In this embodiment of the positioning device, the object table is displaceable parallel to the X- and Y-directions, while the guide for the object table is, for example, a surface which extends parallel to the X-direction and the Y-direction. The object table can be displaced over comparatively great distances parallel to the X-direction and the Y-direction into a position close to a desired end position by means of the second and third linear motors, respectively, whereupon it can be positioned in the desired end position by means of the first linear motor. It can be achieved through a suitable design of the magnet system and electric coil system of the first linear motor that the object table is displaceable over comparatively small distances parallel to the X-direction and the Y-direction by means of the first linear motor. A reaction force on the stationary part of the second motor arising from a driving force exerted by the second linear motor is transmitted directly to the second frame, while a reaction force on the stationary part of the third motor arising from a driving force exerted by the third linear motor is transmitted to the second frame via the movable part, the guide, and the stationary part of the second linear motor. A reaction force on the electric coil system of the first linear motor arising from a Lorentz force exerted by the first linear motor is transmitted to the second frame via the movable parts, the guides, and the stationary parts of the third and second linear motors in that order.
A particular embodiment of a positioning device according to the invention is characterized in that the positioning device is provided with a force actuator system controlled by an electric control unit and exerting a compensation force on the first frame during operation, which compensation force has a mechanical moment about a reference point of the first frame having a value equal to a value of a mechanical moment of a force of gravity acting on the object table about said reference point and a direction which is opposed to a direction of the mechanical moment of said force of gravity. The object table rests on the guide of the first frame with a support force which is determined by the force of gravity acting on the object table. When the object table is displaced, a point of application of said support force on the guide is also displaced relative to the first frame. The use of said force actuator system prevents the first frame from vibrating or shaking as a result of comparatively great or quick displacements of the object table and said point of application relative to the first frame. The control unit controls the compensation force of the force actuator system as a function of the position of the object table relative to the first frame. Owing to said compensation force, the displaceable object table has a so-called virtual centre of gravity which has a constant position relative to the first frame. In this embodiment of the positioning device, therefore, the first frame is not only free from mechanical vibrations caused by reaction forces of the drive unit of the object table, but also remains free from mechanical vibrations caused by displacements of the actual centre of gravity of the object table relative to the first frame. The positioning accuracy of the positioning device and the time required for a displacement of the object table into a desired end position are further improved in this manner.
A further embodiment of a positioning device according to the invention is characterized in that the object table is displaceable parallel to a horizontal direction, while the force actuator system exerts the compensation force on the first frame parallel to a vertical direction. Since the force actuator system exerts the compensation force on the first frame parallel to the vertical direction, the force actuator system does not exert forces on the first frame in a drive direction of the object table, so that no additional measures are necessary for preventing mechanical vibrations in the first frame directed parallel to the drive direction in addition to the measures taken in relation to the reaction forces of the drive unit of the object table. Vertical vibrations of the first frame are prevented in that a value of the compensation force of the force actuator system is kept constant and in that exclusively the point of application of the compensation force on the first frame is displaced as a function of the position of the object table. The displacement of the point of application of the compensation force of the force actuator system is achieved, for example, through the use of a force actuator system with at least two separate force actuators wherein the compensation forces of the force actuators are individually controlled as a function of the position of the object table, a sum of the compensation forces of the separate force actuators being kept constant.
A still further embodiment of a positioning device according to the invention is characterized in that the object table is displaceable parallel to a horizontal X-direction and parallel to a horizontal Y-direction which is perpendicular to the X-direction, triangle and each exerting a compensation force on the first frame parallel to the vertical direction. The use of the force actuator system with the three force actuators mutually arranged in a triangle not only prevents mechanical vibrations of the first frame arising from a displacement of the object table parallel to the X-direction, but also prevents mechanical vibrations of the first frame arising from a displacement of the object table parallel to the Y-direction. The sum of the compensation forces of the individual force actuators is kept constant continually during operation, so that no vertical vibrations of the first frame are caused. The triangular arrangement of the force actuators in addition provides a particularly stable operation of the force actuator system.
A special embodiment of a positioning device according to the invention is characterized in that the force actuator system is integrated with a system of dynamic isolators by means of which the first frame is coupled to a base of the positioning device. The dynamic isolators are, for example, dampers with a comparatively low mechanical stiffness by means of which the first frame is dynamically isolated from said base. Owing to the comparatively low mechanical stiffness of the dampers, mechanical vibrations present in the base such as, for example, floor vibrations or vibrations of the second frame if the latter is fastened, for example, on the base, are not transmitted into the first frame. The integration of the force actuator system with the system of dynamic isolators provides a particularly compact and simple construction of the positioning device.
A further embodiment of a positioning device according to the invention is characterized in that the compensation force comprises exclusively a Lorentz force of a magnet system and an electric coil system of the force actuator system. The force actuator system comprises a part which is fastened to the first frame and a part which is fastened to a base of the positioning device. Since the compensation force of the force actuator system comprises exclusively a Lorentz force, said parts of the force actuator system are physically decoupled, i.e. there is no physical contact or physical coupling between said parts. It is prevented thereby that mechanical vibrations present in the base of the positioning device such as, for example, floor vibrations or vibrations of the second frame, if the latter is fastened, for example, on the base, are transmitted into the first frame and the object table via the force actuator system.
A lithographic device with a displaceable substrate holder of the kind mentioned in the opening paragraphs is known from EP-A-0 498 496. The known lithographic device is used in the manufacture of integrated semiconductor circuits by means of an optical lithographic process. The radiation source of the known lithographic device is a light source, while the focusing system is an optical lens system by means of which a partial pattern of an integrated semiconductor circuit, which pattern is present on a mask which can be placed on the mask holder of the lithographic device, is imaged on a reduced scale on a semiconductor substrate which can be placed on the substrate holder of the lithographic device. Such a semiconductor substrate comprises a large number of fields on which identical semiconductor circuits are provided. The individual fields of the semiconductor substrate are consecutively exposed for this purpose, the semiconductor substrate being in a constant position relative to the mask and the focusing system during the exposure of an individual field, while between two consecutive exposure steps a next field of the semiconductor substrate is brought into position relative to the focusing system by means of the positioning device of the substrate holder. This process is repeated a number of times, each time with a different mask with a different partial pattern, so that integrated semiconductor circuits of comparatively complicated structure can be manufactured. The structures of such integrated semiconductor circuits have detail dimensions which lie in the sub-micron range. The partial patterns present on the consecutive masks should accordingly be imaged on said fields of the semiconductor substrate with an accuracy relative to one another which lies in the sub-micron range. The semiconductor substrate should accordingly be positioned relative to the mask and the focusing system by means of the positioning device of the substrate holder with an accuracy also in the sub-micron range. To reduce the time required for the manufacture of the semiconductor circuits, moreover, the semiconductor substrate should be displaced with a comparatively high speed between two consecutive exposure steps and should be positioned relative to the mask and the focusing system with the desired accuracy.
According to the invention, the lithographic device with the displaceable substrate holder is characterized in that the positioning device of the substrate holder is a positioning device according to the invention, wherein the first frame of the positioning device of the substrate holder belongs to the machine frame of the lithographic device, while the second frame of the positioning device of the substrate holder belongs to a force frame of the lithographic device which is dynamically isolated from the machine frame. Comparatively great reaction forces exerted by the substrate holder on the positioning device during comparatively quick displacements between two exposure steps are thus transmitted to the force frame of the lithographic device, so that the machine frame of the lithographic device, which supports the mask holder, the focusing system and the substrate holder, remains free from mechanical vibrations caused by said reaction forces in the force frame. The accuracy with which the substrate holder can be positioned relative to the mask holder and the focusing system, and the time required for positioning the substrate holder with the desired accuracy are thus not adversely affected by said mechanical vibrations.
A lithographic device with a displaceable substrate holder and a displaceable mask holder of the kind mentioned in the opening paragraphs is known from U.S. Pat. No. 5,194,893. In this known lithographic device, the semiconductor substrate under manufacture is not in a constant position relative to the mask and the focusing system during the exposure of a single field of the semiconductor substrate, but instead the semiconductor substrate and the mask are synchronously displaced relative to the focusing system parallel to an X-direction which is perpendicular to the Z-direction by means of the positioning device of the substrate holder and the positioning device of the mask holder, respectively, during exposure. In this manner the pattern present on the mask is scanned parallel to the X-direction and synchronously imaged on the semiconductor substrate. It is achieved thereby that a maximum surface area of the mask which can be imaged on the semiconductor substrate by means of the focusing system is limited to a lesser degree by a size of an aperture of the focusing system. Since the detail dimensions of the integrated semiconductor circuits to be manufactured lie in the sub-micron range, the semiconductor substrate and the mask should be displaced with an accuracy also in the sub-micron range relative to the focusing system during the exposure. To reduce the time required for the manufacture of the semiconductor circuits, the semiconductor substrate and the mask should in addition be displaced and positioned relative to one another with a comparatively high speed during exposure. Since the pattern present on the mask is imaged on a reduced scale on the semiconductor substrate, the speed with which and the distance over which the mask is displaced are greater than the speed with which and the distance over which the semiconductor substrate is displaced, the ratio between said speeds and the ratio between said distances both being equal to a reduction factor of the focusing system.
According to the invention, the lithographic device with the displaceable substrate holder and displaceable mask holder is characterized in that the positioning device of the mask holder is a positioning device according to the invention, wherein the first frame of the positioning device of the mask holder belongs to the machine frame of the lithographic device, while the second frame of the positioning device of the mask holder belongs to a force frame of the lithographic device which is dynamically isolated from the machine frame.
A special embodiment of a lithographic device with a displaceable substrate holder according to the invention is characterized in that the mask holder is displaceable perpendicularly to the Z-direction by means of a positioning device according to the invention, wherein the first frame of the positioning device of the mask holder belongs to the machine frame of the lithographic device, while the second frame of the positioning device of the mask holder belongs to the force frame of the lithographic device.
Comparatively great reaction forces exerted on the positioning device of the mask holder by the mask holder as a result of the comparatively high speeds and acceleration of the mask holder during the exposure of the semiconductor substrate are thus transmitted to the force frame of the lithographic device. The lithographic device's machine frame, which supports the mask holder, the focusing system, and the substrate holder, thus remains free from mechanical vibrations caused by said reaction forces in the force frame. The accuracy with which the substrate holder and the mask holder are displaceable relative to the focusing system during the exposure of the semiconductor substrate is accordingly not adversely affected by said mechanical vibrations.
A further embodiment of a lithographic device according to the invention is characterized in that the positioning devices of the substrate holder and the mask holder have a joint force actuator system which is controlled by an electric control unit and which exerts a compensation force on the machine frame of the lithographic device during operation which has a mechanical moment about a reference point of the machine frame of a value which is equal to a value of a sum of a mechanical moment of a force of gravity acting on the substrate holder about said reference point and a mechanical moment of a force of gravity acting on the mask holder about said reference point, and a direction which is opposed to a direction of said sum of mechanical moments. The use of the joint force actuator system prevents the machine frame of the lithographic device from vibrating or shaking as a result of the comparatively quick displacements of both the mask holder and the substrate holder relative to the machine frame during the exposure of the semiconductor substrate. The control unit controls the compensation force of the joint force actuator system as a function of the position of the mask holder and the position of the substrate holder relative to the machine frame. It is prevented thereby that the accuracy with which the mask holder and the substrate holder can be positioned relative to the focusing system during the exposure of the semiconductor substrate is adversely affected by mechanical vibrations caused by displacements of the centres of gravity of the mask holder and the substrate holder relative to the machine frame.
A yet further embodiment of a lithographic device according to the invention is characterized in that the machine frame is placed on a base of the lithographic device, on which also the force frame is placed, by means of three dynamic isolators mutually arranged in a triangle, while the joint force actuator system comprises three separate force actuators which are each integrated with a corresponding one of the dynamic isolators. The dynamic isolators are, for example, dampers with a comparatively low mechanical stiffness by means of which the machine frame is dynamically isolated from said base. Owing to the comparatively low mechanical stiffness of the dampers, mechanical vibrations present in the base such as, for example, mechanical vibrations in the force frame caused by reaction forcers of the positioning devices of the mask holder and the substrate holder are not transmitted to the machine frame. The integration of the force actuator system with the system of dynamic isolators provides a particularly compact and simple construction of the lithographic device. The triangular arrangement of the isolators in addition provides a particularly stable support for the machine frame.
The invention will be explained in more detail below with reference to the drawings, in which
The lithographic device according to the invention shown in
As
The integrated semiconductor circuits to be manufactured with the lithographic device have a structure with detail dimensions in the sub-micron range. Since the semiconductor substrate 19 is exposed consecutively through a number of different masks, the pattern present on the masks must be imaged on the semiconductor substrate 19 relative to one another with an accuracy which is also in the sub-micron range, or even in the nanometer range. During exposure of the semiconductor substrate 19, the semiconductor substrate 19 and the mask 29 should accordingly be displaced relative to the focusing system 3 with such an accuracy, so that comparatively high requirements are imposed on the positioning accuracy of the first and the second positioning device 21, 31.
As
It is apparent from the above that the machine frame 45 supports the main components of the lithographic device, i.e. the substrate holder 1, the focusing system 3, and the mask holder 5 parallel to the vertical Z-direction. As will be further explained below, the dynamic isolators 51 have a comparatively low mechanical stiffness. It is achieved thereby that mechanical vibrations present in the base 39 such as, for example, floor vibrations are not transmitted into the machine frame 45 via the dynamic isolators 51. The positioning devices 21, 31 as a result have a positioning accuracy which is not adversely affected by the mechanical vibrations present in the base 39. The function of the force frame 41 will be explained in more detail further below.
As
As
During exposure of the semiconductor substrate 19, the mask holder 5 should be displaced relative to the focusing system 3 parallel to the X-direction over a comparatively great distance and with a high positioning accuracy. To achieve this, the coil holder 81 of the first linear motor 69 is displaced parallel to the X-direction by means of the second linear motor 71, a desired displacement of the mask holder 5 being approximately achieved by the second linear motor 71, and the mask holder 5 being carried along relative to the movable part 77 of the second linear motor 71 by a suitable Lorentz force of the X-motors 115, 117, 119, 121 of the first linear motor 69. Said desired displacement of the mask holder 5 relative to the focusing system 3 is achieved in that the Lorentz force of the X-motors 115, 117, 119, 121 is controlled by means of a suitable position control system during the displacement of the mask holder 5. The position control system, which is not shown in any detail in the Figures, comprises, for example, a laser interferometer which is usual and known per se for measuring the position of the mask holder 5 relative to the focusing system 3, whereby the desired positioning accuracy in the sub-micron or nanometer range is achieved. During the exposure of the semiconductor substrate 19, the first linear motor 69 not only controls the displacement of the mask holder 5 parallel to the X-direction, but it also controls a position of the mask holder 5 parallel to the Y-direction and an angle of rotation of the mask holder 5 about the axis of rotation 67. Since the mask holder 5 can also be positioned parallel to the Y-direction and rotated about the axis of rotation 67 by the first linear motor 69, the displacement of the mask holder 5 has a parallelism relative to the X-direction which is determined by the positioning accuracy of the first linear motor 69. Deviations from parallelism of the guide 75 of the second linear motor 71 relative to the X-direction can thus be compensated through displacements of the mask holder 5 parallel to the Y-direction. Since the desired displacement of the mask holder 5 need be achieved approximately only by the second linear motor 71, and no particularly high requirements are imposed on the parallelism of the guide 75 relative to the X-direction, a comparatively simple, conventional, one-dimensional linear motor can be used as the second linear motor 71, by means of which the mask holder 5 is displaceable over comparatively large distances with a comparatively low accuracy. The desired accuracy of the displacement of the mask holder 5 is achieved in that the mask holder 5 is displaced over comparatively small distances relative to the movable part 77 of the second linear motor 71 by means of the first linear motor 69. The first linear motor 69 is of comparatively small dimensions because the distances over which the mask holder 5 is displaced relative to the movable part 77 of the second linear motor 71 are only small. Electrical resistance losses in the electric coils of the first linear motor 69 are minimized thereby.
As was noted above, the stationary part 73 of the second linear motor 71 is fastened to the force frame 41 of the lithographic device. It is achieved thereby that a reaction force exerted by the movable part 77 of the second linear motor 71 on the stationary part 73 and arising from a driving force of the second linear motor 71 exerted on the movable part 77 is transmitted into the force frame 41. Since furthermore the coil holder 81 of the first linear motor 69 is fastened to the movable part 77 of the second linear motor 71, a reaction force exerted by the mask holder 5 on the movable part 77 and arising from a Lorentz force of the first linear motor 69 exerted on the mask holder 5 is also transmitted into the force frame 41 via the movable part 77 and the stationary part 73 of the second linear motor 71. A reaction force exerted during operation by the mask holder 5 on the second positioning device 31 and arising from a driving force exerted on the mask holder 5 by the second positioning device 31 is thus introduced exclusively into the force frame 41. Said reaction force has a low-frequency component resulting from the comparatively great displacements of the second linear motor 71 as well as a high-frequency component resulting from the comparatively small displacements carried out by the first linear motor 69 in order to achieve the desired positioning accuracy. Since the force frame 41 is comparatively stiff and is placed on a solid base, the mechanical vibrations caused by the low-frequency component of the reaction force in the force frame 41 are negligibly small. The high-frequency component of the reaction force does have a small value, but it usually has a frequency which is comparable to a resonance frequency characteristic of a type of frame such as the force frame 41 used. As a result, the high-frequency component of the reaction force causes a non-negligible high-frequency mechanical vibration in the force frame 41. The force frame 41 is dynamically isolated from the machine frame 45, i.e. mechanical vibrations having a frequency above a certain threshold value, for example 10 Hz, present in the force frame 41 are not transmitted into the machine frame 45, because the latter is coupled to the force frame 41 exclusively via the low-frequency dynamic isolators 51. It is achieved thereby that the high-frequency mechanical vibrations caused in the force frame 41 by the reaction forces of the second positioning device 31 are not transmitted into the machine frame 45, similar to the floor vibrations mentioned above. Since the plane guides 65 of the support member 57 extend perpendicularly to the Z-direction, and the driving forces exerted by the second positioning device 31 on the mask holder 5 are also directed perpendicularly to the Z-direction, said driving forces themselves do not cause any mechanical vibrations in the machine frame 45 either. Furthermore, the mechanical vibrations present in the force frame 41 cannot be transmitted into the machine frame 45 through the stationary part 73 and the movable part 77 of the second linear motor 71 either because, as is apparent from the above, the mask holder 5 is coupled to the movable part 77 of the second linear motor 71 substantially exclusively by Lorentz forces of the magnet system and the electric coil system of the first linear motor 69, and the mask holder 5 is physically decoupled from the movable part 77 of the second linear motor 71, apart from said Lorentz forces. So the above discussion shows that the machine frame 45 remains substantially free from mechanical vibrations and deformation caused by the driving forces and reaction forces of the second positioning device 31. The advantages thereof will be further discussed below.
As
As
During exposure of the semiconductor substrate 19, the substrate holder 1 should be displaced relative to the focusing system 3 parallel to the X-direction with a high positioning accuracy, while the substrate holder 1 is to be displaced parallel to the X-direction or the Y-direction when a next field 35 of the semiconductor substrate 19 is brought into position relative to the focusing system 3 for exposure. To displace the substrate holder 1 parallel to the X-direction, the coil holder 169 of the first linear motor 147 is displaced parallel to the X-direction by means of the third linear motor 151, a desired displacement of the substrate holder 1 being approximately achieved by the third linear motor 151, and the substrate holder 1 being taken along by a suitable Lorentz force of the first linear motor 147 relative to the movable part 165 of the third linear motor 151. In a similar manner, a desired displacement of the substrate holder 1 parallel to the Y-direction is approximated in that the coil holder 169 is displaced parallel to the Y-direction by means of the second linear motor 149, the substrate holder 1 being taken along by a suitable Lorentz force of the first linear motor 147 relative to the movable part 165 of the third linear motor 151. Said desired displacement of the substrate holder 1 parallel to the X-direction or Y-direction is achieved by means of the Lorentz force of the first linear motor 147 which is controlled during the displacement of the substrate holder 1 by means of the position control system of the lithographic device referred to above, with which a positioning accuracy in the sub-micron or even nanometer range is achieved. Since the desired displacement of the substrate holder 1 need be achieved by approximation only by the second linear motor 149 and the third linear motor 151, and accordingly no particularly high requirements are imposed on positioning accuracy of the second and third linear motors 149, 151, the second linear motor 149 and the third linear motor 151 are, as in the second linear motor 71 of the second positioning device 31, comparatively simple, conventional, one-dimensional linear motors by means of which the substrate holder 1 is displaceable with a comparatively low accuracy over comparatively large distances parallel to the Y-direction and X-direction, respectively. The desired accuracy of the displacement of the substrate holder 1 is achieved in that the substrate holder 1 is displaced by the first linear motor 147 over comparatively small distances relative to the movable part 165 of the third linear motor 151.
Since the positioning device 21 of the substrate holder 1 is of a kind similar to the positioning device 31 of the mask holder 5, and the stationary part 153 of the second linear motor 149 of the first positioning device 21 is fastened to the force frame 41 of the lithographic device, as is the stationary part 73 of the second linear motor 71 of the second positioning device 31, it is achieved that a reaction force exerted by the substrate holder 1 on the first positioning device 21 during operation and arising from a driving force exerted by the first positioning device 21 on the substrate holder 1 is exclusively transmitted into the force frame 41. This achieves that the reaction forces of the first positioning device 21 as well as the reaction forces of the second positioning device 31 cause mechanical vibrations in the force frame 41, which are not transmitted into the machine frame 45. Since the upper surface 141 of the granite support 143 over which the substrate holder 1 is guided extends perpendicularly to the Z-direction, furthermore, the driving forces of the first positioning device 21, which are also perpendicular to the Z-direction, themselves do not cause any mechanical vibrations in the machine frame 45 either.
The pattern present on the mask 29 is imaged on the semiconductor substrate 19 with said accuracy because the mask 29 and the semiconductor substrate 19 are both displaceable with said accuracy relative to the focusing system 3 parallel to the X-direction by means of the second positioning device 31 and the first positioning device 21, respectively, during the exposure of the semiconductor substrate 19, and because the mask 29 and the semiconductor substrate 19 can in addition be positioned parallel to the Y-direction and be rotated about the respective axes of rotation 67, 145 with said accuracy. The accuracy with which said pattern is imaged on the semiconductor substrate 19 is even better than the positioning accuracy of the positioning device 21, 31 because the mask holder 5 is not only displaceable parallel to the X-direction, but is also displaceable parallel to the Y-direction and rotatable about the axis of rotation 67. A displacement of the mask 29 relative to the focusing system 3 in fact results in a shift of the pattern image on the semiconductor substrate 19 which is equal to a quotient of said displacement of the mask 29 and the optical reduction factor of the focusing system 3. The pattern of the mask 29 can thus be imaged on the semiconductor substrate 19 with an accuracy which is equal to a quotient of the positioning accuracy of the second positioning device 31 and the reduction factor of the focusing system 3.
As
The force actuators 205 integrated with the dynamic isolators 51 form a force actuator system which is diagrammatically pictured in FIG. 9.
FL,1+FL,2+FL,3=FS+FM
FL,1*XF,1+FL,2*XF,2+FL,3*XF,3=FS*XS+FM*XM
FL,1*YF,1+FL,2*YF,2+FL,3*YF,3=FS*YS+FM*YM
The controller which controls the Lorentz forces FL,1, FL,2 and FL,3 comprises, for example, a feedforward control loop which is usual and known per se, where the controller receives information on the position XS, YS of the substrate holder 1 and the position XM, YM of the mask holder 5 from an electric control unit (not shown) of the lithographic device which controls the substrate holder 1 and the mask holder 5, the received information relating to the desired positions of the substrate holder 1 and the mask holder 5. The controller may alternatively be provided with a feedback control loop which is usual and known per se, where the controller receives information on the position XS, YS of the substrate holder 1 and the positions XM, YM of the mask holder 5 from said position control system of the lithographic device, the received information relating to the measured positions of the substrate holder 1 and the mask holder 5. The controller may alternatively comprise a combination of said feedforward and feedback control loops. The Lorentz forces FL,1, FL,2 and FL,3 of the force actuator system thus form a compensation force by means of which displacements of the centres of gravity GS and GM of the substrate holder 1 and the mask holder 5 relative to the machine frame 45 are compensated. Since the sum of the mechanical moments of the Lorentz forces FL,1, FL,2, FL,3 and the support forces FS, FM about the reference point P of the machine frame 45 has a constant value and direction, the substrate holder 1 and the mask holder 5 each have a so-called virtual centre of gravity which has a substantially constant position relative to the machine frame 45. It is achieved thereby that the machine frame 45 does not sense the displacements of the actual centres of gravity GS and GM of the substrate holder 1 and the mask holder 5 during exposure of the semiconductor substrate 19. Without the above force actuator system, a displacement of the substrate holder 1 or the mask holder 5 would lead to an uncompensated change in the mechanical moment of the support forces FS or FM about the reference point P, as a result of which the machine frame 45 would perform a low-frequency shaking movement on the dynamic isolators 51, or elastic deformations or mechanical vibrations could arise in the machine frame 45.
The fact that the three force actuators 205 are integrated with the three dynamic isolators 51 results in a compact and simple construction of the force actuator system and the lithographic device. The triangular arrangement of the dynamic isolators 51 in addition achieves a particularly stable operation of the force actuator system. Since the compensation force of the force actuator system comprises exclusively a Lorentz force, mechanical vibrations present in the base 39 and the force frame 41 are not transmitted to the machine frame 45 through the force actuators 205.
The measures discussed above, i.e. the direct introduction of the reaction forces of the positioning devices 21, 31 exclusively into the force frame 41, the direct coupling of the substrate holder 1 and the mask holder 5 to the force frame 41 exclusively by means of a Lorentz force, and the compensation force of the force actuators 205 have the result that the machine frame 45 has a supporting function only. Substantially no forces act on the machine frame 45 which change in value or direction. An exception is formed by, for example, the horizontal viscous frictional forces exerted by the aerostatic bearings of the substrate holder 1 and the mask holder 5 on the upper surface 141 of the granite support 143 and the plane guides 65 of the support member 57, respectively, during displacements of the substrate holder 1 and the mask holder 5. Such frictional forces, however, are comparatively small and do not result in appreciable vibrations or deformations of the machine frame 45. Since the machine frame 45 remains free from mechanical vibrations and elastic deformations, the components of the lithographic device supported by the machine frame 45 occupy particularly accurately defined positions relative to one another. In particular the facts that the position of the substrate holder 1 relative to the focusing system 3 and the position of the mask holder 5 relative to the focusing system 3 are very accurately defined, and in addition that the substrate holder 1 and the mask holder 5 can be very accurately positioned relative to the focusing system 3 by means of the positioning devices 21, 31, imply that the pattern of a semiconductor circuit present on the mask 29 can be imaged on the semiconductor substrate 19 with an accuracy which lies in the sub-micron range. Since the machine frame 45 and the focusing system 3 remain free from mechanical vibrations and elastic deformations, moreover, the advantage is created that the machine frame 45 can act as a reference frame for the position control system mentioned above of the substrate holder 1 and the mask holder 5, where position sensors of said position control system such as, for example, optical elements and systems of said laser interferometer, can be mounted directly to the machine frame 45. Mounting of said position sensors directly to the machine frame 45 results in that the position occupied by said position sensors relative to the substrate holder 1, the focusing system 3, and the mask holder 5 is not influenced by mechanical vibrations and deformations, so that a particularly reliable and accurate measurement of the positions of the substrate holder 1 and the mask holder 5 relative to the focusing system 3 is obtained. Since also the mask holder 5 can not only be positioned parallel to the X-direction, but can also be positioned parallel to the Y-direction and rotated about the axis of rotation 67, whereby a particularly high accuracy of imaging the pattern of the mask 29 on the semiconductor substrate 19 is achieved, as noted above, semiconductor substrates with detail dimensions in the sub-micron range can be manufactured by means of the lithographic device according to the invention.
A lithographic device according to the invention was described above with a substrate holder 1 which is displaceable by means of a first positioning device 21 according to the invention, and a mask holder 5 which is displaceable by means of a second positioning device 31 according to the invention. The positioning devices 21, 31 have a common first frame, i.e. the machine frame 45 of the lithographic device, and a common second frame, i.e. the force frame 41 of the lithographic device. It is noted that the positioning devices 21, 31 may alternatively each have a first and second frame of their own, a common first frame and each a second frame of their own, of a common second frame and each a first frame of their own.
It is further noted that the invention also covers lithographic devices which work by the “step and repeat” principle mentioned earlier. Thus, for example, a positioning device according to the invention can be used for the displacement of the substrate holder in the lithographic device which is known from EP-A-0 498 496 and in which exclusively the substrate holder is displaceable over comparatively large distances relative to the focusing system. Such a lithographic device covered by the invention is also obtained in that the second positioning device 31 with mask holder 5 is replaced in the lithographic device discussed in the description of the Figures by a conventional mask holder which is stationary relative to the machine frame 45, such as the one known, for example, from EP-A0 498 496. The invention also covers lithographic devices which work by the “step and scan” principle mentioned above where the mask holder only is driven by a positioning device according to the invention, and the substrate holder is driven by a conventional positioning device such as the one known from, for example, EP-A-0 498 496. Such a construction is conceivable, for example, if the focusing system of the lithographic device has a comparatively great optical reduction factor, so that the displacements of the substrate holder are comparatively small in relation to the displacements of the mask holder, and the positioning device of the substrate holder causes comparatively small mechanical vibrations in the machine frame.
The lithographic device described above comprises a force actuator system which is common to the first positioning device 21 and the second positioning device 31 and which supplies a compensation force by which displacements of the centres of gravity of both the substrate holder 1 and the mask holder 5 can be compensated. It is noted that a lithographic device according to the invention may alternatively be provided with two force actuator systems with which the displacements of the centres of gravity of the substrate holder 1 and the mask holder 5 can be individually compensated. A lithographic device according to the invention may also comprise a single force actuator system with which exclusively displacements of the centre of gravity of the mask holder can be compensated. Such a construction is conceivable, for example, if the focusing system of the lithographic device has a comparatively great optical reduction factor, so that the displacements of the centre of gravity of the substrate holder are comparatively small relative to the displacements of the centre of gravity of the mask holder, and the displacements of the centre of gravity of the substrate holder cause comparatively small mechanical vibrations in the machine frame.
The lithographic device according to the invention as described above is used for exposing semiconductor substrates in the manufacture of integrated electronic semiconductor circuits. It is further noted that such a lithographic device may alternatively be used for the manufacture of other products having structures with detail dimensions in the sub-micron range, where mask patterns are imaged on a substrate by means of the lithographic device. Structures of integrated optical systems or conduction and detection patterns of magnetic domain memories, as well as structures of liquid crystal display patterns may be mentioned in this connection.
It is further noted that a positioning device according to the invention may be used not only in a lithographic device but also in other devices in which objects or substrates are to be positioned in an accurate manner. Examples are devices for analyzing or measuring objects of materials, where an object or material is to be positioned or displaced accurately relative to a measuring system or scanning system. Another application for a positioning device according to the invention is, for example, a precision machine tool by means of which workpieces, for example lenses, can be machined with accuracies in the sub-micron range. The positioning device according to the invention is used in this case for positioning the workpiece relative to a rotating tool, or for positioning a tool relative to a rotating workpiece.
The first positioning device 21 of the lithographic device described comprises a drive unit with a first linear motor which supplies exclusively a Lorentz force, and a conventional second and third linear motor, while the second positioning device 31 of the lithographic device described comprises a drive unit with a first linear motor supplying exclusively a Lorentz force, and a single conventional second linear motor. It is finally noted that the invention also relates to positioning devices provided with different drive units. Examples are a positioning device which comprises only a single motor supplying exclusively a Lorentz force, with a magnet system of the motor fastened to the object table supported by the first frame and an electric coil system of the motor fastened to the second frame, and a positioning device which comprises only a single conventional motor, with a stationary part of the motor fastened to the second frame and a movable part of the motor fastened to the object table supported by the first frame.
Van Engelen, Gerard, Van Eijk, Jan, van Dijk, Cornelis D., van Kimmenade, Johannes M. M.
Patent | Priority | Assignee | Title |
7892863, | Oct 11 2006 | Metryx Limited | Measuring apparatus |
8200447, | Oct 11 2006 | Metryx Limited | Measuring apparatus |
Patent | Priority | Assignee | Title |
3789285, | |||
3889164, | |||
3935486, | Aug 27 1973 | Citizen Watch Co., Ltd. | Finely adjustable table assembly |
4019109, | May 13 1974 | Hughes Aircraft Company | Alignment system and method with micromovement stage |
4087729, | Apr 21 1975 | Nippon Telegraph & Telephone Corporation | Position finely adjusting apparatus |
4129291, | Jul 23 1976 | Hitachi, Ltd. | Two-dimensional precision table |
4234175, | Dec 20 1977 | Canon Kabushiki Kaisha | High precision positioning device |
4392642, | Dec 22 1980 | Chemical Bank | Workpiece positioning table with air bearing pads |
4409860, | Apr 06 1979 | Hitachi, Ltd. | Apparatus for precisely moving a table |
4425508, | May 07 1982 | GCA Corporation | Electron beam lithographic apparatus |
4443743, | Oct 05 1978 | McDonnell Douglas Corporation | Two axis actuator |
4485339, | Jun 10 1983 | SVG LITHOGRAPHY, INC , A CORP OF DE | Electro-magnetic alignment device |
4492356, | Feb 26 1982 | Hitachi, Ltd. | Precision parallel translation system |
4504144, | Jul 06 1982 | SVG LITHOGRAPHY, INC , A CORP OF DE | Simple electromechanical tilt and focus device |
4506204, | Jun 10 1983 | SVG LITHOGRAPHY, INC , A CORP OF DE | Electro-magnetic apparatus |
4506205, | Jun 10 1983 | SVG LITHOGRAPHY, INC , A CORP OF DE | Electro-magnetic alignment apparatus |
4507597, | Jun 10 1983 | SVG LITHOGRAPHY, INC , A CORP OF DE | Electro-magnetic alignment assemblies |
4514858, | Mar 15 1983 | Micronix Partners; MICRONIX PARTNERS 100 ALBRIGHT WAY LOS GATOS, CA 95030 A PARTNERSHIP | Lithography system |
4516253, | Mar 15 1983 | Micronix Partners | Lithography system |
4525659, | Oct 20 1981 | Telmec Co., Ltd. | Positioning stage having a vibration suppressor |
4575942, | Oct 18 1982 | Hitachi, Ltd. | Ultra-precision two-dimensional moving apparatus |
4615515, | Dec 27 1983 | Canon Kabushiki Kaisha | Precise movement device |
4628238, | Mar 29 1985 | ASM LITHOGRAPHY B V | Positioning device comprising pre-stressed contactless bearings |
4630942, | Jan 20 1984 | Hitachi, Ltd. | Guiding apparatus |
4641071, | Sep 25 1985 | Canon Kabushiki Kaisha | System for controlling drive of a wafer stage |
4648723, | Jul 23 1984 | OMRON TATEISI ELECTRONICS CO , 10, TSUCHIDO-CHO, HANAZONO, UKYO-KU, KYOTO, | Static pressure air surface stage |
4648724, | Jul 20 1984 | OMRON TATEISI ELECTRONICS CO | Static pressure air surface stage |
4653408, | Sep 05 1984 | Citizen Watch Co., Ltd. | Table mechanism for controlling table attitude |
4654571, | Sep 16 1985 | Baldor Electric Company | Single plane orthogonally movable drive system |
4667139, | Oct 31 1984 | Hitachi, Ltd. | Table device |
4675891, | Jun 29 1984 | Thomson-CGR | X-ray apparatus with focus position control |
4677651, | Dec 05 1983 | U S PHILIPS CORPORATION | Rotary anode X-ray tube having a sliding bearing |
4684315, | Sep 30 1982 | Fujitsu Limited | Frictionless supporting apparatus |
4687980, | Oct 20 1980 | Eaton Corporation | X-Y addressable workpiece positioner and mask aligner using same |
4698575, | Apr 29 1986 | U S PHILIPS CORPORATION | Positioning device |
4708465, | Feb 28 1986 | Canon Kabushiki Kaisha | Exposure apparatus |
4723086, | Oct 07 1986 | Micronix Corporation | Coarse and fine motion positioning mechanism |
4742286, | Oct 29 1985 | PHILLIPS, EDWARD H ; ANDERSON, RICHARD S ; NORTHERN MAGNETICS INC ; LEWIS, MARTYN A | Gas bearing X-Y-θ stage assembly |
4744675, | Jan 21 1986 | Canon Kabushiki Kaisha | Moving mechanism |
4750721, | Nov 06 1985 | Dainippon Screen Mfg. Co., Ltd. | Movable table system |
4770531, | May 23 1986 | Nippon Kogaku K. K. | Stage device with levelling mechanism |
4803712, | Jan 20 1987 | Hitachi, Ltd. | X-ray exposure system |
4812725, | Oct 16 1987 | Anorad Corporation | Positioning device with dual linear motor |
4817930, | May 13 1987 | ASM LITHOGRAPHY B V | Guiding device |
4821205, | May 30 1986 | Eaton Corporation | Seismic isolation system with reaction mass |
4870668, | Dec 30 1987 | NEW YORK JOB DEVELOPMENT AUTHORITY | Gap sensing/adjustment apparatus and method for a lithography machine |
4887804, | Dec 02 1986 | Canon Kabushiki Kaisha | Stage mechanism |
4916340, | Jan 22 1988 | Canon Kabushiki Kaisha | Movement guiding mechanism |
4952858, | May 18 1988 | ASML HOLDING N V | Microlithographic apparatus |
5022619, | Dec 09 1988 | Tokyo Aircraft Instrument Co., Ltd. | Positioning device of table for semiconductor wafers |
5040431, | Jan 22 1988 | Canon Kabushiki Kaisha | Movement guiding mechanism |
5059090, | Jan 16 1990 | International Business Machines Corp.; International Business Machines Corporation | Two-dimensional positioning apparatus |
5073912, | Nov 16 1988 | Hitachi, Ltd. | Sample moving apparatus, sample moving system and semiconductor manufacturing apparatus |
5120034, | Oct 05 1989 | ASML NETHERLANDS B V | Two-step positioning device using Lorentz forces and a static gas bearing |
5140242, | Apr 30 1990 | International Business Machines Corporation | Servo guided stage system |
5150153, | Feb 05 1991 | ASM LITHOGRAPHY B V | Lithographic device with a suspended object table |
5172160, | Mar 07 1991 | ASM LITHOGRAPHY B V | Optical lithographic device having a machine frame with force compensation |
5184055, | Oct 06 1989 | Canon Kabushiki Kaisha | Device for positioning control |
5187519, | Oct 05 1990 | Canon Kabushiki Kaisha | Exposure apparatus having mount means to suppress vibrations |
5194893, | Mar 06 1991 | Nikon Corporation | Exposure method and projection exposure apparatus |
5208497, | Apr 17 1989 | Sharp Kabushiki Kaisha | Linear driving apparatus |
5228358, | Feb 21 1990 | Canon Kabushiki Kaisha | Motion guiding device |
5241183, | Mar 22 1991 | NIPPON TELEGRAPH AND TELEPHONE CORPORATION A JAPAN CORP | Vertical XY stage |
5243491, | Aug 30 1990 | U.S. Philips Corporation | Electromagnetic support with current-independent characteristics |
5260580, | Sep 18 1991 | Canon Kabushiki Kaisha | Stage device for an exposure apparatus and semiconductor device manufacturing method which uses said stage device |
5280677, | May 17 1990 | Canon Kabushiki Kaisha | Positioning mechanism |
5281996, | Sep 04 1992 | ULTRATECH STEPPER, INC ; ULTRATECH STEPPER EAST, INC | Photolithographic reduction imaging of extended field |
5285142, | Feb 09 1993 | ASML US, INC; ASML HOLDING N V | Wafer stage with reference surface |
5309847, | Apr 27 1990 | NTN Corporation | Adjustably movable work table |
5323712, | Aug 26 1987 | Kabushiki Kaisha Toshiba | Table moving apparatus |
5327060, | Oct 05 1989 | ASML NETHERLANDS B V | Positioning device using Lorentz forces |
5338121, | Jul 24 1992 | FUJI XEROX CO , LTD | Shuttle apparatus for printer |
5359389, | Mar 13 1991 | Canon Kabushiki Kaisha | Exposure apparatus including two illuminating systems and exposure process using the same |
5385217, | May 20 1991 | Ebara Corporation | Vibration eliminating apparatus for elminating vibration of an installation floor |
5400674, | May 08 1992 | Newport Corporation | Precision component positioner |
5446519, | Feb 01 1993 | Nikon Corporation | Stage device |
5467720, | Feb 25 1991 | Canon Kabushiki Kaisha | Support device |
5471802, | Aug 26 1992 | Ebara Corporation | Electromagnetically suspended floating floor apparatus |
5504407, | Feb 21 1992 | Canon Kabushiki Kaisha | Stage driving system |
5508518, | May 03 1995 | GLOBALFOUNDRIES Inc | Lithography tool with vibration isolation |
5524502, | Mar 11 1993 | Canon Kabushiki Kaisha | Positioning apparatus including a hydrostatic bearing for spacing apart a supporting surface and a guide surface |
5528118, | Apr 01 1994 | Nikon Corporation | Guideless stage with isolated reaction stage |
5552888, | Dec 02 1994 | Nikon Corporation | Apparatus for measuring position of an X-Y stage |
5581521, | Apr 27 1994 | Sharp Kabushiki Kaisha | Device for controlling the motor of a recording and reproducing apparatus |
5610686, | Mar 15 1994 | Canon Kabushiki Kaisha | Exposure apparatus including an antivibration control system |
5623853, | Oct 19 1994 | NIKON PRECISION INC | Precision motion stage with single guide beam and follower stage |
5744924, | Apr 02 1996 | Nikon Corporation | Guideless stage with isolated reaction frame |
5757149, | Sep 04 1995 | Canon Kabushiki Kaisha | Drive control apparatus |
5760564, | Jun 27 1995 | Nikon Corporation | Dual guide beam stage mechanism with yaw control |
5796469, | Jun 30 1993 | Canon Kabushiki Kaisha | Exposure apparatus and device manufacturing method using the same |
5812420, | Sep 05 1995 | Nikon Corporation | Vibration-preventive apparatus and exposure apparatus |
5812958, | Mar 25 1994 | Canon Kabushiki Kaisha | Anti-vibration system |
5844666, | May 30 1995 | ASML NETHERLANDS B V | Positioning device with a vibration-free object table, and lithographic device provided with such a positioning device |
5953105, | May 30 1995 | ASML NETHERLANDS B V | Positioning device with a reference frame for a measuring system, and a lithographic device provided with such a positioning device |
6008500, | Nov 13 1998 | Nikon Corporation | Exposure apparatus having dynamically isolated reaction frame |
6271640, | Apr 01 1994 | Nikon Corporation | Exposure apparatus having reaction frame |
6989647, | Apr 01 1994 | Nikon Corporation | Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device |
EP421527, | |||
EP498496, | |||
EP647788, | |||
27289, | |||
27436, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 12 2002 | ASML Netherlands B.V. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jul 10 2009 | ASPN: Payor Number Assigned. |
May 27 2010 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 23 2012 | 4 years fee payment window open |
Dec 23 2012 | 6 months grace period start (w surcharge) |
Jun 23 2013 | patent expiry (for year 4) |
Jun 23 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2016 | 8 years fee payment window open |
Dec 23 2016 | 6 months grace period start (w surcharge) |
Jun 23 2017 | patent expiry (for year 8) |
Jun 23 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2020 | 12 years fee payment window open |
Dec 23 2020 | 6 months grace period start (w surcharge) |
Jun 23 2021 | patent expiry (for year 12) |
Jun 23 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |