An apparatus and method for harvesting bone using a manual, cylindrical, multi-directional coring device with a guided delivery system that can be inserted through a percutaneous or closed approach to extract precisely measured amounts of bone or bone marrow. A series of guide wires, obturators, dilators and cannulas are used as the exposure and delivery instrumentation for a cutting tool. The cutting tool has a tip with six cutting edges for cutting in all directions.
|
0. 18. A method of harvesting bone, the method comprising:
creating a conduit from a patient's skin to a bone harvest site through a small incision in the patient's skin;
expanding the diameter of the conduit by inserting, into the small incision, a dilation channel;
inserting a cutter device, comprising a hollow collection shaft, into the small incision; and
expanding the diameter of the conduit by inserting a plurality of dilation channels of sequentially increasing size.
0. 16. A method of harvesting bone, the method comprising:
inserting a guidance member through a percutaneous incision to a bone, at a bone harvest site;
sequentially inserting at least one member of a set of dilation channels through the incision with a first dilation channel of the set having been positioned over the guidance member;
inserting a cutter device through the member of the set of dilation channels to engage the bone harvest site; and
cutting the bone with the cutter device to bring a portion of the bone into the cutter device's interior.
8. A bone harvesting apparatus for the removal of bone material from a living body, comprising:
a guided delivery system, comprising:
an elongated guide wire having a pointed distal end and a blunt proximal end, said distal end being adapted to engage a bone from which bone material is to be extracted;
a generally cylindrical obturator with an internal, hollow channel formed along an elongated central axis and positioned concentrically over said guide wire, said obturator having a generally dome-shaped distal end adapted to dividing tissue abutting said bone, and a proximal end with gripping means;
a generally cylindrical, hollow, open-ended dilator concentrically positioned over said obturator; and
a generally cylindrical, hollow, open-ended, forked cannula concentrically positioned over said dilator; and
a coring device within said delivery system for extracting precise amounts of bone material.
1. A method for harvesting bone through a guided delivery instrumentation system which operates through a percutaneous, laparoscopic, minimally-invasive technique, comprising the steps of:
making a small incision above a harvest site;
inserting an elongated guide wire with a blunt proximal end and a pointed distal end into the incision, distal end first, to a bone area to be harvested;
gently impacting the guide wire proximal end whereby the guide wire distal end enters into said bone area in the harvest site;
placing a cylindrical obturator with a generally cylindrical channel centrally formed within said obturator along its central longitudinal axis concentrically over the guide wire;
guiding the obturator onto to the guide wire toward the guide wire distal end whereby the obturator gradually splits muscle and tissue until it contacts said bone;
placing a first, hollow, cylindrical dilator concentrically over said obturator thereby increasing said incision to a percutaneous approach;
removing said guide wire and obturator;
placing an impactor cap over said first dilator;
gently tapping said first dilator with said impactor cap into said harvest site bone;
inserting an elongated, hollow, cutting cylinder, said cutting cylinder having a handle on a proximal end and a hollow and a cutting tip on a distal end, into said first dilator whereby said cutting tip is brought into engagement with said bone;
cutting a portion of said bone with said cutting tip and bringing said cut portion through the hollow cutting tip into the cutting cylinder;
removing the cutting cylinder and cutter tip from the first dilator;
removing the handle from said cutter cylinder;
removing the cut bone from the cutter cylinder;
removing the first dilator from said harvest site; and
closing the incision.
2. A method for harvesting bone as described in
placing a second, hollow, cylindrical dilator concentrically over said first dilator.
3. A method for harvesting bone as described in
placing a third, hollow, cylindrical dilator concentrically over said second dilator.
4. A method for harvesting bone as described in
placing a hollow, cylindrical cannula having a proximal end and distal end, said distal end being longitudinally notched resulting in two protruding arms parallel to the central axis of said cannula, concentrically over said dilator whereby said cannula distal end engages the bone area;
placing an impactor cap over said cannula; and
gently tapping said cannula with impact said impactor cap into said bone area.
5. A method for harvesting bone as recited in
placing a second, hollow, cylindrical dilator concentrically over said first dilator.
6. A method for harvesting bone as recited in
placing a third, hollow, cylindrical dilator concentrically over said second dilator.
7. A method for harvesting bone as recited in
removing said dilator prior to insertion of said cutter cylinder; and
inserting said cutting cylinder into said cannula.
9. A bone harvesting apparatus as recited in
a plurality of generally cylindrical, hollow, open-ended dilators concentrically positioned over said obturator.
10. A bone harvesting apparatus as recited in
said dilator has a proximal end and a beveled distal end with teeth protruding therefrom.
11. A bone harvesting apparatus as recited in
a cutter cylinder having a proximal end and a distal end interconnected by a hollow tube;
a hollow cutting tip attached to said cutter cylinder distal end;
a handle joined to said cutter cylinder proximal end;
wherein said cutter cylinder and cutting tip are adapted to fitting within said dilator.
12. A bone harvesting apparatus as recited in
said forked cannula has a proximal end terminating in two parallel, block-like elements, and a distal end longitudinally notched resulting in two longitudinally protruding arms parallel to a central, longitudinal cannula axis.
13. A bone harvesting apparatus as recited in
a cutter cylinder having a proximal end and a distal end interconnected by a hollow tube;
a hollow cutting tip attached to said cutter cylinder distal end;
a handle joined to said cutter cylinder proximal end;
wherein said cutter cylinder and cutting tip are adapted to fitting within said dilator.
14. A bone harvesting apparatus as recited in
said cutting tip has a proximal end joined to the cutter cylinder distal end and a distal end having two, protruding, generally triangular flat blades, each having two lateral sides and a distal tip, said distal tips being connected to each other, each said blade lateral side being formed into a cutting edge, said cutting tip distal end also terminating in two cutting edges positioned between said protruding blades.
15. A bone harvesting apparatus as recited in
said cutting tip has a proximal end joined to the cutter cylinder distal end and a distal end having two, protruding, generally triangular flat blades, each having two lateral sides and a distal tip, said distal tips being connected to each other, each said blade lateral side being formed into a cutting edge, said cutting tip distal end also terminating in two cutting edges positioned between said protruding blades.
0. 17. A method according to
making a percutaneous incision, that is at most 2 centimeters in length, above the bone harvest site.
|
This application claims benefit of provisional application Ser. No. 60/082,340 filed Apr. 20, 1998.
A percutaneous, closed, or mini-open bone harvesting method for orthopedic, neurosurgical, ear nose & throat (ENT), oral, maxillo-facial, rheumatology, and bone marrow aspiration procedures.
Orthopedic, neurosurgical, spinal, ear-nose-throat, oral-maxillo-facial, and rheumatology procedures require the removal of bone or bone cells to culture or place in other parts of the body to permit fusion or bone formation. The current method for bone harvesting requires an open surgical procedure involving wide exposure of the iliac crests, ulna, radius, or femur. These areas are exposed with an incision over the donor sites, followed by the stripping of muscle to expose the donor site area. The removal of the bone is performed utilizing curettes, drills, or free-hand bone coring devices.
These open procedures usually cause very frequent donor site pain and morbidity as they involve significant incisional scarring, vast muscle stripping, damage to surrounding tissues, and over harvesting of the donor site. This has become one of the greatest complaints and problems of patients recovering from surgeries involving bone and bone marrow harvesting procedures.
Recently, inventors have begun creating “minimally invasive” methods to harvest bone. U.S. Pat. No. 5,556,399 to Huebner (1995) discloses a “coring drill used to harvest bone from a donor area of the human body.” This stainless steel device is the first device of its nature, and it is used freehand, under power, without guided controls and requires an open incision with wide muscle re-section.
In 1997, Spinetech, Inc. (Minneapolis, Minn.) released a patent pending “minimally invasive” cylindrical bone harvester that is used through a mini-open procedure, but without guided control. This device is not applicable to a percutaneous technique because it requires a large incision and muscle stripping to expose the donor site. The cutter is inserted into the donor site bone freehand. More importantly, the cutter tip is a uni-directional threaded two piece unit which must be disassembled to remove bone tissue from the collection tube. This makes the device unsuitable to a closed or percutaneous procedure due to the potential for disassembly inside the patient. Bi-directional cutting action will dislodge the cutter tip from the shaft.
Biomedical Enterprises, Inc. (San Antonio, Tex.) created the patent pending Bone & Marrow Collection System (BMCS), which utilizes a manual or motor driven drill bit and a disposable collection tube. This technique provides limited initial drill stabilization, but does not guide or control the direction of the tip after cutting action begins. In addition, it still utilizes an open procedure and vast muscle resection. The BMCS is an auger-drill type that is lacking an adequate delivery system for placing the guidance tube through a percutaneous or closed technique. Also, the BMCS does not prevent the drill cutter from advancing too far into the donor site, thus violating the surrounding bony architecture, tissue, and muscle. The BMCS also does not provide an accurate and easy method to measure the amount of material captured by the drill and collection tube, and is extremely susceptible to frequent clogging during repositioning of the tip.
This invention relates to a disposable or reusable bone harvester specifically designed to operate through percutaneous, closed, or mini-open incisions during orthopedic, neurosurgical, ENT, oral-maxillofacial, rheumatology, and bone marrow aspiration procedures.
The present invention discloses a manual, cylindrical, multi-directional coring device utilizing a guided delivery system that can be inserted through a percutaneous or closed approach to extract precisely measured amounts of bone or bone marrow. The invention requires only a small incision, less that 2 cm above the donor site, and utilizes a guided delivery system of guide wires, obturators, dilators, and cannulas. The present invention makes a very small incision that gradually splits the muscle and tissue. The result is less blood loss, less tissue damage, and less donor site morbidity.
All other techniques including Huebner's, Spinetech's, and BME's require an open or mini-open incision. The first two techniques do not possess a method for guided control of the cutter tip, and the last gives only limited direction prior to the coring procedure. The disadvantages of the above techniques are:
Accordingly, it is an object of the present invention to provide a method which permits bone to be harvested in precise quantities via a percutaneous or closed technique utilizing a series of guide wires, obturators, dilators, and cannulas as the exposure and delivery instrumentation for the cutting tool.
It is another object of the present invention to provide a multi-directional cutting tip with six cutting edges, which can be used to cut in clockwise, counterclockwise, or both directions, as well as with a downward force for rapid cutting action and morselization of graft material.
It is still another object of the present invention to provide multiple cannula sizes and shapes to accommodate different anatomic sites for a more precise fit, control, and tissue protection.
A further object of the present invention is to provide distal arms, or “teeth”, on the cannulas for stabilization and lateral control, which permit the cannula to move in an arc on the bony surfaces, facilitating multi-directional coring or sweeping of bone through the same incision.
Another object of the present invention is to provide a precise measurement system visible and calibrated along the proximal cylinder shaft to indicate depth of insertion and amount of material collected.
It is still another object of the present invention to provide a transparent, or translucent, bio-compatible, plastic cylindrical cutter shaft with a bonded, mechanically fastened, or ultrasonically welded permanently affixed stainless steel cutting tip forming a one-piece coring unit.
It is a further object of the present invention to provide a detachable and re-attachable T-Handle and/or Teardrop Handle.
It is also an object of the present invention to provide a calibration system on the proximal end of cutter shaft and a depth stop system to prevent the cutter from over harvesting bone, and advancing too far in the body.
Further objects of the invention may be provided with multiple sized cutting tips ranging in sizes from 8 mm, 10 mm, 12 mm, and 14 mm. These cutters can be utilized via laparoscopic techniques in addition to percutaneous, closed, and mini-open approaches.
These together with other objects of the invention, along with various features of novelty which characterize the invention, are pointed out with particularity in the claims annexed hereto and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and the specific objects attained by its uses, reference should be had to the accompanying drawings and descriptive matter in which there is illustrated a preferred embodiment of the invention.
Referring to the drawings in detail wherein like elements are indicated by like numerals, there is shown a bone harvesting method and apparatus used therein. As may be most clearly seen from
The guide wire 10 is elongated and preferably made from stainless steel and has nominal dimensions of 3.2 mm×25 cm. The guide wire 10 has a pointed distal end 11 and a blunt proximal end 12. The distal end 11 is defined as that end engaging a harvest site 3. The obturator 20 is also preferably made from stainless steel and has a generally cylindrical shape. The obturator 20 has a dome-shape distal end 22 and a cross-hatched proximal end 23. The proximal end 23 is cross-hatched to provide a better grip. The distal end 22 is used to split tissue for cannula placement as described below. A generally cylindrical channel 21 is centrally formed within the obturator 20 along its central, elongated axis extending from the distal end 22 to the proximal end 23. The obturator 20 is placed over the guide wire 10 by positioning the obturator 20 so that its channel 21 is slid over the wire 10. The dilator/toothed cannula 30 is also preferably made from stainless steel and has a cylindrical channel 31 is formed therein along its central, elongated axis extending from an open distal end 32 to an open proximal end 33. There may be several dilators 30 having varied lengths, outer diameters and inner diameters. Each distal end 32 is beveled with teeth at its distal tip 34 similar to a hole saw. The forked cannula 40 is hollow and has a distal end 42 and a proximal end 41. The distal end 42 is longitudinally notched resulting in two protruding arms 43 parallel to the central axis of the cannula 40. The proximal end 41 terminates in two, parallel, block-like elements 44. The forked cannula 40 is also preferably made from stainless steel and may have various inner and outer diameters and lengths. The cutter cylinder 50 has a proximal end 54 and distal end 55 with a hollow, transparent, or translucent, cylindrical biocompatible plastic tube 51 between. The distal end 55 has an attached stainless steel cutting tip 60. The cutting tip 60 may be permanently attached by bonding means of mechanically fastened or ultrasonically welded. The cutter cylinder proximal end 54 has a groove 56 for mating with a T-handle 70. The cutter cylinder 50 is nominally twenty-two centimeters in length, and comes in nominal eight, ten, twelve and fourteen centimeter diameters.
The cutting tip 60 has a proximal end 68 which attached to the cutter cylinder distal end 55. The distal end 61 of the cutter tip 60 has two, protruding, generally triangular blades 62 with four cutting edges 63 to facilitate bi-directional cutting action. The protruding blade tips 64 are connected to each other. The cutter tip distal end 61 also terminates in two cutting edges 65 positioned between the protruding cutting blades 62 for multi-directional and downward cutting action. See, especially,
Referring specifically to
Referring again to
As may be most clearly seen from
Although the iliac crest is the most popular area harvested, other anatomical sites may be indicated. For these areas, a small incision above the harvest site is made and the guide wire 10 inserted into cortical bone. An obturator 20 and dilator/toothed cannula 30 are placed over the wire guide 10. The wire guide 10 and obturator 20 are removed and an impactor cap 45 is placed over the cannula 30 and tapped gently into the cortical surface. The methodology of using the cutter cylinder 50 as described above is the same. Basically the only difference between methods is the use or non-use of the forked cannula 40.
It is understood that the above-described embodiment is merely illustrative of the application. Other embodiments may be readily devised by those skilled in the art which will embody the principles of the invention and fall within the spirit and scope of the invention thereof.
Patent | Priority | Assignee | Title |
10149764, | Mar 10 2003 | Ilion Medical, Inc. | Sacroiliac joint immobilization |
10485558, | Jul 31 2015 | Apparatus and method for harvesting bone | |
10682150, | Feb 27 2008 | llion Medical, Inc. | Tools for performing less invasive orthopedic joint procedures |
10820913, | Mar 15 2013 | Teleflex Life Sciences Limited | Intraosseous device handles, systems, and methods |
10953204, | Jan 09 2017 | Boston Scientific Scimed, Inc. | Guidewire with tactile feel |
11523834, | Jun 20 2022 | University of Utah Research Foundation | Cartilage and bone harvest and delivery system and methods |
11660194, | Jun 20 2022 | University of Utah Research Foundation | Cartilage and bone harvest and delivery system and methods |
7985230, | Jul 27 2006 | Warsaw Orthopedic, Inc. | System and method of harvesting osteochondral plugs |
8398648, | Jul 27 2006 | Warsaw Orthopedic, Inc. | System and method of harvesting osteochondral plugs |
8454618, | Mar 10 2003 | Sacroiliac joint immobilization | |
8623021, | Oct 26 2005 | Joimax GmbH | Facet joint reamer |
8734456, | Mar 10 2003 | Ilion Medical LLC | Sacroiliac joint immobilization |
8740912, | Feb 27 2008 | Ilion Medical, Inc | Tools for performing less invasive orthopedic joint procedures |
9314232, | Feb 27 2008 | Ilion Medical, Inc | Tools for performing less invasive orthopedic joint procedures |
9808346, | Mar 10 2003 | Ilion Medical, Inc | Sacroiliac joint immobilization |
Patent | Priority | Assignee | Title |
1493240, | |||
3990453, | Apr 25 1973 | Apparatus for cataract surgery | |
4461305, | Sep 04 1981 | Automated biopsy device | |
4512344, | May 12 1982 | MIDAS REX, L P | Arthroscopic surgery dissecting apparatus |
4782833, | Feb 19 1987 | EINHORN, THOMAS A ; VALENTI, ANDREW | Bone boring instrument |
4895166, | Nov 23 1987 | SciMed Life Systems, INC | Rotatable cutter for the lumen of a blood vesel |
5012818, | May 04 1989 | Two in one bone marrow surgical needle | |
5019088, | Nov 07 1989 | SciMed Life Systems, INC | Ovoid atherectomy cutter |
5324300, | Oct 25 1991 | Device for the controlled excision of tissue from a living body | |
5341816, | Nov 06 1989 | Biopsy device | |
5488958, | Nov 09 1992 | Cook Medical Technologies LLC | Surgical cutting instrument for coring tissue affixed thereto |
5492130, | Jun 04 1991 | Biopsy device and method | |
5556399, | Feb 14 1995 | Acumed LLC | Bone-harvesting drill apparatus and method for its use |
5577517, | Jun 28 1990 | Bonutti Skeletal Innovations LLC | Method of grafting human tissue particles |
5655542, | Jan 26 1995 | BIFOS AB | Instrument and apparatus for biopsy and a method thereof |
5687739, | Dec 06 1995 | MCPHERSON, WILLIAM E | Biopsy specimen cutter |
5807276, | Mar 09 1995 | Biopsy device and method | |
5833628, | Apr 24 1996 | ZIMMER SPINE, INC | Graduated bone graft harvester |
5919196, | Feb 16 1995 | Arthrex, Inc. | Method and apparatus for osteochondral autograft transplantation |
6071284, | Oct 30 1995 | BioMedical Enterprises, Inc | Materials collection system and uses thereof |
6139509, | Apr 24 1996 | ZIMMER SPINE, INC | Graduated bone graft harvester |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 03 2001 | Paradigm BioDevices, Inc. | (assignment on the face of the patent) | / | |||
Aug 30 2001 | O NEILL, MICHAEL J | PARADIGM BIODEVICES, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL 12418, FRAME 623 | 012771 | /0178 |
Date | Maintenance Fee Events |
Oct 21 2010 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
Jun 23 2012 | 4 years fee payment window open |
Dec 23 2012 | 6 months grace period start (w surcharge) |
Jun 23 2013 | patent expiry (for year 4) |
Jun 23 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2016 | 8 years fee payment window open |
Dec 23 2016 | 6 months grace period start (w surcharge) |
Jun 23 2017 | patent expiry (for year 8) |
Jun 23 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2020 | 12 years fee payment window open |
Dec 23 2020 | 6 months grace period start (w surcharge) |
Jun 23 2021 | patent expiry (for year 12) |
Jun 23 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |