A digital signal processing system capable of compensating for frequency response variations and generating a response characteristic that complies with a provided specification. The system automatically generates digital filters to provide this compensation with almost any form of channel frequency response information and with user defined specifications. The capability of this system to trade-off noise performance, pulse response, and frequency response flatness in order to provide an optimized response is demonstrated. The system also provides feedback to the user on the final response characteristics.

Patent
   RE40802
Priority
Feb 27 2002
Filed
Jan 09 2007
Issued
Jun 23 2009
Expiry
Feb 27 2022
Assg.orig
Entity
Large
1
41
all paid
0. 1. A signal processing system capable of compensating for the channel response characteristics of an input waveform, comprising:
input means for inputting input specifications for specifying the design of a filter, including:
channel response characteristics defining the response characteristics of a channel used to acquire said input waveform; and
user specifications for specifying a desired frequency response and a degree of compliance to the desired frequency response;
a filter builder for generating coefficients for said filter and outputting final performance specifications, having:
a compensation filter generator for generating coefficients corresponding to a compensation response on the basis of the inverse of the channel response characteristics; and
a response filter generator for generating coefficients corresponding to a combination of an ideal response and a noise reduction response on the basis of the user specifications; and
said filter for filtering said input waveform and outputting an overall response waveform having said desired frequency response, comprising:
a filter coefficient cache for storing the coefficients generated by said filter builder;
a compensation filter portion for filtering said input waveform using the coefficients stored in said filter coefficient cache corresponding to said compensation response; and
a response filter portion having a response filter stage and a noise reduction stage for filtering the compensated waveform output from said compensation filter portion and outputting said overall response waveform; said response filter portion filtering using the coefficients stored in said filter coefficient cache corresponding to said combination of said ideal response and said noise reduction response.
0. 146. A waveform processing system comprising:
at least one input channel to receive an input signal; and
means for building the digital filter according to a plurality of parameters, the digital filter comprising a plurality of processing objects, and being configured to substantially flatten the channel response across a frequency range by sequentially executing a plurality of the processing objects, each of the plurality of processing object being applied to only a portion of the input signal.
0. 144. A waveform processing system comprising:
at least one input channel to receive an input signal; and
means for substantially increasing an effective bandwidth of each of the at least one input channels by building a digital filter according to a plurality of parameters, the digital filter having a compensation portion to substantially flatten the response of the input channel across at least one frequency range and a boost portion to substantially compensate for attenuation in the frequency response within a frequency range that is above a nominal bandwidth of the channel.
0. 133. A waveform processing system comprising:
at least one channel to receive an input waveform, each channel having a nominal bandwidth;
a converter to convert each received input waveform to a digital representation; and
a digital filter to receive each digital representation, the digital filter having a frequency response for each channel to substantially flatten a frequency response of the channel across at least one frequency range based upon response characteristics of the channel, wherein the digital filter comprises a plurality of processing objects, and is configured to process each input waveform by sequentially executing a plurality of the processing objects.
0. 89. A method for filtering an input waveform, comprising the steps of:
determining a plurality of parameters for a digital filter to substantially flatten the response of an input channel of a waveform processor across at least one frequency range based upon characteristics of the channel, said channel having a nominal bandwidth and a nominal pulse response;
building the digital filter according to the plurality of parameters, the digital filter comprising a plurality of processing objects, and being configured to substantially flatten the channel response;
receiving an input waveform on the channel; and
applying the digital filter to the input waveform by sequentially executing the plurality of processing objects;
whereby a filtered waveform is generated.
0. 76. A waveform processing system comprising:
at least one channel to receive an input waveform, each channel having a nominal bandwidth;
a converter to convert each received input waveform to a digital representation; and
a digital filter to receive the digital representation, the digital filter having a frequency response for each channel (i) to substantially flatten a frequency response of the channel across at least one frequency range based upon at least response characteristics of the channel and (ii) to substantially increase an effective bandwidth by substantially compensating for attenuation in the frequency response within a frequency range that is above the nominal bandwidth of the channel;
wherein application of the digital filter to each channel yields an effective channel bandwidth substantially greater than the nominal bandwidth for each channel.
0. 33. A method for filtering an input waveform, comprising the steps of:
determining a plurality of parameters for a digital filter to substantially increase an effective bandwidth and to substantially flatten a frequency response of an input channel of a digital oscilloscope based upon at least response characteristics of the input channel;
building the digital filter according to the plurality of parameters, the digital filter having a compensation portion to substantially flatten the response of the input channel across at least one frequency range and a boost portion to substantially compensate for attenuation in the frequency response within a frequency range that is above a nominal bandwidth of the channel;
receiving an input waveform on the channel;
converting the input waveform to a digital representation;
applying the digital filter to the digital representation; and
generating a filtered waveform,
wherein application of the digital filter to the channel yields an effective channel bandwidth substantially greater than the nominal bandwidth.
0. 2. The signal processing system according to claim 1, wherein said filter is implemented as a infinite impulse response (IIR) filter.
0. 3. The signal processing system according to claim 1, wherein said filter is implemented as a finite impulse response (FIR) filter.
0. 4. The signal processing system according to claim 1, wherein said channel response characteristics are predetermined based on a reference signal and the reference signal as acquired by said channel.
0. 5. The signal processing system according to claim 1, wherein said user specifications comprise a bandwidth, a response optimization, a compensation compliance, and a filter implementation type.
0. 6. The signal processing system according to claim 5, wherein said response optimization is a pulse response optimization implemented using a Besselworth filter.
0. 7. The signal processing system according to claim 5, wherein said response optimization is a noise performance optimization implemented using a Butterworth filter.
0. 8. The signal processing system according to claim 5, wherein said response optimization is a flatness optimization implemented using a Butterworth filter.
0. 9. The signal processing system according to claim 5, wherein said filter implementation type is finite impulse response (FIR) or infinite impulse response (IIR).
0. 10. The signal processing system according to claim 1, wherein said user specifications default to predetermined values.
0. 11. A signal processing element for filtering an input digital waveform, comprising:
a filter builder for generating filter coefficients on the basis of a channel frequency response and a user response characteristics; said channel frequency response being determined on the basis of a response input and a correction input;
an infinite impulse response (IIR) filter having an IIR input for said input digital waveform and an IIR coefficient input connected to said filter builder; said IIR filter producing an IIR filtered waveform from the input digital waveform on the basis of the filter coefficients generated by said filter builder;
a finite impulse response (FIR) filter having an FIR input for said input digital waveform and a FIR coefficient input connected to said filter builder; said FIR filter producing a FIR filtered waveform from the input digital waveform on the basis of the filter coefficients generated by said filter builder; and
an output selector switch for selecting either said FIR filtered waveform or said FIR filtered waveform for output.
0. 12. The signal processing element according to claim 11, wherein said filter builder detects changes in the sampling rate of said input digital waveform that require the filter coefficients to be generated.
0. 13. The signal processing element according to claim 11, wherein said filter builder generates filter coefficients for said FIR filter or said IIR filter on the basis of said output selector switch.
0. 14. The signal processing element according to claim 11, wherein said filter builder has channel, compensation, shaper, and noise reduction outputs for evaluating the performance of the filtering.
0. 15. The signal processing element according to claim 11, wherein said response input is a known input response and said correction input is a measured input response as acquired by an input channel.
0. 16. The signal processing element according to claim 11, wherein said user response characteristics are used to generate filter coefficients corresponding to an arbitrary response portion of the filter.
0. 17. The signal processing element according to claim 11, wherein said user response characteristics comprise a bandwidth, a response optimization, a compensation compliance, and a filter implementation type.
0. 18. The signal processing element according to claim 17, wherein said response optimization is a pulse response optimization implemented using a Besselworth filter.
0. 19. The signal processing element according to claim 17, wherein said response optimization is a noise performance optimization implemented using a Butterworth filter.
0. 20. The signal processing element according to claim 17, wherein said response optimization is a flatness optimization implemented using a Butterworth filter.
0. 21. The signal processing element according to claim 17, wherein said filter implementation type is FIR or IIR.
0. 22. The signal processing element according to claim 11, wherein said user response characteristics default to predetermined values.
0. 23. A method of filtering an input digital waveform to compensate for the response characteristics of an acquisition channel, comprising the steps of:
generating a compensation portion of a filter on the basis of an input channel response, using the steps of:
pre-warping said input channel response;
designing an analog filter emulating the pre-warped input channel response by making an initial filter guess and iterating the coefficients of said initial filter guess to minimize a mean-squared error;
inverting said analog filter; and
digitizing the inverted analog filter to produce said compensation portion of said filter using a bilinear transformation; and
filtering said input digital waveform using said compensation portion of said filter.
0. 24. The method according to claim 23, further comprising the step of generating an arbitrary response portion of said filter on the basis of an input user specifications, wherein said input digital waveform is filtered using said arbitrary response portion of said filter, thereby producing a filter digital waveform having the desired response characteristics.
0. 25. The method according to claim 24, wherein said input user specifications comprise a bandwidth, a response optimization, a compensation compliance, and a filter implementation type.
0. 26. The method according to claim 24, wherein said arbitrary response portion of said filter comprises a shaper and a noise reducer.
0. 27. The method according to claim 24, wherein said input user specifications default to predetermined values.
0. 28. The method according to claim 23, wherein said filter is implemented as an infinite impulse response (IIR) filter.
0. 29. The method according to claim 23, wherein said filter is implemented as a finite impulse response (FIR) filter.
0. 30. The signal processing system according to claim 23, wherein said input channel response is predetermined based on a reference signal and the reference signal as acquired by said channel.
0. 31. The method according to claim 23, wherein said filter type is FIR or IIR.
0. 32. The method according to claim 23, wherein the coefficients of said initial filter guess are iterated until said mean-squared error is less than a compensation compliance specified in an input user specifications.
0. 34. The method of claim 33, wherein the parameters are further determined based upon user input concerning a desired bandwidth characteristic.
0. 35. The method of claim 33, wherein the parameters are further determined based upon a specified noise compensation for the channel.
0. 36. The method of claim 33, wherein the digital filter improves a pulse response of the channel.
0. 37. The method of claim 33, wherein the order of the digital filter is determined based on at least one user specified response characteristic.
0. 38. The method of claim 33, wherein the order of the digital filter is variable.
0. 39. The method of claim 33, wherein the parameters are determined according to a user input concerning a desired bandwidth value.
0. 40. The method of claim 39, wherein application of the digital filter to the channel yields an effective channel bandwidth substantially equal to the desired bandwidth value.
0. 41. The method of claim 33, wherein the frequency response of the digital filter comprises the substantial inverse of the channel frequency response in a frequency range within the effective channel bandwidth.
0. 42. The method of claim 33, further comprising changing the frequency scale of the channel frequency response.
0. 43. The method of claim 33, wherein building the digital filter comprises converting a parameterized analog filter into a digital domain.
0. 44. The method of claim 33, wherein determining the plurality of parameters comprises iteratively determining the parameters by minimizing error between a channel frequency response and the filter frequency response.
0. 45. The method of claim 33, wherein the digital filter comprises two or more cascaded digital filter elements.
0. 46. The method of claim 33, wherein the digital filter comprises a Butterworth or Besselworth filter.
0. 47. The method of claim 33, further comprising calibrating the channel without a probe coupled to the channel.
0. 48. The method of claim 33, further comprising calibrating for the characteristics of a probe coupled to the channel according to parameters stored in non-volatile memory on the probe.
0. 49. The method of claim 33, wherein the user input is provided through a graphical user interface.
0. 50. The method of claim 33, wherein the input waveform is received from an analog-to-digital converter in a digital oscilloscope.
0. 51. The method of claim 33, wherein the digital filter comprises a plurality of processing objects, and wherein applying the digital filter to the waveform comprises sequentially executing the plurality of processing objects.
0. 52. The method of claim 51, further comprising repeating the sequential execution on sequential portions of the waveform.
0. 53. The method of claim 33, wherein the digital filter comprises a first and a second processing object, and wherein applying the digital filter to the waveform comprises sequentially executing the first processing object and the second processing object.
0. 54. The method of claim 33, wherein the digital filter comprises a first and a second processing object, and wherein applying the digital filter to the waveform comprises sequentially executing the first processing object and the second processing object and wherein the sequential execution is interruptible.
0. 55. The method of claim 33, wherein the digital filter comprises a first and a second processing object, and wherein applying the digital filter to the waveform comprises sequentially executing the first processing object and the second processing object and wherein the first and second processing objects are part of a processing web that comprises variably interconnected processing objects.
0. 56. The method of claim 55, wherein definitions of the processing objects are editable in a run-time environment.
0. 57. The method of claim 55, further comprising forming a graphical representation of the processing web.
0. 58. The method of claim 55, further comprising determining a state of the processing web and placing a processing object at a location in said web determined on the basis of said state.
0. 59. The method of claim 33, wherein the filter includes a stabilizing zero above the effective channel bandwidth.
0. 60. The method of claim 33, wherein the digital filter provides substantial gain in a boost frequency range proximate the nominal bandwidth of the channel.
0. 61. The method of claim 33, wherein the digital filter has substantially constant attenuation in a frequency range above the boost frequency range.
0. 62. The method of claim 33, wherein the digital filter substantially reduces out-of-band noise on the channel.
0. 63. The method of claim 33, wherein application of the digital filter causes no substantial degradation of the pulse or step response of the channel.
0. 64. The method of claim 33, wherein application of the digital filter substantially reduces overall noise on the channel.
0. 65. The method of claim 33, wherein application of the digital filter substantially increases effective number of bits (ENOB) or the signal-to-noise ratio on the channel.
0. 66. The method of claim 33, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies above at least 1 GHz.
0. 67. The method of claim 33, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies between about 1 GHz and at least 6 GHz.
0. 68. The method of claim 33, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies up to at least 10 GHz.
0. 69. The method of claim 33, wherein the digital filter comprises a Bessel filter.
0. 70. The method of claim 69, wherein the Bessel filter comprises a fourth order filter.
0. 71. The method of claim 33, further comprising substantially concurrently performing steps of the method on at least one additional channel in the digital oscilloscope.
0. 72. The method of claim 33, wherein the digital filter comprises a fourth order or higher filter.
0. 73. The method of claim 33, further comprising applying the digital filter to calibrate the channel.
0. 74. The method of claim 33, wherein the nominal bandwidth of the channel includes frequencies down to substantially zero Hertz.
0. 75. The method of claim 33, wherein the digital filter comprises an inverse Chebyshev filter.
0. 77. The system of claim 76, wherein the digital filter is built according to a plurality of parameters that are determined to substantially flatten the response of the channel across the at least one frequency range.
0. 78. The system of claim 76, wherein the frequency response of the digital filter comprises a substantial inverse of the channel response characteristics in a frequency range within the effective channel bandwidth.
0. 79. The system of claim 76, wherein the channel comprises a probe.
0. 80. The system of claim 76, further comprising a graphical user interface for user input of parameters for building the digital filter.
0. 81. The system of claim 76, wherein the digital filter comprises an infinite impulse response filter.
0. 82. The system of claim 76, wherein the digital filter comprises a finite impulse response filter.
0. 83. The system of claim 76, wherein the waveform processing system comprises a digital sampling oscilloscope.
0. 84. The system of claim 76, wherein the digital filter comprises a first and a second processing object, and wherein the digital filter comprises at least one processor coupled to a memory device that contains a set of instructions that, when executed by the processor, cause the processor to sequentially execute the first processing object and the second processing object, wherein the second processing object receives as input a processed output of the first processing object.
0. 85. The system of claim 76, wherein the digital filter has substantially constant attenuation in a frequency range above the boost frequency range.
0. 86. The system of claim 76, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies up to at least 10 GHz.
0. 87. The system of claim 76, wherein the digital filter comprises a fourth order or higher filter.
0. 88. The system of claim 76, wherein the at least one channel comprises two or more channels.
0. 90. The method of claim 89, wherein the parameters are further determined based upon user input concerning a desired bandwidth characteristic.
0. 91. The method of claim 89, wherein the parameters are further determined based upon a specified noise compensation for the channel.
0. 92. The method of claim 89, wherein the digital filter improves a pulse response of the channel.
0. 93. The method of claim 89, wherein the order of the digital filter is determined based on at least one user specified response characteristic.
0. 94. The method of claim 89, wherein the order of the digital filter is variable.
0. 95. The method of claim 89, wherein the parameters are determined according to a user input concerning a desired bandwidth value.
0. 96. The method of claim 95, wherein application of the digital filter to the channel yields an effective channel bandwidth substantially equal to the desired bandwidth value.
0. 97. The method of claim 89, wherein the frequency response of the digital filter comprises the substantial inverse of the channel frequency response in a frequency range within the effective channel bandwidth.
0. 98. The method of claim 89, further comprising changing the frequency scale of the channel frequency response.
0. 99. The method of claim 89, wherein building the digital filter comprises converting a parameterized analog filter into a digital domain.
0. 100. The method of claim 89, wherein determining the plurality of parameters comprises iteratively determining the parameters by minimizing error between a channel frequency response and the filter frequency response.
0. 101. The method of claim 89, wherein the digital filter comprises two or more cascaded digital filter elements.
0. 102. The method of claim 89, wherein the digital filter comprises a Butterworth or Besselworth filter.
0. 103. The method of claim 89, further comprising calibrating the channel without a probe coupled to the channel.
0. 104. The method of claim 89, further comprising calibrating for the characteristics of a probe coupled to the channel according to parameters stored in non-volatile memory on the probe.
0. 105. The method of claim 89, wherein the user input is provided through a graphical user interface.
0. 106. The method of claim 89, wherein the input waveform is received from an analog-to-digital converter in a digital oscilloscope.
0. 107. The method of claim 89, wherein applying the digital filter to the waveform comprises sequentially executing a first of the plurality of processing objects and a second of the plurality of processing objects, the second processing object receiving as input a processed output of the first processing object.
0. 108. The method of claim 89, further comprising repeating the sequential execution on sequential portions of the waveform.
0. 109. The method of claim 89, wherein applying the digital filter to the waveform comprises sequentially executing a first of the plurality of processing objects and a second of the plurality of processing objects and wherein the sequential execution is interruptible.
0. 110. The method of claim 89, wherein applying the digital filter to the waveform comprises sequentially executing a first of the plurality of processing objects and a second of the plurality of processing objects and wherein the first and second processing objects are part of a processing web that comprises variably interconnected processing objects.
0. 111. The method of claim 110, wherein definitions of the processing objects are editable in a run-time environment.
0. 112. The method of claim 110, further comprising forming a graphical representation of the processing web.
0. 113. The method of claim 110, further comprising determining a state of the processing web and placing a processing object at a location in said web determined on the basis of said state.
0. 114. The method of claim 89, wherein building the digital filter further comprises a boost portion to substantially compensate for attenuation in the frequency response within a frequency range that is above a nominal bandwidth of the channel.
0. 115. The method of claim 89, wherein application of the digital filter to the channel yields an effective channel bandwidth substantially greater than the nominal bandwidth.
0. 116. The method of claim 115, wherein the filter includes a stabilizing zero above the effective channel bandwidth.
0. 117. The method of claim 89, wherein the digital filter provides substantial gain in a boost frequency range proximate the nominal bandwidth of the channel.
0. 118. The method of claim 89, wherein the digital filter has substantially constant attenuation in a frequency range above the boost frequency range.
0. 119. The method of claim 89, wherein the digital filter substantially reduces out-of-band noise on the channel.
0. 120. The method of claim 89, wherein application of the digital filter causes no substantial degradation of the pulse or step response of the channel.
0. 121. The method of claim 89, wherein application of the digital filter substantially reduces overall noise on the channel.
0. 122. The method of claim 89, wherein application of the digital filter substantially increases effective number of bits (ENOB) or the signal-to-noise ratio on the channel.
0. 123. The method of claim 89, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies above at least 1 GHz.
0. 124. The method of claim 89, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies between about 1 GHz and at least 6 GHz.
0. 125. The method of claim 89, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies up to at least 10 GHz.
0. 126. The method of claim 89, wherein the digital filter comprises a Bessel filter.
0. 127. The method of claim 126, wherein the Bessel filter comprises a fourth order filter.
0. 128. The method of claim 89, further comprising substantially concurrently performing steps of the method on at least one additional channel in the digital oscilloscope.
0. 129. The method of claim 89, wherein the digital filter comprises a fourth order or higher filter.
0. 130. The method of claim 89, further comprising applying the digital filter to calibrate the channel.
0. 131. The method of claim 89, wherein the nominal bandwidth of the channel includes frequencies down to substantially zero Hertz.
0. 132. The method of claim 89, wherein the digital filter comprises an inverse Chebyshev filter.
0. 134. The system of claim 133, wherein application of the digital filter to one of the at least one channels yields an effective channel bandwidth substantially equal to desired bandwidth specified by a user.
0. 135. The system of claim 133, wherein a frequency response of the digital filter comprises a substantial inverse of the channel response characteristics in a frequency range within the effective channel bandwidth.
0. 136. The system of claim 133, wherein the digital filter comprises an infinite impulse response filter.
0. 137. The system of claim 133, wherein the digital filter comprises a finite impulse response filter.
0. 138. The system of claim 133, wherein the waveform processing system comprises a digital sampling oscilloscope.
0. 139. The system of claim 133, wherein the digital filter comprises at least one processor coupled to a memory device that contains a set of instructions that, when executed by the processor, cause the processor to sequentially execute a first processing object and a second processing object, wherein the second processing object receives as input a processed output of the first processing object.
0. 140. The system of claim 133, the digital filter being further to substantially increase an effective bandwidth by substantially compensating for attenuation in the frequency response within a frequency range that is above the nominal bandwidth of the channel, wherein application of the digital filter to each channel yields an effective channel bandwidth substantially greater than the nominal bandwidth for each channel.
0. 141. The system of claim 133, wherein the frequency range that is above the channel's nominal bandwidth comprises frequencies up to at least 10 GHz.
0. 142. The system of claim 133, wherein the digital filter comprises a fourth order or higher filter.
0. 143. The system of claim 133, wherein the at least one channel comprises at least two channels.
0. 145. The system of claim 144, further comprising user input means for inputting at least one of the plurality of parameters.
0. 147. The system of claim 146, further comprising user input means for inputting at least one of the plurality of parameters.

27
and thus H c = H m H s Equation 5
Therefore, one method of determining the scope channel response is to take a known stimulus with frequency content Hs, apply it to the input of the DSO channel, acquire it with the digitizer and acquisition system, measure its frequency content Hm and use Equation 5 to determine the channel frequency response Hc.

The resp 69 and corr 70 input pins are polymorphic, meaning they show the same interface, but their behavior differs based on the input. Namely, each input pin is capable of accepting either a time-domain or frequency-domain waveform. Thus the system can receive channel frequency response specifications in the following four formats:

What is known about Reference Format
reference Time-domain waveform Frequency sweep
Time-domain response D A
Frequency content C B

A: Frequency sweep is provided with known time domain response

This combination is almost never used, since the time domain response of a swept sinusoid is rarely known.

B: Frequency sweep is provided with known frequency response

This combination is probably the most common. Accurate instruments that deliver radio frequency (RF) sinusoids are easy to find (for example, the HP8648B 2 GHz signal generator manufactured by Hewlett Packard). Furthermore, the frequency content of the actual sinusoid delivered to the DSO is easy to measure using an RF power meter or sufficiently accurate spectrum analyzer. Also, a network analyzer can be utilized to measure the frequency response characteristic of any cables used to deliver the sinusoid. One of the drawbacks of this combination is that it takes a long time to sweep the sinusoid since each frequency of interest must be delivered to the DSO and a measurement must be made of the amplitude and phase of the signal at each frequency point. Another drawback is that it is difficult to accurately know the phase of the sinusoid. Sometimes, this difficulty can be overcome using special trigger outputs from the generator.

C: Time domain waveform is provided with known frequency response.

This is another common combination. The main requirement for a source using this combination is that it has sufficient power at the frequencies of interest. Two common inputs are step and impulse functions. While perfect steps and impulses cannot be generated easily, it is possible to know the frequency content of the waveform. The easiest manner is to first calibrate the generator by acquiring the time-domain waveform with a DSO and then measure the frequency response of the channel using the method disclosed in combination B. The frequency content of the time-domain source waveform is easily calculated as the measured response from the frequency sweeps minus the frequency content of the sweep generator plus the measured frequency response of the time-domain source waveform. The measured frequency response of the time-domain source waveform is easily calculated using a Fast Fourier Transform (FFT) or Chirp Z Transform (CZT).

While calibration of the time-domain generator suffers from the same drawbacks as described in combination B, this calibration does not need to be performed as frequently (only often enough for the calibration of the time-domain source to remain valid). This combination also suffers from the additional drawback that it is difficult to generate time-domain waveforms whose frequency content does not vary with amplitude. Since the DSO frequency response will vary over its various gain ranges, it is desirable to have a source that can be easily used at any possible gain setting. The strength of this method is the speed and ease with which the measurement is made. All that is needed is to input the calibrated time-domain waveform, trigger on the waveform, and average enough acquisitions to sufficiently reduce the noise. This process can often be performed in under a second.

D. Time domain waveform is provided with known time domain response

This combination is not often used. It has the same benefits as combination C, in that once calibrated the measurement of the time domain waveform can be performed quickly. The problem is that the actual time domain performance of the source usually cannot be determined directly. In other words, it would be inferred from a frequency response measurement. Note that this combination could be used if a DSO using the present invention were used in the calibration of the time-domain source.

The type of waveform attached to the resp 69 and corr 70 inputs is determined by examining its waveform descriptor. The time domain waveforms are converted to frequency responses using the standard Chirp-Z transform (CZT). See M. T. Jong, Methods of Discrete Signal And Systems Analysis, McGraw-Hill Inc., 1982, pp. 297-301, the entire contents thereof being incorporated herein by reference. The CZT is used because it allows precise setting of the number of frequency points in the response, regardless of the sampling rate. Many advanced Fast Fourier Transform (FFT) algorithms also provide this capability, but the CZT is simple and only requires a radix 2 FFT regardless of the number of points in the input signal. While the number of frequency points is settable in the filter builder, 50 points (from 0 Hz to the maximum compensation frequency) works well. The maximum compensation frequency is the frequency at which we will no longer try to undo the effects of the channel frequency response. Usually, this is the frequency at which the magnitude response of the channel approaches the noise floor. This frequency is usually the maximum attainable bandwidth of the instrument using this invention.

Although there are a fixed number of points (from 0 to the maximum compensation frequency), the CZT is sometimes calculated out to the Nyquist limit. It is sometimes useful to view the performance of the compensation portion beyond the frequencies of interest.

Once the waveform at the input to the resp 69 and corr 70 inputs have been converted to frequency responses, Hs and Hm have been determined. Generally the frequency response is represented as a magnitude (in decibels) and a phase (in degrees). If necessary, the responses are resampled using C-spline interpolation. At this point, Hc is calculated by subtracting the magnitude and the phase. Hc forms the basis for the design of the compensation filter portion.

An example of a calculated Hc is shown in FIG. 5. The source waveform used to determine Hm is a step 80 provided by a step generator. This step has been acquired by a DSO channel. To reduce noise and increase resolution (both horizontally and vertically), the acquired step is averaged repeatedly by the DSO. The impulse response of a perfect step is: δ ( i ) = i u ( i ) Equation 6
and thus the frequency content is: D ( s ) = 1 s U ( s ) Equation 7
The frequency content of the step (Hs) can easily be determined by taking the derivative of the step acquired through a channel with a flat frequency response and applying the CZT. FIG. 5 shows the result of the application of Equation 5. Descriptive box 82 shows that the step 80 is about 250 mV in amplitude, and that the duration of this waveform is 20 ns. The measured frequency response 81 of the channel is plotted at 0.5 GHz per horizontal division and 1 dB per vertical division, as indicated in box 83. As shown, this channel frequency response is not flat.

The compensation filter portion is designed based on this channel response to counteract the deviation of the response from 0 dB—in effect, the filter provides the exact inverse of the channel response. An analog filter is first designed that emulates the channel response as closely as possible, the filter is inverted to provide the inverse response, and then converted to a digital filter using a bilinear transformation. The bilinear transformation is well known to those skilled in the art of digital signal processing, but some of the details are described below.

The bilinear transformation is used to convert analog filters to digital filters through a direct substitution of the Laplace variable s. Take an analog filter transfer function: H ( s ) = n = 0 N a n · s n m = 0 M b m · s m Equation 8
perform the following substitution: s 2 · f s · 1 - z - 1 1 + z - 1 Equation 9
And algebraically manipulate the resulting equation to put it in the following form: H ( z ) = n = 0 N A n · z - n m = 0 M B m · z - m Equation 10
By performing this substitution, a digital filter according to Equation 10 will not perform exactly as the analog filter of Equation 8. This is because the substitution shown in Equation 9 creates a non-linear relationship between the frequency response of the analog and digital filters. This non-linear relationship is called warping. Specifically, this relationship is: f d = F s π · tan - 1 ( f a · π F s ) Equation 11
where fd is the frequency where the digital frequency response is evaluated, fa is the frequency where the analog frequency response evaluated, and Fs is the sampling rate of the digital system. In other words, using this transformation, the analog filter response evaluated at fa equals the digital filter response evaluated at fd. Note that:
x≈tan−1(x) for small values of x.  Equation 12
Therefore, fa≈fd for small values of fa with respect to Fs. In other words, the performance of the digital filter matches the performance of the analog filter for low frequencies with respect to the sample rate. For this reason, filters designed using the bilinear transform are sometimes able to ignore the warping effect. However, in the DSO, the bandwidth may be exactly at the Nyquist rate. Hence, the effects of warping cannot be ignored.

To account for warping, the channel frequency response is prewarped. FIG. 6 shows a prewarped response 201. Prewarping involves changing the frequency scale of the channel frequency response 200. Each frequency is replaced with a new value to counteract the warping: f f s π · tan ( π · f f s ) Equation 13
Note that Equation 13 tends towards infinity as f approaches the Nyquist rate. Even excluding the Nyquist rate, frequencies close to Nyquist still generate large prewarped frequencies. For this reason, the size of the prewarped frequencies are restricted to a fixed multiplicative factor (e.g. 50). Any prewarped response points above fifty times the Nyquist rate are discarded.

An analog filter, having the form of Equation 8, matching the prewarped response is built. As seen from the prewarped response 201 shown in FIG. 6, the prewarping effects tend towards infinity at Nyquist. This means that even though the frequency response of the channel tends to have a steep drop as the bandwidth of the channel is exceeded, the prewarped magnitude response flattens asymptotically, approaching a fixed attenuation (i.e. the prewarped response approximates a horizontal line as the response tends towards infinity). This means that a logical estimation of the analog filter structure is one having an equal number of poles and zeros. For this reason, N=M in the analog filter structure shown in Equation 8.

The filter is built by deciding on the value of N (the number of filter coefficients in the numerator and denominator polynomial) and making an initial guess at the numerator and denominator coefficients an and bm. Then, these coefficients are iteratively adjusted until the mean-squared error between the magnitude response of the filter and the prewarped channel frequency response specified is minimized. It is important that the initial guess of the coefficient values be reasonable. If not, the L2 minimization may not converge, or may converge to a local minimum instead of the absolute minimum. If the local minimum is far away from the absolute minimum, the resulting filter design may be useless. Generally, a reasonable guess would be any guess that has no overlapping poles and zeros, or whose frequency response is close to the channel frequency response.

An appropriate guess is designed by imagining a filter design that is basically flat, within the constraints that the filter has N coefficients. From Bode plot approximations, a single, real pole or zero has a 3 dB effect at the pole location. In other words, a pole at s=−j·ωp, will provide attenuation of 3 dB at f=ωp/2·π. Further, a pole creates a knee in the response at the 3 dB point. The response is basically flat before this knee, and rolls off at 6 dB per octave after the knee. There is a correction to this approximation of about 1.0 dB downward an octave in either direction. Since poles and zeros work to cancel each other, the 6 dB/octave roll-off created by a pole is cancelled by a zero that is higher in frequency. In other words, a pole followed by a zero will create a response that is basically level out to the pole, dropping at 6 dB/octave after the pole and being basically level at and beyond the frequency of the zero. Thus, if a sequence of poles and zeros is provided in a certain manner, it is possible to build a basically flat response. The sequence would be either: pole, zero, zero, pole, pole, zero . . . ; or zero, pole, pole, zero, zero, pole . . . .

By examining the Bode approximation, these poles and zeros should be spaced an octave apart out to the maximum frequency of compensation for ideal flatness. Since for high order systems this might cause undo compression of multiple poles below the first frequency response point in the channel frequency response, a multiplicative factor—as opposed to exact octave spacing—can be used.

This factor may be calculated as follows: The end frequency (fend) is defined as the last frequency point in the prewarped channel frequency response. The start frequency (fstart) is defined to be somewhat higher than 0 Hz (e.g. the 8th frequency point in the prewarped channel response). The multiplicative factor (Mspace) that would fit alternating poles and zeros ideally between these frequencies is: M space = ( f end f start ) 1 ( 2 · N - 1 ) Equation 14
Mspace is 2.0 for exact octave spacing.

With this in mind, an array of frequencies is generated, and the poles and zeros are placed at these frequencies in one of the two sequences stated earlier. The array of frequencies is described by:
nε0 . . . 2·N−1 fn=fstart·(Mspace)n  Equation 15
Once the poles and zeros are known, the numerator and denominator polynomials having the form of Equation 8 are calculated by polynomial multiplication.

Besides being essentially flat, this guess at the pole and zero locations has another characteristic that makes it a good initial starting point in the L2 minimization. Because all of the poles and zeros (except the first and the last) are adjacent along the negative real axis in the S-plane, they can easily pair together and move off as complex conjugate pairs during the fit of the filter to the channel response. Complex conjugate pairs of poles and zeros are very effective at resolving sharp ripples in the channel frequency response. Since complex poles and zeros must come in conjugate pairs, it is ideal to have them initially sitting next to one another on the real axis.

FIG. 7 shows the magnitude response of an initial filter guess with four poles and zeros. FIG. 7 shows the individual response of each pole 210 and zero 211, along with the overall magnitude response 212 formed by summing the individual contributions. All guesses will contain ripple and be slightly offset from 0 dB. FIG. 8 shows the pole and zero locations of the initial guess analog filter.

It is now necessary to adjust the coefficients of this initial filter guess to minimize the error between its response and the prewarped channel response. A statement of this problem is as follows:

Given a prewarped channel frequency response containing K coordinates where each coordinate is of the form (ωk,hk). Respectively, ωk and hk are the frequency in GHz and the magnitude response (unitless) of the kth data point. Find values an and bm such that the mean squared error (mse) is minimized. In other words, we minimize: m s e = 1 K · k ( H ( j · ω k ) - h k ) 2 Equation 16

A (local) minimum is reached when the filter coefficients an and bm are such that the partial derivatives of the mean-squared error with respect to all coefficients are zero when the filter magnitude response is evaluated at these coefficient values. This is done by finding the point at which the gradient is zero. This means that the partial derivative with respect to any coefficient is zero: a n m s e = 0 and b m m s e = 0
The evaluation of these partial derivatives leads to: a n m s e = 2 K · k ( H ( j · ω k ) - h k ) · a n H ( j · ω k ) Equation 17 and b m m s e = 2 K · k ( H ( j · ω k ) - h k ) · b m H ( j · ω k ) Equation 18
Equation 17 and Equation 18 demonstrate that to evaluate the partial derivatives of the mean-squared error, we require analytical functions for the magnitude response and the partial derivatives with respect to the magnitude response only. In fact, most non-linear equation solvers require exactly that. The magnitude response can be evaluated as: H ( ω ) = ( α ( ω ) ) 2 + ( β ( ω ) ) 2 ( γ ( ω ) ) 2 + ( δ ( ω ) ) 2 Equation 19 where : α ( ω ) = r = 0 floor ( N - 1 2 ) a 2 · r · ω 2 · r · ( - 1 ) r Equation 20 β ( ω ) = i = 0 floor ( N 2 ) - 1 a 2 · i - 1 · ω 2 · i + 1 · ( - 1 ) i Equation 21 γ ( ω ) = r = 0 floor ( M - 1 2 ) b 2 · r · ω 2 · r · ( - 1 ) r Equation 22 δ ( ω ) = i = 0 floor ( M 2 ) - 1 b 2 · i + 1 · ω 2 · i + 1 · ( - 1 ) i Equation 23

The partial derivative of the magnitude response with respect to each numerator coefficient is: a n H ( ω ) = 1 2 · H ( ω ) · ( γ 2 + δ 2 ) · ( 2 · α · a n α + 2 · β · a n β ) - ( α 2 + β 2 ) · ( 2 · γ · a n γ + 2 · δ · a n δ ) ( γ 2 + δ 2 ) 2 Equation 24 or : a n H ( ω ) = 1 H ( ω ) · ( γ ( ω ) 2 + δ ( ω ) 2 ) · α ( ω ) · [ ω n · ( - 1 ) n 2 ] if even ( n ) β ( ω ) · [ ω n · ( - 1 ) n - 1 2 ] if odd ( n ) Equation 25

The partial derivative of the magnitude response with respect to each denominator coefficient is: b m H ( ω ) = 1 2 · H ( ω ) · ( γ 2 + δ 2 ) · ( 2 · α · b m α + 2 · β · b m β ) - ( α 2 + β 2 ) · ( 2 · γ · b m γ + 2 · δ · b m δ ) ( γ 2 + δ 2 ) 2 Equation 26 b m H ( ω ) = - ( α ( ω ) 2 + β ( ω ) 2 ) H ( ω ) · ( γ ( ω ) 2 + δ ( ω ) 2 ) · γ ( ω ) · [ ω m · ( - 1 ) m 2 ] if even ( m ) δ ( ω ) · [ ω m · ( - 1 ) m - 1 2 ] ] if odd ( m ) Equation 27

At this point, knowing equation 19, Equation 25, and Equation 27, the filter can be adequately solved using any reasonable non-linear equation solver (e.g. the genfit function within MathCAD or the Levenberg-Marquardt algorithm).

Note that when solving this equation, the partial derivative with respect to coefficient b0 should not use Equation 27, but should instead be set to infinity (or a huge number). This is because the actual values a0 and b0 are arbitrary. The ratio of a0 and b0 is all that is important—this ratio sets the dc gain of the system. If one of these coefficients is not fixed, then both may grow very large or very small. By setting the partial derivative of b0 to infinity, the equation solver will not significantly modify this parameter, and a0 will remain unconstrained to set the ratio of a0 to b0.

Knowing the magnitude response function and the partial derivatives, along with an initial guess at the starting filter coefficients, the Levenberg-Marquardt algorithm is run repeatedly. See Nadim Khalil, VLSI Characterization with Technology Computer-Aided Design—PhD Thesis, Technische Universität Wien, 1995, the entire contents thereof being incorporated herein by reference. For each iteration, the coefficients are adjusted to reduce the mean-squared error. Levenberg-Marquardt is a balance between two common least-squares minimization methods: the method of steepest decent, in which the small steps are made along the gradient vector of the mean-squared error at each iteration. The method of steepest decent is very slow, but guaranteed to converge to a local minimum. The other method is Newton-Gauss. Newton-Gauss convergence is very fast but can diverge. Levenberge-Marquardt measures its own performance on each iteration. Successful iterations cause it to favor Newton-Gauss on subsequent iterations. Failed iterations cause it to favor steepest-decent on subsequent iterations. The method it is favoring depends on a value (λ).

TABLE 2
Line Math Step Description
1 For k = 0 . . . K − 1 for each response point
2 Rk ← |H(ωk, gi−1)| − Mk Calculate a residual
3 for j = 0 . . . 2N For each response point and
coefficient
4 J k , j g j H ( ω k · g i - 1 ) Calculate an element of the Jacobian matrix as the partial derivative with respect to a coefficient evaluated a response point
5 H ← JT · W · J Calculate the approximate
Hessian matrix
6 For j = 0 . . . 2N Generate a matrix with only
7 Dj,j ← Hj,j the diagonal elements of the
Hessian matrix
8 ΔP ← (H + λ · D)−1 · JT · W · R Calculate the delta to apply
to the coefficients
9 gi ← gi−1 − ΔP Apply the delta to the
coefficients
10 m s e i k ( H ( ω k · g i - 1 ) - M k ) 2 Calculate the new mean- squared error
11 if msei > msei−1 If the mean-squared error
12 λ ← λ · 10 increased, favor steepest
13 decent, otherwise favor
14 else Newton-Gauss convergence
λ λ 10

Table 2 steps through an iteration of the Levenberg-Marquardt algorithm, where g is a vector of coefficients such that:
nε0 . . . N
gn=an
gn+N+1=bn  Equation 28

The mean-squared error mse0 is initialized to a value between the initial guess filter response and the prewarped channel response and λ is initialized to 1000. Iteration of this method is complete when one of the following conditions occurs:

Once a local minimum has been reached, examination of the mean-squared error tests the performance of the minimization. If it is not low enough, the coefficients are randomly agitated to shake the system out of the local minimum and iteration continues with the hopes of converging on the absolute minimum.

At this point, both the numerator and denominator polynomial coefficients have been found for an analog filter, as described by Equation 8. This analog filter approximates the prewarped channel frequency response. The numerator and denominator are then swapped to form an analog filter that compensates the channel response.

The roots of each polynomial are found using a combination of LaGuerre's Method, followed by Bairstow's Method to refine the complex roots found by LaGuerre. See William H. Press et al., Numerical Recipes in C: the Art of Scientific Computing—2nd Edition, Cambridge University Press, 1992, pp. 369-379, the entire contents thereof being incorporated herein by reference. The refinement consists of an assumption that complex roots must come in conjugate pairs if the polynomial is real, which they are. This refinement is necessary if high order polynomials are utilized.

Once the roots are found, the complex conjugate pairs are joined and the analog filter is re-formed as: H ( s ) = st a 0 , st + a 1 , st · s + a 2 , st · s 2 b 0 , st + a 1 , st · s + a 2 , st · s 2 Equation 29
where st is the filter section. The filter is now in the form of biquad sections. The number of sections is the smallest integer greater than or equal to half the original numerator or denominator polynomial.

The filter can now be converted into a digital filter. A bilinear transformation is used to perform this conversion. Each section of the filter is in the form: H ( s ) = n = 0 2 a n · s n n = 0 2 b n · s n Equation 30
To convert the filter, we make the substitution in s as shown in Equation 9. The substitution is not made algebraically, but instead using the Bilinear Coefficient Formula. See Peter J. Pupalaikis, Bilinear Transform Made Easy, ICSPAT 2000 Proceedings, CMP Publications, Inc., 2000, the entire contents thereof being incorporated herein by reference. Each coefficient of each stage of the filter section shown in Equation 30 is converted to a digital filter section: H ( z ) = n = 0 2 A n · z - n n = 0 2 B n · z - n Equation 31 using : B F ( i , n , N ) = 2 i · k = max ( n - N + i , 0 ) min ( i , n ) i ! · ( N - 1 ) ! k ! ( i - k ) ! · ( n - k ) ! · ( N - i - n + k ) ! · ( - 1 ) k Equation 32 and A n = i = 0 N a i · F s i · B F ( i , n , N ) B n = i = 0 N b i · F s i · B F ( i , n , N ) Equation 33

For biquad sections, N=2 and all coefficients are divided by B0, so that B0 becomes 1.0 with no change in performance. At this point, the compensation portion of the filter element has been computed.

The magnitude response of this filter is evaluated at the frequency points used to match the channel frequency response (the points prior to prewarping), and the waveform representing this response is output through the comp output 76 of the filter builder 56 and on to the comp output pin 72 shown in FIG. 4. In this manner, the DSO user can examine the compensation filter performance.

FIG. 9 shows the fit between the response of compensation filters built with varying compliance and a channel frequency response. FIG. 10 shows this fit in the 0-2 GHz region. For this particular channel, 2 GHz is the maximum frequency to which compliance is enforced. This is a reasonable limitation since the channel response is attenuated by about 9 dB at 2 GHz.

FIG. 11 shows the magnitude response of the compensation filter designed to compensate the channel. The response is shown for varying degrees of compliance. FIG. 12 again shows the response in the 0-2 GHz region. Note that the compensation filters in FIG. 12 counteract the channel frequency response. Furthermore, the flatness of the resulting response improves with increasing compliance. Remember, the degree of compliance translates into a user specification of the degree of the filter (i.e. the number of biquad sections in the filter). Examining FIG. 12, it is difficult to clearly see the amount of improvement in the compensation as the compliance increases. Therefore, FIG. 13 is provided to show the absolute error from 0 dB of the overall, compensated system with varying degrees of compensation filter compliance specified.

Since higher degrees of compliance result in more biquad sections in the compensation filter, FIG. 14 shows the compensation filter performance as a function of the number of stages in the filter. For this particular channel, the maximum error is about 9 dB out to 2 GHz, without compensation. The average error is just over 1 dB. With only two filter sections for compensation (i.e. low compliance), the channel can be flattened to a maximum error of less than 0.5 dB, and an average error of only 0.2 dB. With maximum compliance (i.e. 8 filter sections), the maximum error is reduced to less than 0.1 dB, with the average error being less than 0.04 dB. Thus, the degree of compliance can be used to reduce the maximum error (in dB) by two orders of magnitude, and the average error by a factor of 25.

The design of the arbitrary response portion of the filter is now described. FIG. 15 shows a simple user interface that includes only a control over the final response 84. This user interface allows the user to finely specify the bandwidth 85. Current DSOs generally provide a choice of only two or three fixed bandwidth settings. Additionally, this user interface allows the user to choose between four optimizations (nothing 87, pulse response 88, noise performance 89, and flatness 90) in the response optimization area 86. Depending on the options present within the scope, there may be an additional response specification labeled “special” that allows the user to select from a menu of other possible responses, such as the single-pole or critically damped double-pole responses. Other possible responses could be custom tailored for particular tests. Specifically, the responses specified by various standard measurements (e.g. IEEE and ANSI defined standards). The choice of nothing 87 for the response optimization, turns off both the compensation filter portion and the response generator portion.

The advanced settings tab 91 leads to another dialog box as shown in FIG. 16. Note that an additional control has been added under response optimization called Favor 92. A choice is provided to factor noise performance 93 or the optimization specified 94. This choice will be explained when the details of the response filter design are discussed below. Control is also provided for compensation 95. This includes the degree of compliance 96 that determines the number of biquad sections in the compensation filter portion. Also, the maximum compensation frequency 97 can be set to specify the frequency up to the desired compliance. Control over the final digital filter implementation 98 may also be provided. Two choices, IIR 99 and FIR 100, are shown. Another possible choice is a default setting (i.e. Auto, which automatically chooses the faster of the IIR or FIR filter for final implementation). Tests showed that insofar as the update rate, the IIR filter invariably outperformed the FIR filter. Also, the IIR filter length does not vary with the sample rate (as does the FIR). Therefore, for purposes of this application, the IIR filter is the preferred filter, but the user may choose the FIR filter if desired. Since the FIR is the truncated impulse response of an IIR, the filter settling amount 101 must be specified (e.g. 10e-6). The filter settling value defines the sample point in the impulse response beyond which the impulse response can be neglected. The filter settling samples 102 is a value calculated based on the specified filter settling value. For FIR implementations, it is the number of filter taps. In both the FIR and IIR implementations, it is the number of points that must appear off-screen to the left of the displayed waveform to allow for filter startup.

Recall that the generated responses consist of two portions—the desired response and the noise reducer. The noise reducer must be included not only for the elimination of noise, but also to protect against overboost in the compensation filter beyond the maximum compensation frequency (fmc). This is because the compensation filter is basically unconstrained outside the compensation frequencies. As seen in FIG. 11 and FIG. 12, beyond the compensation frequencies, the filters tend to behave wildly. The noise reducer is governed by an attenuation setting (As) and a frequency setting (fs) where fs is calculated as a multiplicative factor (Mmcf) of fmc. In other words, when building the filter, some attenuation is needed at frequencies higher than fmc to protect against wild behavior from the compensation filter.

Five possible response optimizations are now discussed, in order of complexity from lowest to highest. The trivial case is no optimization, which simply leaves this portion out of the final filter and disables the compensation portion.

Flatness optimization involves the design of a Butterworth filter as the response portion. The intent of the Butterworth filter is to supply some noise reduction (and overboost protection for the compensation filter) while affecting the pass-band as little as possible. The design is that of a traditional Butterworth filter with the pass-band and stop-band edges being specified (fp and fs), along with the maximum pass-band attenuation (Ap) and the minimum stop-band attenuation (As). See T. W. Parks, Digital Filter Design, John Wiley & Sons, Inc., 1987, pp. 159-205, the entire contents thereof being incorporated herein by reference. The resulting Butterworth filter has a calculated order Obutter. This order may be clipped, if necessary, to the specified largest order allowed Obuttermax. If the filter is clipped to Obuttermax the filter will not meet both the passband and stop-band specifications. In this case, the Butterworth filter is situated to provide the exact attenuation As at fs. Hence, the attenuation at fp will be greater than Ap, thus the flatness specification is violated. If the filter order is not clipped, then the filter will meet, or exceed the specifications. This is because the filter order is chosen as the smallest integer that satisfies the specifications. In this case, the user specifies a bias towards which specifications should be exceeded in the favor specification 92. If the user favors noise performance 93, the Butterworth filter represents the traditional design providing the exact attenuation Ap at fp and generally providing better attenuation than As at fs. If the respond optimization 94 is favored, the Butterworth is situated to provide the exact attenuation As at fs. In this case, the attenuation at fp will be less than or equal to Ap and the filter will generally outperform the flatness specification.

The specifications for the flatness response are derived from the user specifications: fp is set to the specified bandwidth frequency (fbw) even though it is not actually the bandwidth, Ap is taken from the specification of δ (deviation), and As is a default value based on the hardware behavior of the particular scope channel. The value of δ is generally chosen based on the typical compensation filter performance. In other words, if the compensation filter can provide at best 0.1 dB of compliance, then a δ less than 0.1 is probably an unnecessary constraint. The value fs is calculated as Mmcf times fmc unless overridden, where Mmcf has a default value based on the particular scope channel (e.g. 1.667).

The noise performance response optimization is similar to the flatness response optimization, except that Ap is set to the specified attenuation (Abw) at the bandwidth frequency (fbw). Note that Abw defaults to 3 dB, but downward modification is allowed to guarantee the bandwidth. As and fs are ignored and the Butterworth filter is designed as the highest order Butterworth filter allowed (Obuttermax) having attenuation Abw at fbw. This provides the absolute maximum amount of attenuation for a given bandwidth. The specifications for the noise performance response are derived from the user specifications: fp is taken from the bandwidth specification (fbw), and fs is calculated as Mmcf times fmc unless overridden.

When pulse response optimization is specified, a Besselworth filter is designed to optimize the response characteristics. This filter has a combination of Bessel and Butterworth response characteristics. The Bessel filter has a linear phase response characteristic and a very slow roll-off. Most importantly, it is the low-pass filter with the best pulse response characteristics. The Butterworth filter has the sharpest roll-off, given a flat pass-band and stop-band response. The Besselworth filter is specified as follows:

FIG. 17 shows a flowchart of the Besselworth design procedure. An analog Bessel filter is designated in step 103. See Lawrence R. Rabiner and Bernard Gold, Theory and Application of Digital Signal Processing, Bell Telephone Laboratories, 1975, pp 228-230, the entire contents thereof being incorporated herein by reference. The Bessel filter is designed to a specification with frequencies that are not prewarped. Once the Bessel filter is designed, the frequency fδ at which the attenuation reaches Aδ is calculated from the magnitude response 105, unless fδ is explicitly specified 104. The Butterworth order calculation 106 is self explanatory and can be calculated directly or through trial and error. Note that the Bessel attenuation has been subtracted from the attenuation requirement for the Butterworth. Note also that the Butterworth order must be determined using prewarped specifications. If the order is too large 107, it is set to its maximum value 108. At this point, the favor specification is utilized 109 in the same manner as described for the flatness optimization and one of the two Butterworth filter designs (110 and 111) is chosen. Once this filter is designed, the effect of the Butterworth at fbw 112 is calculated and the Bessel filter is rescaled (in frequency) to account for the attenuation of the Butterworth filter 113. Note that fδ and fs tend to be far from fbw and the Butterworth filter's relatively sharp roll-off generally makes its effects at fbw small. This means that the Bessel filter only needs to be adjusted slightly in step 113. Furthermore, resealing moves the Bessel to provide less attenuation at fc and fδ, but the attenuation at fs is also lessened which jeopardizes the filter's ability to meet the stop-band attenuation specification. Since the Bessel filter has a slow roll-off, this effect is usually negligible. One method of compensating for this is to add one to the order calculated in 106, when noise performance is being favored. Another problem is that the Butterworth filter may have such a large effect at fc that it is impossible to meet the bandwidth specification, even with a high-order Butterworth. This occurs when the bandwidth is specified at or near the Nyquist rate. This problem can be detected by comparing Abutter calculated in 112 to Abw. If Abutter is greater, no Bessel filter will meet the specification (because it would be required to provide a gain). In this case, the Butterworth filter is discarded, and the system only uses the Bessel filter. In this instance, the bandwidth specification is effectively being chosen as a higher priority than the stop-band attenuation specification. Once the Butterworth and Bessel filters are designed, the Bessel filter response is plotted (prewarped), and an analog filter is fitted to this response 114 (in much the same way the compensation filter is calculated by fitting it to the channel response). The analog filter has an equal number or zeros added to the numerator as the analog Bessel filter has poles. Both filters are converted to digital filters 115 using the bilinear transformation. The digital Butterworth filter exhibits warping, but this warping was accounted for in its design. The Bessel filter, because of the fit, exactly matches the analog Bessel response out to the Nyquist rate. This method provides the exact response characteristics for the Bessel filter portion.

FIG. 18 shows an example of such a Besselworth filter 300. The filter in FIG. 18 is for a system with a bandwidth specification of 2 GHz (fbw). It has been conservatively specified as 2.5 dB attenuation (Abw) at the bandwidth frequency. It is further specified to deviate no more than 0.5 dB (δ) up to the point at which the second order (Obessel=2) Bessel magnitude response 301 attenuates by 6 dB (Aδ). Since fδ was not specified, it was calculated—the frequency at which the Bessel response reaches −6 dB is 3.178 GHz (which leads to a prewarped specification of 7.608 GHz). It was found that a 5th order (Obutter=5) Butterworth filter 302 was capable of providing a system attenuation of 20 dB (As) at the calculated stop-band edge of 3.501 GHz. The filter in FIG. 18 meets these specifications.

Special responses—like single-pole, double-pole, critically damped, and other industry standards—are generated exactly as in the procedure outlined in FIG. 17, with the special response substituted for the Bessel filter. In addition, an inverse-Chebyshev filter is also a suitable replacement for the Butterworth filter, since ripple in the stop-band can certainly be tolerated in favor of sharper cut-off.

Regardless of the response filters generated, they are converted to digital filters and are retained internally as two stages (the noise reducer and the shaper). The frequency response of each is output on the noise 74 and shape 73 pins of the component shown in FIG. 4. In all response optimization cases, the Butterworth filter represents the noise reducer portion. In the case of pulse response optimization, the Bessel portion of the Besselworth filter design represents the shape portion. In the case of special responses, these responses represent the shape portion. In the case of flatness and noise performance optimizations, there is no shape filter portion and a frequency response indicating unity gain at all frequencies is output on the shape pin 73.

To filter data, the system cascades the shaper and noise reducer digital filters to form the arbitrary response generation filter portion. The system then cascades the compensation filter portion and arbitrary response generation filter portion to form the entire compensation and response generation system. The filter coefficients are output from the filter builder 56 coef output pin 65 shown in FIG. 4, where they can be used by the IIR 54 or FIR 55 filter.

In summary, the interfaces to the component shown in FIG. 4 are as follows:

Calibration of a system utilizing the component shown in FIG. 4 simply involves providing the channel frequency response. FIG. 19 shows an arrangement used for calibration of a DSO 116 having a probe 117 for probing a circuit under test 118. The probe 117 is connected to a channel input 119 of the DSO 116. The signal enters the channel 120 and is digitized by the ADC, after which signals are processed and displayed by the internal computer 121. A calibrated reference generator 122 is shown internal to the DSO 116. The calibrated reference generator 122 consists of a signal source 123 and calibration information 124. The reference source 122 generates a signal whose frequency content is known well. The known frequency content is stored internally as calibration data 124. The reference calibration data 124 along with the reference signal generator 123 form a calibrated reference 122. Under specified conditions, such as changes to scope settings, changing temperature, elapsed time, or explicitly at the users request, a calibration may be performed by switching out the test signal at internal input selector 125, switching in the reference generator connection 126, controlling the reference generator 123 and acquiring data from this generator by digitizing the reference generator waveforms that enter the channel 120. The internal computer 121 processes the data acquisitions, thereby generating measured frequency response data. The measured frequency response data, along with the known frequency response 124 from the calibrated reference generator 122, is passed on to the processing element that is the subject of this invention in order to determine the channel frequency response.

This calibration method calibrates the signal path through the channel 120 down to the switch 125, but also includes the path 126 to the reference generator 123. This means that the path 126 from the switch 125 to the reference generator 123 and the path 127 from the switch 125 to the scope input 119 must be designed very carefully, or its frequency response characteristics must be known. Furthermore, note that the probe 117 is out of the calibration loop. In effect, the calibration procedure explained calibrates the DSO to the scope input 119 only. While it is possible to design the internal paths of the scope (126 and 127) to high precision, this is not always possible with regard to the probe.

To account for this, many scope probes carry calibration information stored in an internal memory (EEPROM) that may be read by the internal computer when the probe is inserted. Calibrated probes carry frequency response information that can be used in the channel frequency response calculation. For example, if the frequency response of the probe is known, the internal computer can simply add this frequency response to the measured frequency response prior to sending the information to the filter-building component. The resulting compensation would then account for the frequency response of the probe.

Alternatively, the user may connect the probe 117 periodically to the reference signal output 128 and perform the calibration as described, except that the input selector switch 125 should remain in the normal operating position. The resulting calibration accounts for the frequency response from the probe tip 129 through the entire channel 120. While this type of calibration cannot be completely automated, it does provide the highest degree of compensation. Furthermore, if this type of calibration is the only calibration method provided, then there is no need for the input selector switch 125 and the internal path 126 to the reference generator.

Further, the calibrated reference generator 122 need not reside in the scope. It can be supplied externally and sold as an option to the DSO. In addition, the calibration data 124—while tied to the reference generator 123—need not be collocated. The data can reside on a disk for loading into the scope. However, there should be some method of identifying the reference generator 123 and corresponding calibration data 124. Depending on the type of generator used, no direct control of the generator by the internal computer may be necessary.

The filter builder calculates four responses: the channel response, and the three components of the filter response. The three components of the filter response are the compensation, shaper, and noise reducer responses. Using these response outputs, an all-encompassing frequency response specification can be delivered to the user by simply plotting any or all of the algebraic combinations of these responses and providing this information to the user. In this manner, the user can examine any frequency response behavior desired. In addition, plots like FIG. 13 are possible and may provide useful additional information. Further, various metrics (like the data shown in FIG. 14) may be calculated from these plots.

The ability to provide this type of scope performance data is important. For example, many standard measurements require certain measurement instrument specifications (e.g. a particular measurement might state that a scope must be used that is flat to within 0.5 dB out to 2 GHz). Not only does the invention provide the capability to satisfy such a requirement, but it also provides the ability to examine the final specifications to ensure compliance. Finally, the invention allows for recording and printout of the scope specifications along with the users measurements (as shown in FIG. 20), thus providing verification of proper measurement conditions.

While a preferred embodiment of the present invention has been described using specific terms, such description is for illustrative purposes only, and it is to be understood that changes and variations may be made without departing from the spirit or scope of the following claims.

Pupalaikis, Peter J.

Patent Priority Assignee Title
8825421, Nov 30 2009 Rockwell Automation Technologies, Inc. Digital implementation of a tracking filter
Patent Priority Assignee Title
4788653, Dec 23 1986 General Electric Company Digital filter for power system stabilizer
4875166, Oct 09 1987 Input/Output, Inc.; INPUT OUTPUT, INC Bandwidth enhancing seismic acquisition system and method
5208596, Apr 10 1992 PLYMOUTH DEWITT, INC DAC distortion compensation
5226059, Sep 07 1990 Nortel Networks Limited DSP line equalizer
5239578, May 15 1990 Plantronics, Inc. Noise cancelling apparatus for a telephone handset
5280353, Aug 15 1989 CINTEL INTERNATIONAL LIMITED, A U K CORP Method and apparatus for signal processing by interpolation and filtering with simultaneous frequency response compensation and offset generation
5283483, Jan 27 1993 Fairchild Semiconductor Corporation Slimmer circuit technique
5341177, Sep 04 1991 SAMSUNG ELECTRONICS CO , LTD , A CORP OF THE REPUBLIC OF KOREA System to cancel ghosts generated by multipath transmission of television signals
5388062, May 06 1993 Thomson Consumer Electronics, Inc Reconfigurable programmable digital filter architecture useful in communication receiver
5487023, Feb 14 1994 Tektronix, Inc. Repeatable finite and infinite impulse response integrated circuit structure
5574639, Oct 12 1994 Los Alamos National Security, LLC System and method for constructing filters for detecting signals whose frequency content varies with time
5577117, Jun 09 1994 Nortel Networks Limited Methods and apparatus for estimating and adjusting the frequency response of telecommunications channels
5698984, Jan 30 1996 Fluke Corporation Adaptive digital filter for improved measurement accuracy in an electronic instrument
5754437, Sep 10 1996 Tektronix, Inc.; Tektronix, Inc Phase measurement apparatus and method
5812009, Apr 03 1995 Fujitsu Limited Boost type equalizing circuit
5854756, Feb 01 1996 Racal-Datacom Limited Digital filters
5978742, Apr 04 1997 Tektronix, Inc. Method and apparatus for digital sampling of electrical waveforms
6115418, Feb 09 1998 National Semiconductor Corporation Simplified equalizer for twisted pair channel
6175849, Feb 10 1998 WSOU Investments, LLC System for digital filtering in a fixed number of clock cycles
6184748, Sep 30 1998 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Magnitude and group delay shaping circuit in continuous-time read channel filters
6219392, Jan 20 1999 Matsushita Electric Industrial., Ltd. Filter device and method of acquiring filter coefficients
6279021, Jan 30 1998 Sanyo Electric Co. Ltd. Digital filters
6289063, Sep 02 1998 RPX CLEARINGHOUSE LLC QAM receiver with improved immunity to crosstalk noise
6304134, Mar 29 2000 Texas Instruments Incorporated High-frequency boost technique
6437932, May 16 1996 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Decision based time-varying equalizers
6539318, Nov 17 2000 TELEDYNE LECROY, INC Streaming architecture for waveform processing
6542914, Sep 01 2000 TELEDYNE LECROY, INC Method and apparatus for increasing bandwidth in sampled systems
6581080, Apr 16 1999 SONNOX LIMITED Digital filters
6631175, Apr 03 1998 TELECOM HOLDING PARENT LLC Spectrally constrained impulse shortening filter for a discrete multi-tone receiver
20020009135,
20020075267,
20020109496,
20020163959,
20020171408,
20030002574,
20030007583,
20030055855,
20030118094,
20050080831,
JP10282153,
WO38384,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 09 2007LeCroy Corporation(assignment on the face of the patent)
Jul 29 2010LeCroy CorporationMANUFACTURERS AND TRADERS TRUST COMPANYSECURITY AGREEMENT0248920689 pdf
Aug 08 2011LeCroy CorporationRBS CITIZENS, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0268260850 pdf
Aug 03 2012LeCroy CorporationTELEDYNE LECROY, INC MERGER SEE DOCUMENT FOR DETAILS 0291620724 pdf
Aug 22 2012RBS CITIZENS, N A TELEDYNE LECROY, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0291550478 pdf
Oct 09 2012MANUFACTURERS AND TRADERS TRUST COMPANY, AS AGENTLeCroy CorporationRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0291290880 pdf
Date Maintenance Fee Events
Aug 10 2011LTOS: Pat Holder Claims Small Entity Status.
Sep 02 2011M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Nov 30 2011STOL: Pat Hldr no Longer Claims Small Ent Stat
Sep 02 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jun 23 20124 years fee payment window open
Dec 23 20126 months grace period start (w surcharge)
Jun 23 2013patent expiry (for year 4)
Jun 23 20152 years to revive unintentionally abandoned end. (for year 4)
Jun 23 20168 years fee payment window open
Dec 23 20166 months grace period start (w surcharge)
Jun 23 2017patent expiry (for year 8)
Jun 23 20192 years to revive unintentionally abandoned end. (for year 8)
Jun 23 202012 years fee payment window open
Dec 23 20206 months grace period start (w surcharge)
Jun 23 2021patent expiry (for year 12)
Jun 23 20232 years to revive unintentionally abandoned end. (for year 12)