A blower for a high efficiency furnace is provided with an increased interior space for accommodating an impeller of maximum practicable diameter. The blower includes a blower motor and a blower housing having a bottom piece and a top piece assembling with the bottom piece to define an interior of the blower housing. The top piece includes an annular lower support portion for supporting the blower motor and an annular upper portion extending above and around the lower portion. The upper portion has an outer peripheral edge and lugs extending outward beyond the outer peripheral edge. The lugs have lug holes to receive mechanical fasteners to secure the blower housing to an external device. The head of the mechanical fasteners are positioned above the lugs on the upper portion of the top piece. In this arrangement the diameter of the bottom piece is not limited by a need to accommodate spacing for the head of the mechanical fastener. Additionally, the top piece and bottom piece have interlocking internal seals that provide positive engagement when the blower housing is assembled.
|
0. 24. A blower housing comprising:
a top piece having an outer peripheral edge;
an annular wall; and,
a bottom piece having an outer peripheral border, the bottom piece being connectable with the top piece with the annular wall between the bottom piece and top piece, the bottom piece having a plurality of mounting flanges that project outwardly from the bottom piece outer peripheral border and each of the mounting flanges has a flange hole with an inner edge configured to position a fastener flush along at least a majority of the annular wall;
the top piece has a plurality of lugs that project outwardly from the top piece outer peripheral edge and each lug has a leg that extends across the annular wall and connects with a mounting flange of the bottom piece; and,
each leg has an arcuate interior surface that opposes the annular wall.
0. 26. A blower for a climate control device having a surface with a plurality of mounting holes arranged in a pattern on the surface for mounting the blower to the surface of the device, the blower comprising:
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall being dimensioned to be positioned on the device surface inside the pattern of the plurality of mounting holes;
a blower housing top piece extending across the annular wall, the blower housing top piece having a plurality of lug holes spatially arranged outside the annular wall and in a pattern that aligns each lug hole with a mounting hole on the device surface when mounting the blower to the device surface, each of the lug holes having an oblong shape;
a blower housing bottom piece extending across the annular wall on an opposite side of the annular wall from the blower housing top piece, the bottom piece having a plurality of flange holes spatially arranged outside the annular wall and in a pattern that aligns each flange hole with a mounting hole on the device surface when mounting the blower to the device surface, and each of the flange holes having an oblong shape;
a plurality of fasteners, each fastener having a head and a shaft and each fastener shaft having a cylindrical length that extends through a lug hole, across the annular wall, and through a flange hole with a spacing between the annular wall and the shaft being substantially constant along a majority of the shaft length; and,
each fastener head having a width that is larger than a width of the fastener shaft, and each fastener head being positioned in engagement with a lug outside the lug hole.
0. 1. A blower for a climate control device having a surface with a plurality of mounting holes arranged in a pattern on the surface for mounting the blower to the surface of the device, the blower comprising:
a blower housing top piece having a peripheral edge that extends around the top piece, a plurality of lugs that project outwardly from the peripheral edge with each lug having a lug hole;
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall extending around the peripheral edge of the top piece and being dimensioned to be positioned on the device surface inside the pattern of the plurality of mounting holes with the lug holes of the top piece aligned with the plurality of mounting holes; and,
a blower housing bottom piece having a peripheral edge that extends around the bottom piece, a plurality of mounting flanges that project outwardly from the bottom piece peripheral edge with each mounting flange having a flange hole, the bottom piece being positioned on an opposite side of the annular wall from the top piece and being dimensioned to be positioned on the device surface with the flange holes aligned with the plurality of mounting holes.
0. 2. The blower of
the blower housing annular wall extending around the peripheral edge of the bottom piece.
0. 3. The blower of
each lug of the plurality of lugs being positioned opposite a mounting flange of the plurality of mounting flanges on opposite sides of the annular wall.
0. 4. The blower of
each lug hole being positioned opposite a flange hole on opposite sides of the annular wall.
0. 5. The blower of
the plurality of lugs being spatially arranged around the top piece peripheral edge and the plurality of mounting flanges being spatially arranged around the bottom piece peripheral edge.
6. The blower of
a blower housing top piece having a peripheral edge that extends around the top piece, a plurality of lugs that project outwardly from the peripheral edge with each lug having a lug hole;
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall extending around the peripheral edge of the top piece and being dimensioned to be positioned on the device surface inside the pattern of the plurality of mounting holes with the lug holes of the top piece aligned with the plurality of mounting holes;
a blower housing bottom piece having a peripheral edge that extends around the bottom piece, a plurality of mounting flanges that project outwardly from the bottom piece peripheral edge with each mounting flange having a flange hole, the bottom piece being positioned on an opposite side of the annular wall from the top piece and being dimensioned to be positioned on the device with the flange holes aligned with the plurality of mounting holes;
a plurality of fasteners, each fastener having a head and a shaft and each fastener shaft having a cylindrical length that extends through a lug hole, across the annular wall, and through a flange hole with a spacing between the annular wall and the shaft being substantially constant along a majority of the shaft length; and,
a plurality of legs spatially arranged around the top piece peripheral edge and the bottom piece peripheral edge, each leg projecting outwardly from the top piece peripheral edge and the bottom piece peripheral edge and each leg having an interior surface that extends between a lug hole and a flange hole.
7. The blower of
a blower housing top piece having a peripheral edge that extends around the top piece, a plurality of lugs that project outwardly from the peripheral edge with each lug having a lug hole;
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall extending around the peripheral edge of the top piece and being dimensioned to be positioned on the device surface inside the pattern of the plurality of mounting holes with the lug holes of the top piece aligned with the plurality of mounting holes;
a blower housing bottom piece having a peripheral edge that extends around the bottom piece, a plurality of mounting flanges that project outwardly from the bottom piece peripheral edge with each mounting flange having a flange hole, the bottom piece being positioned on an opposite side of the annular wall from the top piece and being dimensioned to be positioned on the device with the flange holes aligned with the plurality of mounting holes;
a plurality of fasteners, each fastener having a head and a shaft and each fastener shaft having a cylindrical length that extends through a lug hole, across the annular wall, and through a flange hole with a spacing between the annular wall and the shaft being substantially constant along a majority of the shaft length; and,
a plurality of legs spatially arranged around the top piece peripheral edge and the bottom piece peripheral edge and extending across the annular wall between a lug and a mounting flange, each leg projecting outwardly from the top piece peripheral edge, the bottom piece peripheral edge and the annular wall.
0. 8. The blower of
each of the lug holes and each of the flange holes having oblong shapes.
0. 9. The blower of
the top piece having a shaft hole extending through the top piece and a plurality of mounting fittings spatially arranged around the shaft hole to enable attaching a motor to the top piece with a shaft of the motor passing through the shaft hole.
0. 10. The blower of
each lug hole having an oblong shape.
0. 11. A blower for a climate control device having a surface for mounting the blower to the device, the blower comprising:
a blower housing top piece having a peripheral edge that extends around the top piece, a shaft hole extending through the top piece and a plurality of mounting fittings spatially arranged around the shaft hole for attaching a motor to the top piece with a shaft of the motor passing through the shaft hole,
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall extending around the peripheral edge of the top piece; and,
a plurality of legs spatially arranged around the peripheral edge of the top piece and projecting outwardly from the peripheral edge and outwardly from the annular wall, the legs extending from the top piece peripheral edge across the annular wall to support the top piece in a horizontal orientation above the annular wall and the climate control device surface when the blower is mounted on the device surface.
0. 12. The blower of
a motor mounted on the top piece by the mounting fittings, the plurality of legs supporting the motor in a vertical orientation on the top piece and supporting the top piece in a horizontal orientation above the annular wall and the climate control device surface when the blower is mounted on the surface.
0. 13. The blower of
a plurality of fasteners extending through the plurality of legs to mount the blower to the climate control device surface.
0. 14. The blower of
each of the plurality of fasteners has a driving end that seats against the top piece.
0. 15. The blower of
each fastener driving end extending horizontally over the annular wall.
16. The blower of
a blower housing top piece having a peripheral edge that extends around the top piece, a shaft hole extending through the top piece and a plurality of mounting fittings spatially arranged around the shaft hole for attaching a motor to the top piece with a shaft of the motor passing through the shaft hole,
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall extending around the peripheral edge of the top piece;
a plurality of legs spatially arranged around the peripheral edge of the top piece and projecting outwardly from the peripheral edge and outwardly from the annular wall, the legs extending from the top piece peripheral edge across the annular wall to support the top piece in a position on an opposite side of the annular wall from the climate control device surface when the blower is mounted on the device surface;
a plurality of fasteners extending across the annular wall, each fastener having a shaft with a driving end at one end of the shaft and a driven end at an opposite end of the shaft, each fastener shaft having a length that is positioned adjacent and substantially parallel to the annular wall for a majority of the shaft length, and each fastener driving end seating against the top piece; and,
a plurality of lugs spatially arranged around the top piece peripheral edge projecting outwardly from the peripheral edge, each lug has a lug hole, and the plurality of legs extend downwardly from the plurality of lugs.
17. The blower of
a blower housing top piece having a peripheral edge that extends around the top piece, a shaft hole extending through the top piece and a plurality of mounting fittings spatially arranged around the shaft hole for attaching a motor to the top piece with a shaft of the motor passing through the shaft hole,
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall extending around the peripheral edge of the top piece;
a plurality of legs spatially arranged around the peripheral edge of the top piece and projecting outwardly from the peripheral edge and outwardly from the annular wall, the legs extending from the top piece peripheral edge across the annular wall to support the top piece in a position on an opposite side of the annular wall from the climate control device surface when the blower is mounted on the device surface;
a plurality of fasteners extending across the annular wall, each fastener having a shaft with a driving end at one end of the shaft and a driven end at an opposite end of the shaft, each fastener shaft having a length that is positioned adjacent and substantially parallel to the annular wall for a majority of the shaft length, and each fastener driving end seating against the top piece; and,
a blower housing bottom piece having a peripheral edge that extends around the bottom piece, a plurality of mounting flanges that project outwardly from the bottom piece peripheral edge with each mounting flange being positioned to be engaged by a leg of the plurality of legs when the blower housing is mounted on the climate control device surface.
19. The blower of
blower housing annular wall extends around the peripheral edge of the bottom piece.
0. 20. A blower for a climate control device having a surface with a plurality of mounting holes arranged in a pattern on the surface for mounting the blower to the surface of the device, the blower comprising:
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall being dimensioned to be positioned on the device surface inside the pattern of the plurality of mounting holes;
a blower housing top piece extending across the annular wall, the blower housing top piece having a plurality of lug holes spatially arranged outside the annular wall and in a pattern that aligns each lug hole with a mounting hole on the device surface when mounting the blower to the device surface, each of the lug holes having an oblong shape; and,
a blower housing bottom piece extending across the annular wall on an opposite side of the annular wall from the blower housing top piece, the bottom piece having a plurality of flange holes spatially arranged outside the annular wall and in a pattern that aligns each flange hole with a mounting hole on the device surface when mounting the blower to the device surface, and each of the flange holes having an oblong shape.
0. 21. The blower of
the top piece having a peripheral edge that follows the volute shape of the annular wall and the bottom piece having a peripheral edge that follows the volute shape of the annular wall.
0. 22. The blower of
the top piece having a peripheral edge and a plurality of lugs projecting outwardly from the peripheral edge with the plurality of lug holes being in the plurality of lugs; and
the bottom piece having a peripheral edge and a plurality of mounting flanges projecting outwardly from the peripheral edge with the plurality of flange holes being in the mounting flanges.
23. The blower of
a blower housing annular wall having a volute shape with a discharge pipe projecting from the annular wall, the annular wall being dimensioned to be positioned on the device surface inside the pattern of the plurality of mounting holes;
a blower housing top piece extending across the annular wall, the blower housing top piece having a plurality of lug holes spatially arranged outside the annular wall and in a pattern that aligns each lug hole with a mounting hole on the device surface when mounting the blower to the device surface, each of the lug holes having an oblong shape;
a blower housing bottom piece extending across the annular wall on an opposite side of the annular wall from the blower housing top piece, the bottom piece having a plurality of flange holes spatially arranged outside the annular wall and in a pattern that aligns each flange hole with a mounting hole on the device surface when mounting the blower to the device surface, and each of the flange holes having an oblong shape;
a plurality of fasteners, each fastener having a head and a shaft and each fastener shaft having a cylindrical length that extends through a lug hole, across the annular wall, and through a flange hole with a spacing between the annular wall and the shaft being substantially constant along a majority of the shaft length; and,
the top piece having a peripheral edge;
the bottom piece having a peripheral edge; and,
a plurality of legs that project outwardly from the top piece peripheral edge and the bottom piece peripheral edge and extend between the plurality of lug holes and the plurality of flange holes.
0. 25. The blower housing of
each lug has a lug hole that is aligned with a flange hole enabling fasteners to be positioned through the lug holes, between the annular wall and the arcuate interior surfaces of the legs and through the flange holes.
0. 27. The blower of
each fastener head overlapping an end of the annular wall.
|
This application is a continuation of patent application Ser. No. 09/651,650, filed Aug. 30, 2000, now U.S. Pat. No. 6,386,123 and presently pending.
(1) Field of the Invention
The present invention relates to blowers used on high efficiency (e.g. 90% or higher efficiency) furnaces for drawing air from outside the home into the furnace to support combustion and for expelling the combustion exhaust products outside the home. More particularly, the invention relates to a construction of a blower housing that maximizes the interior space available for the blower impeller.
(2) Description of the Related Art
Combustion blowers for high efficiency furnaces are common in the art. These blowers are used to draw air for combustion from outside the home. Generally, these blowers are located downstream of a combustion chamber or combustion tubes in the furnace, depending upon the style of furnace, into which the combustion air is drawn, mixed with fuel, and ignited to generate heat for the furnace. The exhaust gases are drawn into the suction side of the blower and discharged from the blower through an exhaust pipe that vents to outside atmosphere.
Although the mounting arrangement and available space inside the blower is similar between one furnace model and the next, each model of furnace typically is designed to use a specific type and size blower. Among other general specifications set by the furnace manufacturer, the blower must meet requirements for dimensional size, mounting arrangements, and air moving capacity. In particular, the size of the blower housing must fit within a given space which then in turn determines the location of mounting holes in the furnace bonnet. Thus, these dimensional size requirements limit the air moving capacity of a blower because the impeller size must be chosen to fit and operate efficiently within the given size housing.
In order to increase the air moving capacity of the blower given the fixed size for the blower housing and the impeller, the designer may choose to increase the speed of the impeller. This in turn requires that the blower be operated with a higher speed motor. This option has significant drawbacks, including increased cost to buy, to operate, and increased noise. The speed of the motor and the speed of the impeller must be closely matched to maximize efficiency of the impeller. This requires additional engineering considerations in designing the impeller to operate efficiently at increased speeds. Efficient high speed motors are generally more expensive and tends to increase the cost of the blower. A blower with a higher speed motor also tends to produce more noise and vibration. The higher speed motor also has greater electrical demands. High speed blower motors tend to operate at higher temperatures and generate more heat than lower speed motors. Since the motor is in close proximity to hot exhaust gases in the blower, higher speed motors may require auxiliary cooling systems such as a shaft mounted fan, or a larger bonnet interior to avoid heat buildup. Auxiliary cooling systems lower motor efficiency, and the higher operating temperatures tend to decrease the life cycle of the blower motor.
As shown in
In the construction of older blower housings, a cut-out in the side wall of the blower housing is sometimes provided adjacent the mounting feet for clearance of the driving end of the mechanical fastener. A sponge foam rubber or rubber type sealing insert is then used once the fastener is installed to completely seal the housing along the narrow spacing adjacent the driving end of the fastener. These inserts and gaskets are problematic in that they tend to leak over time and represent the weak link in exhaust system integrity. Additionally, some blower housing constructions require the use of gasket material to build up the axial height of the bottom piece in the area of the mounting foot when the blower is installed on the furnace. This gasket material seals the blower housing in the area of the mechanical fastener and prevents the mounting foot from heeling over when the mechanical fastener is tightened and the blower housing is attached to the furnace.
What is needed to overcome the disadvantages of the prior art is a blower housing which has a maximized interior space to permit the use of the largest capacity impeller practicable while meeting the size restrictions set by the mounting holes located in the furnace by the manufacturer. The blower housing having the largest practicable capacity impeller would meet the manufacturer's requirements for air moving capacity with a lower speed motor. Such a blower would meet furnace manufacturers' specifications for air moving capacity with decreased noise and vibration, and cost for the blower. Additionally, such a blower would eliminate the need for sealing inserts or gasket materials at the mounting locations for the blower housing.
In order to overcome the disadvantages of the prior art, the blower of the present invention provides an increased interior spacing while maintaining fixed exterior dimensions including especially the mounting hole locations. By having a larger interior for containing a larger impeller than in the prior art design, the blower of the present invention is capable of generating a higher air moving capacity with a decreased operating speed, cost, and lower noise and vibration levels. The blower of present invention also improves the containment of exhaust gases in the blower housing by improving the integrity of the seal around the housing against the furnace bonnet.
The blower of the present invention includes a blower housing and a blower motor. The blower housing has a top piece, a side wall, and a bottom piece that detachably engages the top piece to enclose the blower housing. The top piece includes an annular lower support portion for supporting the blower motor and an annular upper portion extending above and around the lower portion. The upper portion of the top piece of the blower housing has an outer peripheral edge and at least one lug extending outwardly beyond its outer peripheral edge. The bottom piece of the blower housing has a flange extending beyond its periphery that aligns with the lug of the top piece when the blower housing is assembled. The flange interlocks with the lug to detachably engage the top piece to the bottom piece. The top piece, side wall and bottom piece thus form a volute for the blower housing when assembled.
The lug on the top piece has a lug hole to receive a mechanical fastener such as a threaded bolt or screw. The flange on the bottom piece preferably has a flange hole that receives the mechanical fastener therethrough when the mechanical fastener joins the top piece to the blower mounting surface of the furnace. The mechanical fastener preferably attaches the blower housing to the furnace such that the blower housing is positioned between a blower motor and exterior mounting surface of the furnace. Thus, by locating the mechanical fastener with its head above the top piece, it may be driven tightly against the lug at the top of the blower and space need not be provided for the head of the mechanical fastener to be driven tightly against a blower housing surface which itself is located within the envelope of the impeller space.
In other words, in the prior art construction as seen in
In another aspect of the present invention, the blower housing is provided with an improved seal between the top and bottom pieces. Preferably, the blower housing comprises a bottom piece having a disk shaped bottom portion with an outer perimeter border and an upstanding annular wall extending outward from the bottom disk around the outer perimeter border. The upstanding annular wall has an interior surface that forms a portion of the volute for the blower housing. The upstanding wall has an annular end axially opposite the bottom disk portion that extends between the exterior and interior surfaces of the upstanding wall. The annular end has an annular lip axially spaced from the annular end.
The top piece fits over the bottom piece to enclose the volute and form a casing for the blower. The top piece has a lower portion recessed into the top piece and extending into the casing. This lower portion receives the blower motor. The top piece also has an upper portion which extends around and above the lower portion. The upper portion has a primary groove and an outer peripheral edge surrounding the primary groove. The primary groove has an annular outer side wall and an annular inner side wall spaced apart by an annular groove wall. The groove wall has a secondary groove intermediate the coterminous edges of the groove wall and inner and outer side walls. The inner side wall of the primary groove abuts the interior surface of the upstanding wall of the bottom piece and the annular lip of the bottom piece is received in the secondary groove when the casing is assembled.
The inner side wall of the primary groove preferably has an annular rib extending outwardly from the side wall into the primary groove. The interior surface of the upstanding annular wall preferably has an annular notch on its interior surface. In this arrangement, as the annular notch receives the annular rib in the primary groove, the pieces tend to “snap” together as the bottom piece is fully assembly with the top piece. This construction thus provides a positive indicator of sealing between the top and bottom pieces when the blower housing is assembled.
Further objects and features of the invention are revealed in the following detailed description of the preferred embodiment of the invention and in the drawings wherein:
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
As shown in
As shown in
The bottom piece 58 is provided with a plurality of mounting flanges 106 circumferentially spaced around the outer perimeter border 96 of the bottom disk portion 94. Each of the mounting flanges 106 extends radially outward from the outer perimeter border 96 and has a flange hole 108 therethrough. Each of the mounting flanges 106 preferably aligns with a corresponding lug 80 on the top piece 58. The alignment of the lugs 80 and flanges 106 may be such that the top piece 58 and bottom piece 60 are assembled in only one orientation. Similar to the lug hole 82, the flange hole 108 is also preferably arcuate to allow minor adjustment of the blower 50 when the blower 50 is mounted on the blower mounting surface 21 of the furnace 22. To maximize the diameter of the upstanding annular wall 56, an inner edge 110 of the flange hole 108 may be formed flush with the exterior surface 102 of the upstanding annular wall 56.
Preferably, the flange hole 108 is also formed to receive the depending leg 84 of the top piece 58 when the blower 50 is assembled. As shown in
Details of the attachment between the top and bottom pieces are best shown in FIG. 8. The upstanding annular wall 56 of the bottom piece 60 has an upper section 114 that cooperates with the annular groove 92 in the upper portion 74 of the top piece 58. The upper section 114 includes an annular end 116 that extends between the interior and exterior surfaces 98,102 of the upstanding wall 56. The annular end 116 has a lip 118 extending axially outward from the bottom disk portion 94 intermediate the coterminous edges of the annular end 116 and the interior and exterior surfaces 98,102 of the upstanding annular wall 56. Preferably, the annular lip 118 has a generally triangular shaped cross section to act as a guide during assembly as well as an overlapping fit between the top and bottom pieces 58,60. The upper section 114 also importantly includes an annular notch 120 extending around the interior surface 98 of the upstanding wall 56.
The annular groove 92 formed in the upper portion 74 of the top piece 58 includes a primary groove 122 and a secondary groove 124. The primary groove 122 includes an annular inner side wall 126 and an annular outer side wall 128 spaced apart from the annular inner side wall 126 by an annular groove wall 130. When the top piece 58 is installed on the bottom piece 60, the annular inner side wall 126 abuts the interior surface 98 of the upstanding annular wall 56, and the annular outer side wall 128 faces the exterior surface 102 of the upstanding annular wall 56. The annular outer side wall 128 may be formed with a lead-in taper 132 to allow the top and bottom pieces 58,60 to more easily fit together.
The primary groove 122 also includes an annular rib 134 axially spaced below the annular groove wall 130. The annular rib 134 cooperates with the annular notch 120 in the upstanding annular wall 56 of the bottom piece 58 to form a first sealing area 136 for the blower housing 54. When the top piece 58 is fully installed on the bottom piece 60, the top piece 58 will snap fit onto the bottom piece 60 as the annular rib 134 slides across the interior surface 98 of the upstanding annular wall 56 and into the annular notch 120. The rib 134 and notch 120 provide a positive lock indication for a blower assembly operator when assembling the blower housing 54.
The secondary groove 124 in the annular groove 92 on the upper portion 74 of the top piece 58 is formed internal to primary groove 122. The secondary groove 124 is formed intermediate the coterminous edges of the annular groove wall 130 and inner and outer side walls 126,128. The secondary groove 124 has a generally triangular shaped cross section that matches the geometry of the annular lip 118 on the upstanding wall 56 of the bottom piece 60. The secondary groove 124 provides a secondary sealing area 138 for the blower housing.
In assembling the blower housing 50 into the arrangement shown in
The depending legs 84 of the lug 80 of the top piece 58 may be inserted into the step recess 112 formed in the flange hole 108 such that the circumferential guide portion 90 of the interior arcuate surface 88 of the depending lug 84 mounts flush against the exterior surface 102 of the upstanding annular wall 56 of the bottom piece 60 and a bottom portion of the leg 84 is nested within the recess 112 of the flange hole 108. Preferably, the lengths of the depending legs 84 are sized such that when the upper section 114 of the annular wall 56 is fully inserted into the annular groove 92 in the top piece 58, the leg 84 is captured by the flange hole 108. The lugs 80 and matching flanges 106 may have irregular angular placement along each of the respective top and bottom pieces 58,60 to provide a keying assembly for the blower housing 54 such that the top and bottom pieces 58,60 may be assembled in only one orientation.
Each of the top and bottom pieces 58,60 may be formed from materials that are capable of withstanding relatively high temperatures from the exhaust gases being expelled from the blower housing 54. The blower housing 54 may be made from a polypropylene or polyvinyl chloride (PVC) type plastic, although other materials capable of withstanding the heat from the exhaust gases may also be used. The material used must be sufficiently resilient to allow the top piece 58 and bottom piece 60 to flex during installation so that the top piece 58 and bottom piece 60 may properly form the primary and secondary seals 136,138 in the blower housing 54.
By locating the lugs 80 on the upper portion 74 of the blower housing 54, the diameter of the upstanding annular wall 56 can be increased. By moving the driving end 42 of the mechanical fastener 40 above the lug 80 on the top piece 58, the clearance between the screw head driving end 42 and the upstanding annular wall 56 of the blower housing 50, as well as any clearance between the shaft and the opening through which it extends can be eliminated. The mechanical fastener 40 used to secure the blower housing to the blower mounting surface of the furnace may run directly down the exterior surface 102 of the upstanding annular wall 56 because there is sufficient clearance on the upper portion 74 of the top piece 58 for the screw head driving end 42 of the mechanical fastener 40. Furthermore, there may also be a savings in assembly time as the driving head is much more readily accessible with the fastening tool making it easier to apply the tool to the driving head.
As the top piece 58 snap fits with the bottom piece 60 to create a sealed unit, gasket materials and other sealing inserts commonly used in the prior art are no longer needed. By constructing the bottom piece 60 with a flat bottom disk and an upstanding annular wall 56 extending from the outer perimeter border 96 of the bottom disk portion 94, and a top piece with the annular grove 92, the locations for the seals 136,138 between the top piece 58 and bottom piece 60 are moved to a position on the blower housing 54 where use of mechanical fasteners 40 does not interfere with the integrity of the seals 136,138. By locating the lugs 80 on the outer peripheral edge 78 of the upper portion 74 of the top piece 58, the upper portion 74 of the top piece 58 may flex inward such that the normally tapered outer side wall 128 of the primary groove 122 contacts the exterior surface 102 of the upstanding wall 56. Thus, the combination of the primary seal 136 and internal secondary seal 138 provides improved sealing characteristics for the blower housing 54 not found in the prior art.
Although the description of the blower housing presented herein refers to a primary and secondary seals formed on respective portions of the top and bottom pieces, it should be noted that the location and combination of the components comprising the primary and secondary seals may be reversed and positioned on the other of the top and bottom pieces of the blower housing.
Various other changes to the preferred embodiment of this invention described above may be envisioned by those of ordinary skill in the art. However, those changes and modifications should be considered as part of the invention which is limited only by the scope of the claims appended hereto and their legal equivalents.
Patent | Priority | Assignee | Title |
7861708, | Feb 03 2006 | Regal Beloit America, Inc | Draft inducer blower mounting feature which reduces overall system vibration |
8801406, | Nov 27 2008 | Zhongshan Broad-Ocean Motor Co., Ltd. | Blower |
9172283, | Jan 17 2012 | Regal Beloit America, Inc | Electric motor |
9188137, | Dec 01 2011 | Trane International Inc.; Trane International Inc | Blower housing |
Patent | Priority | Assignee | Title |
1271072, | |||
1584944, | |||
1650873, | |||
2142834, | |||
2290423, | |||
2518869, | |||
3007417, | |||
3485443, | |||
3561885, | |||
3627442, | |||
3776660, | |||
3861339, | |||
3902045, | |||
4599042, | May 18 1983 | COOLAIR ORPORATION PTE LTD , A CORP OF SINGAPORE | Fan casing volute |
4629221, | Apr 05 1983 | OIL STATES INDUSTRIES UK LTD | Pipe connectors |
4865517, | Jul 11 1988 | INTERNATIONAL COMFORT PRODUCTS CORPORATION USA | Blower with clam shell housing |
5141397, | Jan 18 1991 | Volute housing for a centrifugal fan, blower or the like | |
5192182, | Sep 20 1991 | Substantially noiseless fan | |
5257904, | Jan 18 1991 | Volute housing for a centrifugal fan, blower or the like | |
5314300, | Jan 13 1992 | Fasco Industries, Inc. | Noise control device for centrifugal blower |
5351632, | Sep 23 1993 | Top fired burn-off oven | |
5443364, | Oct 18 1993 | Carrier Corporation | Snap-fit inducer housing and cover for gas furnace |
5573383, | Mar 16 1994 | Nippondenso Co., Ltd. | Blower assembly including casing housing a fan and a motor |
5620302, | Aug 31 1995 | Regal Beloit America, Inc | Dynamic condensate evacuator for high efficiency gas furnaces |
5820458, | Mar 24 1997 | Ventilation device | |
5947682, | Dec 09 1995 | Daewoo Electronics Co., Ltd. | Pump housing and a manufacturing method therefor |
5954476, | Aug 12 1997 | Regal Beloit America, Inc | Snap-fit blower housing assembly and seal method |
6038756, | Feb 02 1998 | Ford Global Technologies, Inc | Method of mounting a suspension bumper |
6152646, | Apr 30 1996 | Brose Fahrzeugteile GmbH & Co. KG, Coburg | Fastening device |
6260254, | Jul 09 1996 | Decoma International Inc | Integrally formed B-pillar and belt-line window molding |
87523, | |||
WO9532363, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 29 2008 | Jakel Incorporated | RBC HORIZON, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020919 | /0271 | |
Oct 19 2011 | RBC HORIZON, INC | JAKEL MOTORS INCORPORATED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027114 | /0783 |
Date | Maintenance Fee Events |
Aug 09 2010 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Oct 29 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 29 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 07 2012 | 4 years fee payment window open |
Jan 07 2013 | 6 months grace period start (w surcharge) |
Jul 07 2013 | patent expiry (for year 4) |
Jul 07 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 07 2016 | 8 years fee payment window open |
Jan 07 2017 | 6 months grace period start (w surcharge) |
Jul 07 2017 | patent expiry (for year 8) |
Jul 07 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 07 2020 | 12 years fee payment window open |
Jan 07 2021 | 6 months grace period start (w surcharge) |
Jul 07 2021 | patent expiry (for year 12) |
Jul 07 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |