A cordless drive assembly for driving various orthopedic surgical instruments is described. The drive assembly is battery powered and includes tracks in the handle portion of its housing for receiving the battery. A latch locks the battery to the housing. A combination of a rechargeable, detachable battery system and a power tool. The battery slides onto the power tool through a complementary groove and flange structure.
|
0. 29. A rechargeable battery adapted to be repeatedly and releasably attached to an orthopedic drive assembly; the orthopedic drive assembly having (i) elongate drive and (ii) elongate handgrip portions, (iii) a battery receiving portion having a pair of tracks defining flanges, (iv) an electric motor, and (v) battery terminals;
said battery comprising:
a battery housing having top and bottom portions, at least one cell within the battery housing and battery contacts adjacent the top portion of the housing and situated to engage the battery terminals of the orthopedic drive assembly, and
releasable attachment means for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handgrip portion;
wherein the handgrip portion does not house any part of the battery when the battery is attached to the drive assembly.
1. A rechargeable battery adapted to be repeatably and releasably attached to an orthopedic drive assembly, the orthopedic drive assembly having elongate drive and handle portions, a battery receiving portion having a pair of tracks defining flanges, a pair of battery terminals, and a blocking member movable between latched and release positions;
said battery comprising:
an autoclavable battery housing having top and bottom portions, at least one cell within the battery housing and a pair of battery contacts adjacent the top portion of the housing and situated to engage the battery terminals of the orthopedic drive assembly,
releasable attachment means for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion,
said releasable attachment means comprising:
a) the battery having a pair of grooves adapted to receive the flanges of the tracks, and
b) a slot for receiving the blocking member when the blocking member is in the latched position.
0. 21. A rechargeable battery adapted to be repeatably and releasably attached to a drive assembly; the drive assembly having (i) elongate drive and (ii) elongate handgrip portions, (iii) an electric motor, (iv) a battery receiving portion attached to a bottom end of the handgrip portion having a pair of tracks defining flanges, and (v) battery terminals;
said battery comprising:
a battery housing having top and bottom portions, at least one cell within the battery housing and battery contacts adjacent the top portion of the housing and situated to engage the battery terminals of the drive assembly, and
releasable attachment means for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handgrip portion;
wherein a longitudinal axis of the handgrip portion intersects the battery receiving portion and the battery housing when the battery is attached to the drive assembly; and
wherein the handgrip portion does not house any part of the battery or the electric motor when the battery is attached to the drive assembly.
0. 13. A rechargeable battery adapted to be repeatedly and releasably attached to a drive assembly; the drive assembly having (i) an electric motor, (ii) battery terminals, (iii) an elongate handgrip portion, and (iv) a battery receiving portion attached to a bottom end of the handgrip portion;
said battery comprising:
a battery housing, at least one cell within the battery housing and battery contacts adjacent the housing and situated to engage the battery terminals of the drive assembly;
one of the drive assembly and the battery having a pair of tracks defining flanges; and
the other of the drive assembly and the battery having grooves configured to receive the flanges of the tracks;
wherein the battery may be repeatably and releasably attached to the drive assembly by sliding the battery into and out of engagement with the drive assembly and a longitudinal axis of the handgrip portion intersects the battery receiving portion and the battery housing when the battery is attached to the drive assembly; and
wherein the handgrip portion does not house any part of the battery or the electric motor when the battery is attached to the drive assembly.
8. A rechargeable battery adapted to be repeatably and releasably attached to an orthopedic drive assembly, the orthopedic drive assembly having elongate drive and handle portions, a battery receiving portion having a pair of tracks defining flanges, a pair of battery terminals, and a blocking member movable between latched and release positions;
said battery comprising a battery housing having top and bottom portions, at least one cell within the battery housing, and a pair of battery contacts adjacent the top portion of the housing and situated to engage the battery terminals of the orthopedic drive assembly when the battery is fully received by the orthopedic drive assembly,
releasable attachment means for releasably attaching the battery to the battery receiving portion, said releasable attachment means comprising:
a) the battery having a pair of grooves adapted to receive the flanges of the tracks, and
b) a slot for receiving the blocking member when the blocking member is in the latched position, wherein the slot is sized and shaped to engage the blocking member to lock the battery to the battery receiving portion when the blocking member is in the latched position.
0. 62. A powered device with a detachable, rechargeable battery comprising:
a housing having an electric motor associated therewith, an elongate handgrip portion, and a battery receiving portion attached to a bottom end of the handgrip portion, the battery receiving portion including battery terminals, the battery terminals being electrically connected to the electric motor via a power switch for delivering electric power to the electric motor;
a battery comprising a battery casing, at least one rechargeable battery cell housed inside of the battery casing, and battery contacts adapted to contact the battery terminals formed on the housing when the battery is attached to the housing, the at least one rechargeable battery cell being electrically connected to the battery contacts; and
wherein one of the housing or the battery casing has a pair of flanges formed thereon, and the other of the housing or the battery casing has a pair of mounting grooves formed thereon which engage the pair of flanges in a direction of engagement other than the general direction of elongation of the handgrip portion when the battery is mounted to the housing; and
wherein the handgrip portion does not house any part of the electric motor or the battery.
0. 70. A combination of a powered tool and a rechargeable battery adapted to be repeatably and releasably attached to the powered tool, the combination comprising:
a housing having:
an electric motor associated therewith;
a blocking member mounted to the housing and movable relative to the housing;
a negative battery terminal and a positive battery terminal electrically associated with the electric motor through a power switch;
a rechargeable battery having:
a battery casing with a top portion and a bottom portion;
a slot formed in the top portion of the battery casing adapted to receive the blocking member for releasably securing the rechargeable battery to the housing;
at least one rechargeable battery cell housing inside of the battery casing;
a negative battery contact and a positive battery contact adapted to contact the negative battery terminal and the positive battery terminal, respectively, of the housing, the at least one rechargeable battery cell being electrically connected to the negative battery contact and the positive battery contact;
wherein one of the housing or the top portion of the battery casing has a pair of flanges formed thereon, and the other of the housing or the top portion of the battery casing has a pair of mounting grooves formed thereon which engage the pair of flanges when the rechargeable battery is mounted to the housing, the pair of mounting grooves or the pair of flanges that is formed on the top portion of the battery casing being at least one-third the length of the top portion of the battery casing, the negative battery contact and the positive battery contact being positioned between the pair of flanges or the pair of grooves formed on the top portion of the battery casing; and
wherein the pair of flanges engages the pair of mounting grooves by respective flanges sliding inside respective grooves in a direction of sliding that is generally parallel with a generally flat bottom surface of the bottom portion of the battery casing.
0. 46. A rechargeable battery adapted to be repeatably and releasably attached to a powered device, the powered device including a housing, the housing having (i) an electric motor associated therewith, (ii) one of a pair of flanges or a pair of mounting grooves, and (iii) a negative battery terminal and a positive battery terminal electrically associated with the electric motor through a power switch, the negative battery terminal and the positive battery terminal each comprising a flat plate member having first and second opposite exposed side surfaces, the rechargeable battery comprising:
a battery casing having a top portion and a bottom portion;
at least one rechargeable battery cell housed inside of the battery casing;
a negative battery contact and a positive battery contact associated with the battery casing, the at least one rechargeable battery cell being electrically connected to the negative battery contact and the positive battery contact;
the negative battery contact comprising first and second resilient deflecting members, the first resilient deflecting member adapted to contact the first side surface of the negative battery terminal and the second resilient deflecting member adapted to contact the second side surface of the negative battery terminal when the battery is mounted to the housing;
the positive battery contact comprising first and second resilient deflecting members, the first resilient deflecting member adapted to contact the first side surface of the positive battery terminal and the second resilient deflecting member adapted to contact the second side surface of the positive battery terminal when the battery is mounted to the housing;
an other of a pair of flanges or a pair of mounting grooves formed on the battery casing, the other of a pair of flanges or a pair of mounting grooves being at least one-third the length of the top portion of the battery casing; and
wherein the rechargeable battery is adapted to be repeatably and releasably attached to the housing by sliding the pair of flanges into the pair of mounting grooves in a direction of sliding that is generally parallel with a generally flat bottom surface of the bottom portion of the battery casing.
2. A rechargeable battery according to
each of said battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
3. A rechargeable battery according to
4. A rechargeable battery according to
said battery comprises eight substantially cylindrical cells having longitudinal axes, said eight cylindrical cells being arranged in:
a) a front row of three cells substantially adjacent said front wall within the battery housing,
b) a rear row of three cells substantially adjacent said rear wall within the battery housing, and
c) a middle row of two cells between said front and rear rows wherein all eight cells are within the battery housing.
5. A rechargeable battery according to
6. A rechargeable battery according to
7. A rechargeable battery according to
9. A rechargeable battery according to
10. A rechargeable battery according to
11. A rechargeable battery according to
each of said battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
12. A rechargeable battery according to
0. 14. A rechargeable battery according to
0. 15. A rechargeable battery according to
a) a slot for receiving the blocking member when the blocking member is in the latched position.
0. 16. A rechargeable battery according to
0. 17. A rechargeable battery according to
0. 18. A rechargeable battery according to
0. 19. A rechargeable battery according to
each of said battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
0. 20. A rechargeable battery according to
0. 22. A rechargeable battery according to
0. 23. A rechargeable battery according to
a) the battery having a pair of grooves adapted to receive the flanges of the tracks, and
b) a slot for receiving the blocking member when the blocking member is in the latched position.
0. 24. A rechargeable battery according to
0. 25. A rechargeable battery according to
0. 26. A rechargeable battery according to
0. 27. A rechargeable battery according to
each of said battery contacts comprise of a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
0. 28. A rechargeable battery according to
0. 30. A rechargeable battery according to
0. 31. A rechargeable battery according to
0. 32. A rechargeable battery according to
0. 33. A rechargeable battery according to
each of said battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
0. 34. A rechargeable battery according to
0. 35. A rechargeable battery according to
said battery comprises eight substantially cylindrical cells having longitudinal axes, said eight cylindrical cells being arranged in:
a) a front row of three cells substantially adjacent said front wall within the battery housing,
b) a rear row of three cells substantially adjacent said rear wall within the battery housing, and
c) a middle row of two cells between said front and rear rows wherein all eight cells are within the battery housing.
0. 36. The rechargeable battery according to
0. 37. The rechargeable battery according to
0. 38. The rechargeable battery according to
0. 39. The rechargeable battery according to
0. 40. A rechargeable battery according to
0. 41. A rechargeable battery according to
0. 42. A rechargeable battery according to
a battery having a pair of grooves adapted to receive the flanges of the tracks whereby, as said battery is attached to said battery receiving portion, said flanges slidingly engage said grooves and constrain motion of said battery along a path defined by said slidingly engaged flanges and grooves.
0. 43. A rechargeable battery according to
a blocking member for preventing disengaging movement between said flanges and grooves;
means to enable said blocking member to be selectively reciprocated, in a direction parallel to the direction of elongation of said handgrip portion, between a latched position and an unlatched position, said blocking member, when in said latched position, extending into said path of said battery as said battery is engaged with said drive assembly and, when in said unlatched position, not extending into said path;
an opening adapted to receive and cooperate with said blocking member, when said blocking member is in said latched position, to receive said blocking member and prevent disengagement movement of said battery along said flanges of the tracks;
ramp means associated with said battery to move said blocking member temporarily from said latched position to said unlatched position as said battery is engaged with said drive assembly, said ramp means terminating at a predetermined point to enable said blocking member to return to said latched position and engage said opening.
0. 44. A rechargeable battery according to
0. 45. A rechargeable battery according to
0. 47. The rechargeable battery of
a slot formed in the battery casing adapted to receive a blocking member mounted on the housing for releasably securing the rechargeable battery on the housing.
0. 48. The rechargeable battery of
0. 49. The rechargeable battery of
0. 50. The rechargeable battery of
0. 51. The combination of the rechargeable battery of
0. 52. The combination of
0. 53. The combination of
0. 54. The combination of
0. 55. The combination of
0. 56. The combination of
0. 57. The combination of
a slot formed in the battery casing which receives a blocking member mounted on the housing for releasably securing the rechargeable battery on the housing.
0. 58. The combination of
0. 59. The combination of
0. 60. The combination of
0. 61. The combination of
0. 63. The tool of
0. 64. The tool of
0. 65. The tool of
0. 66. The tool of
0. 67. The tool of
at least five series electrically connected, individual, rechargeable, cylindrical battery cells arranged in a plurality of rows and housed inside of the battery casing; and
the pair of flanges or the pair of mounting grooves that is formed on the battery casing is at least one-third the length of a top portion of the battery casing.
0. 68. The tool of
0. 69. The tool of
0. 71. The combination of
0. 72. The combination of
0. 73. The combination of
0. 74. The combination of
0. 75. The combination of
0. 76. The combination of
0. 77. The combination of
0. 78. A rechargeable battery according to
0. 79. The rechargeable battery of
0. 80. The rechargeable battery of
0. 81. The rechargeable battery of
0. 82. The rechargeable battery of
0. 83. The too of
0. 84. The tool of
0. 85. The tool of
0. 86. The tool of
0. 87. The tool of
0. 88. The tool of
0. 89. The tool of
0. 90. The tool of
0. 91. The tool of
0. 92. The tool of
0. 93. The tool of
0. 94. The tool of
0. 95. The tool of
0. 96. The tool of
the battery terminals each comprise a substantially flat plate member having opposite side surfaces; and
the battery contacts each comprise a pair of resilient deflecting members adapted to contact each of the side surfaces of a respective battery terminal.
0. 97. The combination of
the blocking member is movable between a release position and a latched position with a spring biasing the blocking member toward its latched position;
the blocking member comprises a chamfered end; and
the blocking member is cammed into the release position by the chamfered end contacting the battery casing when the rechargeable battery is being attached to the powered tool, and the blocking member is biased by the spring into the latched position to engage the slot when the rechargeable battery is fully attached to the powered tool.
|
This This patent application is a reissue continuation of U.S. patent application Ser. No. 09/637,339, filed Aug. 11, 2000, now abandoned, which is an application for reissue of U.S. patent application Ser. No. 08/692,886, filed Jul. 24, 1996, now U.S. Pat. No. 5,792,573, issued Aug. 11, 1998, which application is a divisional of U.S. patent application Ser. No. 08/258,338, filed Jun. 10, 1994, now U.S. Pat. No. 5,553,675, issued Sep. 10, 1996.
Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 5,792,573. This reissue applications are application Ser. Nos. 09/954,536 (the present application), 09/637,339, and 11/129,760. U.S. patent application Ser. No. 11/129,760, filed May 16, 2005, is a continuation of this reissue application.
The present invention is directed to cordless rechargeable battery powered drive assemblies for driving orthopedic surgical instruments.
Orthopedic drive assemblies are well known in the art. Such drive assemblies may be adapted for various orthopedic procedures such as drilling, screwing, reaming, wire driving, pinning and sawing (both reciprocating and sagittal). Typically a drive assembly is powered by either a rechargeable battery system (e.g. a cordless system) or by a pneumatic system which utilizes compressed fluid to power the device.
The art is replete with cordless rechargeable battery powered drive assemblies for driving orthopedic surgical instruments. Typically, such instruments comprise generally pistol-shaped devices having elongate handle and drive portions. Examples of such drive assemblies comprise: (1) the Orthopower 90 cordless instruments available from Stryker of Kalamazoo. Mich.; (2) the Cordless 200 Reamer, Cordless 800 Wire Driver, Cordless Sagittal Saw or Cordless 450 Orthopedic Drill available from Dyonics of Andover Md., (3) the Maxion™ orthopedic drive device, previously sold by the Minnesota Mining and Manufacturing Co. (3M) of St. Paul, Minnesota; (4) the Hall Versipower orthopedic instruments available from Hall Surgical of Carpinerina California (associated with Zimmer); and (5) the product known as the 200 Reamer, previously sold by Black & Decker. Cordless battery powered drive assemblies for driving orthopedic surgical instruments are described in U.S. Pat. Nos. 3,734,207; 4,050,528; 4,091,880; 4,441,563; 4,641,076; 4,728,876 and 5,080,983.
Because the batteries in an orthopedic drive device are preferably rechargeable, releasable attachment means are provided in some prior art devices for releasably attaching a battery pack to the rest of the device. Typically, a battery pack is attached to and removed from the handle portion of the device in a direction that is substantially parallel to the axis of elongation of the handle portion. Individual batteries are placed in a housing creating the battery pack which is then attached to the device by being slid in a direction generally parallel to the elongate axis of the handle portion of the device. The battery pack typically includes electrical circuit connection means for connecting the battery pack to electronic circuitry in the device. A device typically secures the battery pack to the rest of the device.
While such releasable attachment means are generally acceptable, they leave room for improvement. One drawback of such a releasable attachment means is that gravity tends to continuously operate on the battery pack to urge it out of the device. Another drawback for some prior devices is that, because of the significant vibration forces encountered during use of the orthopedic drive assembly (particularly during sagittal sawing), the electrical circuit connection means tend to corrode. This type of corrosion is known as fretting corrosion. As used herein, the phrase “fretting corrosion” means surface degradation occurring at the interface of mating electrical contacts which results in the reduction or even loss of electrical continuity.
Fretting corrosion is found in components forming contacts which are allowed to move independently with respect to each other during current flow. This independent movement is believed to cause mechanical abrasion which will wear the surfaces. Gaping between the electrical contacts during electrical flow may result in electrical arcing with attendant generated heat potentially sufficient to melt the surface of the contacts. Pitting, welding and burning may also result. Also, a physical change in the material forming the contacts may occur. Plating for enhanced electrical contact may be lost and carbon deposits may accumulate resulting in reduced electrical continuity.
Because orthopedic drive assemblies are used in surgical procedures which require delicate yet physically demanding tasks, the balance and maneuverability of an orthopedic drive device is also important to surgeons. Hand fatigue is a problem associated with many existing drive assemblies as well as a general difficulty in maneuvering the device during some surgical procedures. Weight distribution and size considerations are believed to contribute to these problems, as the typical cordless rechargeable battery powered drive assembly may be cumbersome to hold and use, particularly during a delicate orthopedic procedure where only the highest quality is tolerated. Size and weight considerations involved in the placement of elements such as the batteries, transmission, electronic control circuitry and motor typically render an existing device difficult to maneuver.
Other prior art drive assemblies are excessively large. Oversized drive assemblies may be difficult to maneuver, particularly during a surgical procedure at a cramped or remote location.
According to the present invention there is provided a drive assembly for driving orthopedic surgical instruments which (1) affords excellent balance and maneuverability for a user which offers enhanced handling characteristics and convenience during use, (2) affords attachment and removal of a battery pack in a direction other than the direction of elongation of the handle portion of the device, (3) includes a connection between the battery pack and the electronic circuitry of the device which resists fretting corrosion, (4) includes an ergonomically designed handgrip shape that fits a surgeon's hand comfortably, and (5) is sized for convenient maneuvering during an orthopedic surgical procedure.
According to the present invention, there is provided a drive assembly for driving various orthopedic surgical instruments, such as, but not limited to, drills, screws, reamers, wires, pins and saws (both reciprocating and sagittal). The drive assembly comprises a housing having elongate drive and handle portions with the handle portion projecting from the drive portion. A drive is present comprising an motor preferably mounted within the drive portion. The motor has a motor shaft, and the drive includes a transmission for transmitting power of the motor shaft to the surgical instrument. The transmission includes a drive member. Preferably the drive portion has surfaces defining a wire receiving chamber adapted to receive an orthopedic wire adapted to be driven during an orthopedic surgical procedure.
The drive assembly also includes a trigger assembly movable relative to the handle portion; and electrical circuit means operatively associated with the trigger assembly for controlling the motor.
The handle portion comprises a releasably attachable battery having at least one cell (preferably eight), a battery housing, and a pair of battery contacts. The handle portion also has a battery receiving portion having battery terminals adapted to engage the battery contacts; and releasable attachment means for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion. Preferably, the direction is a direction substantially parallel to the axis of the drive portion.
In the preferred embodiment, the releasable attachment means comprises a) the handle portion having a pair of tracks defining flanges that are elongate in a direction substantially parallel to the longitudinal axis of the drive portion, b) the battery having a pair of grooves adapted to receive the flanges of the tracks, and a pair of flexible, resilient cantilever members, and c) the battery receiving portion having surfaces defining a cantilever member cavity for receiving the pair of flexible, resilient cantilever members in an interference fit so that the battery is frictionally held in place relative to the battery receiving portion. A latch for releasably securing the battery to the battery receiving portion is also preferably present.
The drive assembly also includes a novel floating battery terminal assembly comprising biasing means for biasing the battery terminals toward a rest position, and mounting means for mounting the battery terminals for deflection from the rest position. In one embodiment, each of the battery terminals comprises a substantially flat plate member having opposite side surfaces, and each of the battery contacts comprise a pair of flexible, resilient arcuate members which are adapted to engage opposite side surfaces of a battery terminal.
Also preferably, the handle portion comprises a handgrip portion having outer surfaces that are sized and shaped to be grasped by a user without touching the battery, and inner surfaces defining a handgrip cavity. The handgrip cavity is free of the transmission, the motor and any cells of the battery when the battery is received in the battery receiving portion. Preferably, the cells of the battery are spaced on an opposite end of the handgrip portion than the motor and transmission.
Alternatively, the present invention may be described as a rechargeable battery adapted to be repeatably and releasably attached to an orthopedic drive assembly. In this aspect of the invention, the orthopedic drive assembly has elongate drive and handle portions, a battery receiving portion having a pair of tracks defining flanges, a pair of battery terminals, and surfaces defining a cantilever member receiving cavity.
The battery comprises an autoclavable battery housing having opposite top and bottom portions, at least one cell within the battery housing and a pair of battery contacts mounted adjacent the top portion of the housing and adapted to engage the battery terminals of the orthopedic drive assembly. Releasable attachment means are present for releasably attaching the battery to the battery receiving portion in a direction other than the direction of elongation of the handle portion. The releasable attachment means and battery terminals comprise the preferred versions as discussed above.
In this aspect of the invention, the battery contacts each include a first end fixedly attached to the top portion of the battery housing and a second end adapted to abut a support shoulder of the top portion of the battery housing. The battery housing comprises opposite, substantially flat front and rear walls constructed from a material suitable for protecting the cell(s) during an autoclave procedure. The battery comprises eight substantially cylindrical cells having longitudinal axes. The eight cylindrical cells are arranged in: a) a front row of three cells substantially adjacent a front wall of the battery housing, b) a rear row substantially adjacent a rear wall of the battery housing, and c) a middle row of two cells between the front and rear rows.
The present invention will be further described with reference to the accompanying drawing wherein like reference numerals refer to like parts in the several views, and wherein:
Referring now to
Referring now to
Preferably, the motor 12 is mounted within the drive portion 4. As used in this application, when it is said that the motor is within the drive portion 4, it is meant that the rotor 14 and motor shaft 16 are substantially completely located within the structure of the housing defining the drive portion 4, as opposed, for example, to one of the rotor or motor shaft being located in the handle portion 6 or a substantial portion of the motor being located in the handle portion 6, of course some wires and electronic circuitry associated with the motor may be present outside the drive portion 4, and yet the motor will nevertheless be within the drive portion 4 as understood in the present invention. Also preferably, the transmission (e.g. 18, 19 and 21) is mounted within the drive portion 4.
A connector is provided for attaching a chuck or other such holder or instrument that may be driven by the drive assembly 10. The connector comprises a nose insert 26 having a socket into which a cylindrical portion of the surgical instrument can project with a splined central rotatable driven collar engaged with mating splines 17 on the inner surface of the drive member 18, and with pins (not shown) projecting radially of the cylindrical portion engaged in longitudinally extending slots 15 opening through the end of the housing. A helix pin/collar assembly 25 is rotatable about the axis D of the drive portion and is biased by torsion spring 27 so that circumferentially projecting hooks near slots 15 on the collar 25 can engage the pins on the surgical instrument to maintain the pins within the slots 15 and thereby the surgical instrument in driven engagement with the drive assembly 10.
The surgical instrument may comprise any instrument suitable for use in an orthopedic surgical procedure, including but not limited to, drills, screws, reamers, pins and saws (both reciprocating and sagittal) or a suitably designed chuck or adapter for use with any of the previously mentioned instruments.
As a particular example, the surgical instrument may comprise the chuck described in U.S. Pat. No. 4,728,876, the entire contents of which are herein expressly incorporated by reference. Alternatively, for example, an appropriate wire driving attachment adapter may be attached to the drive assembly 10 so that it may be used as an orthopedic wire driver, optionally, but not preferably, engagement between the orthopedic wire and the spindle 18 may afford operation of the device 10 as a wire driver.
A stationary member 22 extends from a proximal end 1 of the housing toward its distal end 3. Preferably, the stationary member 22 includes a through chamber so that a surgical wire may be passed through the stationary member 22 from the proximal end 1 of the device 10 toward the distal end 3. The through chamber in the stationary member 22 forms a portion of a wire receiving chamber in the drive portion 4 between the proximal end 1 and the distal end 3. Threading a surgical wire through the wire receiving chamber affords use of the device 10 as a wire driver.
O-rings 64 and 65 restrict internal contamination of the drive assembly 10 from ambient contaminants. O-ring 66 is compressed against member 22 to restrict the member 22 from rotating relative to the handle 6 and drive 4 portions of the housing.
The drive assembly 10 also includes a rechargeable battery or battery pack 30 that is adapted to provide a rechargeable source of power for the motor 12. Unique mounting means (described in greater detail below) attach the battery 30 to the rest of the assembly 10.
A trigger assembly 40 is movable relative to the handle portion 6. The trigger assembly includes a button member 45 adapted to be engaged by a user's digits, a trigger shaft 46, an O-ring seat 41 for fixedly connecting the button member 45 to the trigger shaft 46, a coil spring 42 and magnet 44 that is rigidly attached to the trigger shaft 46. The trigger assembly 40 is movable between a released or extended position (
The drive assembly 10 also includes electrical circuit means operatively associated with the trigger assembly 40 for controlling the motor 12. The illustrated electrical circuit means comprises an on/off hall sensor 52 and a speed control hall sensor 54.
The on/off hall sensor 52 is a digital hall sensor having an output signal with two levels corresponding to an on state and an off state. The on/off hall sensor 52 senses the presence of a magnetic field from the magnet 44 on the trigger assembly 40. When the trigger assembly 40 is released, the magnet 44 is positioned directly over the on/off hall sensor 52 (FIG. 2). The magnetic field of the magnet 44 causes the on/off hall sensor 52 to produce an output signal corresponding to an off state. As the trigger assembly 40 is depressed, the magnet 44 moves away from the on/off hall sensor 52. The on/off hall sensor 52, no longer sensing the presence of a magnetic field, produces an output signal corresponding to an on state.
The output signal from the on/off hall sensor 52 is conditioned by electrical circuitry which provides a standby signal when the on/off hall sensor 52 produces an off signal. The standby signal disables motor drive circuitry and the speed control hall sensor 54. The standby signal therefore ensures that the motor 12 is off whenever the trigger assembly 40 is in a released position (FIG. 2). An added benefit of disabling the motor drive circuitry and the speed control hall sensor 54 is that the electrical power required by the device 10 is significantly reduced during periods when the trigger assembly 40 is not depressed. This current reduction during a standby mode improves energy efficiency of the device 10. In this manner, the device 10 may optionally include a battery saver feature.
The speed control hall sensor 54 is a linear hall sensor which provides a speed control signal having a range of levels based upon the strenth of the magnetic field that the variable speed hall sensor 54 detects. As the strength of the magnetic field increases, the speed control hall sensor 54 produces a speed control signal with a higher level. As the trigger assembly 40 is depressed, the magnet 44 moves towards the speed control hall sensor 54 and increases the magnetic field across it. The speed control signal from the speed control hall sensor 54 is conditioned and drives the motor control circuit to provide motor speeds proportional to the speed control signal. Therefore, as the trigger assembly 40 is further depressed, the motor control circuitry increases the motor speed of the drive assembly 10. In this manner, the drive assembly 10 may optionally comprise a variable speed device.
The circuit has a 25 amp current limit to protect the batteries, motor and electronics. The electrical circuit means may optionally include directional drive circuitry which is discussed in greater detail below.
As best seen in
The battery terminals 39 may be constructed from any suitable material appropriate for use to construct orthopedic surgical tools. For example, the battery terminals may be constructed from copper, brass, bronze, beryllium copper, stainless steel, steel and aluminum. One or more platings may be present to enhance the electrical conducting and corrosion resisting properties of the battery terminals 39. Examples of such platings include, but are not limited to copper, nickel, gold, silver, tin, electroless nickel, rhodium, sulfamate, nickel, cadmium and zinc.
The handle portion 6 of the device 10 projects (downwardly in
The handgrip portion 5 includes specially shaped surfaces that result in a handle that is comfortably held in the hand of a surgeon. A middle part of the handgrip 5 includes an curved front surfaces to form a conveniently held handle. A lip portion 51 is situated adjacent the button member 45 to restrict the chance that a surgeon's glove may be caught between the handle portion 6 and the button 45 when the button 45 is depressed.
As shown in the figures, the width and length of the handgrip portion 5 vary along its height to afford convenient grasping of the device 10. The bottom of the handgrip portion 5 includes a battery receiving portion 48 having the battery terminals 39 adapted to engage battery contacts 33 (described in greater detail below) when the battery 30 is attached to the battery receiving portion 48.
A battery housing 31 (
The battery 30 comprises at least one rechargeable cell 32 and preferably eight substantially cylindrical cells 32 as shown in FIG. 2. Because the cells 32 are located in a position below or remote from where a user is expected to grasp the drive assembly 10, the handgrip portion is free to be used for mounting other electrical and/or mechanical components such as an electronic printed circuit board forming a portion of the electrical circuit means discussed above.
The battery 30 preferably comprises eight substantially cylindrical cells 32 having longitudinal axes. The axes of the cells are preferably substantially parallel to the front and rear walls 201 and 203. The eight cylindrical cells 32 are arranged in a front row F of three cells substantially adjacent the front wall 201, a rear row R of three cells substantially adjacent the rear wall 203, and a middle row M of two cells between the front and rear rows 201 and 203. All of the rows F, M and R are enclosed within the battery housing 31 so that the cells are protected during an autoclave or other sterilization procedure.
The weight distribution of the device 10 is substantially balanced about the handgrip portion 5 as the relatively heavier elements such as the battery cells and the motor/transmission assemblies of the device 10 are spaced on opposite ends (top T and bottom B) of the handgrip 5. A handgrip cavity 53 is formed within the inner portions the handgrip 5. As opposed to prior art devices which include a battery or motor within the portion of its housing that is designed to be manually grasped, the cavity 53 is free of batteries or motors or transmission or gear assemblies. Since battery cells 30 (described in greater detail below) are situated below the battery receiving portion of the handle portion 6, some of the electronic control circuitry mentioned above may be placed in the handgrip cavity 53 of the handle portion 6. This is believed to further contribute to the beneficial balance and handling characteristics of the device 10.
The cells 32 are preferably stacked in the manner shown in
The cells 32 are enclosed in an autoclave proof (saturated steam @ 280 degrees Fahrenheit, @ 30 pounds per square inch, and vacuum @ 26 inches of mercury) housing or casing 31. The casing 31 preferably is designed to withstand other sterilization techniques and remain suitable to protect the battery cells 32. The casing 31 includes a poppet or umbrella valve 8 (e.g. the #VL2491-102 Vernay valve generally available from Vernay of Calif.) to relieve any pressure, such as pressure generated by the cells 32. Optionally, the battery housing 31 may include a power terminal (not shown) for a power cord so that the drive assembly 10 may be powered without discharging the cells 32.
The particular material used to construct the casing 31 may comprise any suitable material for use in an orthopedic device. Specific examples include, but are not limited to, poly-ether-imide (PEI) including Ultem (e.g. GE grades 1000 Black #7101, 1000 Black #1000, 2100 muddled natural #1000 10% glass fill, 2200 muddled natural 20% glass fill, 3452 muddled natural #1000 45% short glass and mineral, or 6200 muddled natural #1000 20% glass fill high temperature); poly-phenyl-sul-fone (PPSU) (e.g. Amoco Radel R, grades R5100 Black #935 or #937, or R 5000, natural); polysulfone (PSU) (e.g. Amoco Udel P, grade P 1700, natural #11); polyaryletherketone (PAEK) (e.g. BASF Ultrapek, grade KR4176, natural); liquid crystal polymer (LCP) (e.g. Vectra grades A950 natural, A530 muddled natural moderately mineral filled, or A130 muddled natural 30% glass fill); and polyketone (PEK) (e.g. Amoco Kadel E grade 1000 natural).
The motor 12 of the drive assembly 10 is designed to: (1) operate between about 9.6 volts and a reduced voltage which is the output range the battery will produce under load, and (2) have very low internal resistance to restrict internal losses when handling the high current flow by which it is powered. Since the motor 12 and transmission are relatively heavy elements of the device 10 (e.g. the motor may weight about 0.82 pounds), the motor 12 and transmission are preferably located within the drive portion 4 of the housing. Locating the motor 12 and transmission in a position spaced from the handgrip cavity 53 frees the handgrip cavity 53 for use to store the electronic circuitry of the device 10. The location of the motor 12 and transmission also contribute to the beneficial balance and weight distribution of the device 10 and improves its handling characteristics. These improvements are believed to reduce hand fatigue for some users.
The battery 30 shown in
Referring now to
As best seen in
The battery terminals 39A are mounted on the manually graspable portion 5 of the housing to float relative to the rest of the housing (including the insulating portion 106). This feature is particularly useful when the device 10 generates vibration as the floating battery terminals 39A tend to retain electrical communication between the battery 30 and the rest of the electronics of the device 10.
The battery terminal 39A is placed in an oblong hole 88 in the handgrip portion 5 of the housing. The oblong hole 88 preferably affords side to side float (movement in a direction that is substantially perpendicular to both axes H and D) of the battery terminal 39A (see FIG. 19), but restricts float of the battery terminal 39A in a direction substantially parallel to the axis D so that the battery terminal 39A is not unduly deflected upon insertion and removal of the battery 30 from the device 10.
A coil spring 89 is provided to afford float of the battery terminal 39A and to bias the battery terminal 39A toward a rest position (see FIGS. 16 and 20). The coil spring 89 has a pair of ends, one of which abuts the crimp-on connector 107, and the other of which abuts the insulating portion 106 of the housing. A rest position of battery terminal 39A is shown in FIG. 16. When the battery terminal 39A is deflected from its rest position (such as when the device 10 vibrates during an orthopedic surgical procedure), the spring 89 deflects in compression from its rest position and biases the battery terminal 39 toward its rest position. Alternatively, the spring 89 may be designed to deflect in tension from its rest position to bias the battery terminal 39 toward its rest position.
The screw 87, crimp-on connector 107, coil spring 89 and portions of the battery terminals 39A are situated within cavity 109 in the handgrip 5. The cavity 109 has a diameter at least slightly larger than the diameter of the screw 87 to afford float of the battery terminals 39A. Unlike the battery terminals 39, the battery terminals 39A comprise a substantially flat, rectangular contact member having a pair of opposite sides 91 and 92 for contacting the battery contacts 33A.
Battery contact 33A for use with the battery terminals 39A is shown in
The battery terminal 39A is designed to be sandwiched between the flexible, resilient deflecting members 81 and 82 and to deflect the members 81 and 82 in a direction that is substantially perpendicular to both of the axes H and D during vibration of the battery terminals 39A. Preferably, side 91 of the battery contact 33A is in electrical communication with deflecting member 81, and side 92 of the battery contact is in electrical communication with deflecting member 82.
The battery contacts 33A are constructed from a flexible, resilient, electrically conductive material. Any of the materials and platings mentioned above for use in constructing the battery contacts 33 may be used to construct the battery contacts 33A. Particular examples include beryllium copper, Brush Wellman alloy 25, 0.0159 (26 Ga) thick, ¼ H temper, or equivalent UNS No. C17200, (ASTM temper TD01) heat treated 2 hours @ 600 degrees fahrenheit (ASTM TH01), R/C 38-43. As an example not intended to be limiting, the contacts 33A may have an overall height in
The handle portion 6 of the housing has a releasable attachment means for releasably attaching the battery 30 to the battery receiving portion 48 in a direction other than the direction of elongation of the handle portion 6. In the illustrated embodiment, that means comprises surfaces on the battery receiving portion 48 defining track portions 49 with flanges that are elongate in a direction substantially parallel to the longitudinal axis D of the drive portion. The battery 30 has a pair of opposite mounting grooves 35 adapted to cooperably receive the flanges of the track portions 49 (see FIGS. 4 and 6).
The battery pack 30 also has a pair of flexible, resilient cantilever members 37 having opposite ends. Each of the cantilever members 37 has a first end attached to the battery housing 31 and an enlarged distal end 38. The cantilever members 37 project from the structure defining the grooves 35 in a direction other than direction of elongation of the handle portion 6 (preferably in a direction substantially parallel with the top of the battery and the drive portion axis D). Referring now to
The flexible, resilient cantilever members 37 are shown mounted in the cantilever member receiving cavity 77 in FIG. 12. When the battery 30 is mounted on the battery receiving portion 48, the flexible, resilient cantilever members 37 interfere with the surfaces defining the cantilever member receiving cavity 77 to resist movement of the battery 30 relative to the rest of the device 10, particularly movement in the D axis direction. The flanges of the track 49 cooperably engage the grooves 35 and prevent the battery 30 from separating from the rest of the device 10.
The distal ends 38 of the flexible, resilient cantilever members 37 have a bevel 78 to allow them to ramp onto the shelf forming the cavity 77. The engagement between the bevel 78 and the shelf forming the cavity 77 forces the flexible, resilient cantilever members 37 upward in the H axis direction (in
The enlarged distal ends 38 of the flexible, resilient cantilever members 37 have an outward biased radius 28. When the battery 30 is inserted into the receiving portion 48 of the handle portion 6, the outward biased radius 28 contacts the radiused side wall 75 (FIG. 12). The width between the outermost portions of the two distal end outward biased radiuses 28 is greater than the width of the radiused side walls 75. With this difference in widths, the flexible, resilient cantilever members 37 are forced inward when the battery 30 is received in the battery receiving portion 48 thereby generating a resistance to movement. For example, the interference is preferably less than about 0.1 inches and is more preferably less than about 0.02 inches. This slight interference causes the resilient members 37 to deflect and to provide excellent frictional contact with the cavity 77 in the battery receiving portion 48. In the manner described above, the cantilever members 37 stabilize the front end of the battery 30. This is especially effective in resisting movement when using the instrument is used for oscillating sawing where side to side forces (perpendicular to the axis H) are generated.
Preferably, the flexible, resilient cantilever members 37 comprise a single, unitary, integral monolithic piece with the battery housing 31. Thus, the material for the battery housing 31 should be sufficiently durable for forming a battery housing (e.g. it should be able to withstand autoclaving procedures), and yet resiliently flexible to accomplish the repeated interference fit of the flexible, resilient cantilever members 37 and cavity 77. Any suitable materials may be used including the materials discussed above as suitable for use to construct the casing 31. Alternatively, the flexible, resilient cantilever members 37 may be constructed from a material different than the material used to construct the casing 31.
When the drive assembly 10 is held in the position referenced in
In the latched position, (1) the mounting grooves 35 of the battery 30 are received in the track portions 49 (see
The latch 56 also includes means for automatically moving the blocking member 57 from the latched toward the release position as the battery 30 is mounted to the battery receiving portion 48. That means comprises the battery housing 31 having a ramp surface 36 adapted to engage the chamfered end 55 on the blocking member 57.
Referring to
As a portion of the electrical circuit means mentioned above, the drive assembly 10 also includes a convenient rotary switch means, operated by ribbed member 72 on the proximal end 1 of the drive housing 4 opposite drive member 18, for causing the motor 12 to rotate the drive member 18 either in forward or reverse (clockwise or counterclockwise) directions, or to prevent any rotation by the motor 12 even when the trigger 40 is moved to its inner position. Indicia 73 indicate when the device is in the forward, reverse or stop modes.
The present invention has now been described with reference to several embodiments thereof. It will be apparent to those skilled in the art that many changes or additions can be made in the embodiments described without departing from the scope of the present invention. Thus, the scope of the present invention should not be limited to the structures described in this application, but only by structures described by the language of the claims and the equivalents of those structures.
Smith, Jeffrey D., Pitzen, James F., Alexson, Charles E.
Patent | Priority | Assignee | Title |
10070871, | Sep 14 2009 | Warsaw Orthopedic, Inc. | Surgical tool |
10231761, | Oct 30 2009 | Warsaw Orthopedic, Inc. | Surgical tool |
10245042, | Mar 13 2012 | Medtronic Xomed, Inc | Check valve vented sterilizable powered surgical handpiece |
10276844, | Oct 08 2010 | Milwaukee Electric Tool Corporation | Battery retention system for a power tool |
11145929, | Aug 09 2019 | TECHTRONIC CORDLESS GP | Battery pack |
11440176, | Jan 24 2017 | TECHTRONIC CORDLESS GP | Battery terminal holder for electric tools |
11771475, | Oct 07 2020 | Globus Medical, Inc | Systems and methods for surgical procedures using band clamp implants and tensioning instruments |
8066533, | Jul 31 2008 | Makita Corporation | Electric devices |
8786233, | Apr 27 2011 | Medtronic Xomed, Inc.; Medtronic Xomed, Inc | Electric ratchet for a powered screwdriver |
8974932, | Sep 14 2009 | Warsaw Orthopedic, Inc.; Warsaw Orthopedic, Inc | Battery powered surgical tool with guide wire |
9010815, | Dec 07 2009 | Black & Decker Inc.; Black & Decker Inc | Anti-theft system |
9308829, | Oct 28 2011 | KAWASAKI MOTORS, LTD | Straddle electric vehicle |
9364270, | Sep 14 2009 | Warsaw Orthopedic, Inc. | Surgical tool |
9408653, | Apr 27 2011 | Medtronic Xomed, Inc. | Electric ratchet for a powered screwdriver |
9461281, | Oct 08 2010 | Milwaukee Electric Tool Corporation | Battery retention system for a power tool |
9757806, | Oct 20 2011 | Makita Corporation | Hand-held cutting tools |
D772806, | Nov 26 2014 | TECHTRONIC INDUSTRIES CO LTD | Battery |
D793953, | Nov 26 2014 | TECHTRONIC INDUSTRIES CO. LTD. | Battery |
D912487, | Jun 12 2019 | TECHTRONIC CORDLESS GP | Interface of a power tool |
Patent | Priority | Assignee | Title |
1036063, | |||
1152247, | |||
2104772, | |||
2261230, | |||
2460149, | |||
3079510, | |||
3120845, | |||
3186878, | |||
3494799, | |||
3734207, | |||
3757194, | |||
3767468, | |||
3883789, | |||
3943934, | Sep 30 1974 | Minnesota Mining and Manufacturing Company | Quick release mechanism for surgical devices |
3952239, | Aug 23 1974 | The Black and Decker Manufacturing Company | Modular cordless tools |
3973179, | Aug 23 1974 | The Black and Decker Manufacturing Company | Modular cordless tools |
3999110, | Feb 06 1975 | The Black and Decker Manufacturing Company | Battery pack and latch |
4050528, | Sep 05 1975 | CONCEPT, INC , 12707 U S 19 SOUTH, CLEARWATER, FLORIDA 33546 A FLORIDA CORP | Wire inserter |
4091880, | Sep 05 1975 | CONCEPT, INC , 12707 U S 19 SOUTH, CLEARWATER, FLORIDA 33546 A FLORIDA CORP | Surgical wire inserter apparatus |
4386609, | Dec 17 1979 | Linvatec Corporation | Attaching assembly for an osteotomy saw blade |
4441563, | Nov 02 1981 | Smith & Nephew, Inc | Tool collet and control means |
4447749, | Jul 29 1981 | Black & Decker Inc. | Cordless electric device having contact increasing means |
4517263, | Nov 20 1982 | Brown, Boveri & Cie AG | High-temperature storage battery |
4522898, | Dec 24 1982 | Brown, Boveri & Cie AG | High-temperature storage battery |
4555849, | Jun 21 1982 | Matsushita Electric Works, Ltd. | Battery powered portable saw |
4576880, | Apr 06 1984 | Black & Decker Inc. | Battery pack |
4616169, | Apr 08 1985 | HAMILTON BEACH INC , A CORP OF DE | Battery-powered appliance |
4616171, | Apr 06 1984 | Black & Decker Inc. | Battery charger including thermistor |
4716352, | Dec 26 1984 | Black & Decker, Inc. | Charging base for a battery-powered appliance |
4728876, | Feb 19 1986 | Linvatec Corporation | Orthopedic drive assembly |
4736742, | Apr 03 1986 | Linvatec Corporation | Device for driving tools used in orthopedic surgery |
4749049, | Apr 02 1983 | Wacker Construction Equipment AG | Hand-guided impact hammer and hammer drill |
4751452, | Feb 24 1986 | Cooper Brands, Inc | Battery operated power wrap tool |
4834092, | Apr 03 1986 | Linvatec Corporation | Device for driving tools used in orthopedic surgery |
4835410, | Feb 26 1988 | Black & Decker Inc. | Dual-mode corded/cordless system for power-operated devices |
4847513, | Feb 26 1988 | Black & Decker Inc. | Power-operated device with a cooling facility |
4871629, | Feb 04 1988 | Black & Decker Inc.; BLACK & DECKER INC , A CORP OF DE | Latching arrangement for battery packs |
4873461, | May 13 1988 | Stryker Corporation | Electric motor sterilizable surgical power tool |
4904549, | Nov 04 1988 | Motorola, Inc.; MOTOROLA, INC , SCHAUMBURG, ILLINOIS A CORP OF DE | Battery housing with integral latch and positive displacement apparatus |
4930583, | Feb 17 1988 | Makita Electric Works, Ltd. | Portable battery-powered tool |
4957831, | Mar 04 1988 | Black & Decker, Inc. | Control apparatus for switching a battery pack |
5026384, | Nov 07 1989 | SciMed Life Systems, INC | Atherectomy systems and methods |
5054563, | Nov 25 1988 | Proxxon Werkzeug GmbH | Electrical hand tool |
5080983, | Aug 16 1990 | Linvatec Corporation | Battery |
5089738, | Jan 10 1990 | SNA EUROPE INDUSTRIES AB | Battery-driven handtool |
5095259, | May 06 1986 | Black & Decker, Inc. | Low voltage, high current capacity connector assembly and mobile power tool and appliance operating system |
5122427, | Aug 09 1991 | Credo Technology Corporation | Battery pack |
5136469, | Jul 17 1991 | Stryker Corporation | Powered surgical handpiece incorporating sealed multi semiconductor motor control package |
5140249, | May 07 1988 | Scintilla AG | Motor-operated grass cutter |
5144217, | Mar 03 1989 | Black & Decker Inc. | Cordless tool battery housing and charging system |
5148094, | Aug 10 1990 | Black & Decker Inc | Charger with universal battery pack receptacle |
5149230, | Mar 04 1991 | Rotating dual attachment receptacle apparatus tool | |
5169225, | Nov 25 1991 | Milwaukee Electric Tool Corporation | Power tool with light |
5200280, | Sep 05 1991 | Black & Decker Inc. | Terminal cover for a battery pack |
5207697, | Jun 27 1991 | Stryker Corporation | Battery powered surgical handpiece |
5208525, | Dec 10 1988 | Gardena Kress + Kastner GmbH | Electric power supply assembly for a cordless electric appliance |
5213913, | Feb 21 1992 | SNAP-ON TOOLS WORLDWIDE, INC ; SNAP-ON TECHNOLOGIES, INC | Latching arrangement for battery pack |
5221210, | Apr 02 1991 | AMP Incorporated | Circuite board connector |
5229702, | Jun 26 1991 | Power system battery temperature control | |
5235261, | Jun 27 1991 | Stryker Corporation | DC powered surgical handpiece having a motor control circuit |
5244755, | Oct 23 1992 | Motorola, Inc. | Battery compartment door and latch having longitudinal snaps |
5263972, | Jan 11 1991 | Stryker Corporation | Surgical handpiece chuck and blade |
5265343, | Jan 27 1992 | Linvatec Corporation | Blade collet |
5306285, | Apr 30 1993 | BRASSELER, U S A I, L P | Surgical saw blade |
5336953, | Dec 21 1991 | Scintilla AG | Battery-powered electrical hand-tool |
5354215, | Jun 24 1993 | RECKITT & COLMAN INC | Circuit interconnect for a power tool |
5360073, | Mar 12 1992 | Ryobi Limited | Battery type screw driver |
5388749, | May 13 1993 | Avery Dennison Corp. | Electric powered apparatus for dispensing individual plastic fasteners from fastener stock |
5401592, | Nov 10 1993 | Intermec IP Corporation | Primary and secondary latching system for securing and protecting a replaceable portable battery pack |
5406187, | Mar 30 1992 | Black & Decker Inc. | Battery charger with capacitor support |
5447807, | Jun 13 1990 | RAMOT UNIVERSITY FOR APPLIED RESEARCH AND INDUSTRIAL DEVELOPMENT LTD | Power source |
5456994, | Jun 08 1992 | HONDA GIKEN KOGYO KABUSHIKI KAISHA 1-1, MINAMIAOYAMA 2-CHOME | Battery module and temperature-controlling apparatus for battery |
5460906, | Apr 19 1993 | Motorola, Inc. | Portable radio battery latch |
5480734, | Oct 10 1992 | Adolf Wurth GmbH & Co. KG | Rechargeable accumulator |
5489484, | Apr 05 1993 | Black & Decker Inc. | Battery pack for cordless device |
5504412, | Aug 06 1992 | GSL Rechargeable Products, Limited | Replaceable battery pack of rechargeable batteries |
5508123, | Mar 06 1995 | Wey Henn Co., Ltd. | Power supplying device |
5551883, | Nov 17 1993 | The Whitaker Corporation | Electrical connector |
5589288, | Jul 31 1995 | Black & Decker, Inc. | Cordless power tool having a push button battery release arrangement |
5597275, | Mar 28 1995 | Tool with changeable working tip | |
5620808, | Apr 05 1993 | Black & Decker Inc. | Battery pack for cordless device |
5626979, | Apr 08 1994 | Sony Corporation | Battery device and electronic equipment employing the battery device as power source |
5629602, | Oct 06 1993 | Ricoh Company, LTD | Portable electronic equipment with attachment for supplying power and charging battery |
5663011, | Aug 11 1994 | Black & Decker Inc. | Battery pack retaining latch for cordless device |
5671815, | Jun 14 1995 | Robert Bosch Tool Corporation | Hand machine tool with battery operated drive motor |
5681667, | Aug 11 1994 | Black & Decker Inc.; Black & Decker Inc | Battery pack retaining latch for cordless device |
5715156, | Jun 24 1996 | Method and apparatus for providing AC or DC power for battery powered tools | |
5718985, | Aug 11 1994 | Black & Decker Inc. | Battery pack retaining latch for cordless device |
5738954, | May 16 1995 | Komag, Inc | Battery continuation apparatus and method thereof |
5762512, | Oct 12 1995 | Symbol Technologies, LLC | Latchable battery pack for battery-operated electronic device having controlled power shutdown and turn on |
5766794, | Jun 13 1995 | Google Technology Holdings LLC | Latching mechanism and method of latching thereby |
5787361, | Apr 19 1996 | Coupling plate for mounting a battery pack onto a cellular phone | |
5789101, | Apr 05 1993 | Black & Decker Inc. | Battery pack for cordless device |
5792573, | Jun 10 1994 | Linvatec Corporation | Rechargeable battery adapted to be attached to orthopedic device |
5799739, | Nov 02 1995 | Hitachi Koki Co., Ltd. | Battery-driven tool having gas discharging function |
5800940, | Aug 11 1994 | Black & Decker Inc. | Battery pack retaining latch for cordless device |
5816121, | May 10 1996 | Hitachi Koki Co., Ltd. | Cordless fastening tool |
5843595, | Jul 28 1995 | Mitsumi Electric Co., Ltd. | Battery holder attachment structure |
5856038, | Aug 12 1995 | Black & Decker Inc | Retention latch |
5866276, | Sep 27 1995 | Nissan Motor Co., Ltd. | Battery structure for electric vehicle |
5918685, | Jul 03 1996 | J. WAGNER GmbH | Hand tool |
5919585, | Apr 05 1993 | Black & Decker, Inc. | Battery pack for cordless device |
6568089, | Jun 04 1999 | Black & Decker Inc | Reciprocating saw having compact configuration and independent stability |
6656626, | Jun 01 1999 | Black & Decker Inc | Cordless power tool battery release mechanism |
D300132, | Apr 11 1986 | COM-NET ERICSSON CRITICAL RADIO SYSTEMS, INC ; COM-NET ERICSSON CANADA CORP | Battery for a portable radio |
D304026, | Sep 30 1988 | HAND HELD PRODUCTS, INC | Battery pack for electronic bar code reader |
D310813, | Apr 11 1986 | COM-NET ERICSSON CRITICAL RADIO SYSTEMS, INC ; COM-NET ERICSSON CANADA CORP | Battery for a portable radio |
D320917, | Sep 28 1988 | Makita Electric Works, Ltd. | Cordless screwdriver |
D320974, | Aug 03 1989 | COM-NET ERICSSON CRITICAL RADIO SYSTEMS, INC ; COM-NET ERICSSON CANADA CORP | Battery for a portable radio |
D323276, | Jul 11 1988 | Makita Electric Works, Ltd. | Cordless screwdriver |
D364463, | Jun 10 1994 | Linvatec Corporation | Orthopedic surgical instrument |
D379795, | Jun 10 1994 | Linvatec Corporation | Battery housing for an orthopedic surgical device |
DE19527201, | |||
DE2836263, | |||
DE3115280, | |||
DE3317398, | |||
DE3636968, | |||
DE3742240, | |||
DE4029018, | |||
DE4041247, | |||
EP272434, | |||
EP698449, | |||
EP920105, | |||
JP103950, | |||
JP5326024, | |||
JP57156635, | |||
JP6150978, | |||
RE37226, | Apr 05 1993 | Black & Decker Corporation | Battery pack for cordless device |
WO9605623, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 11 2013 | Linvatec Corporation | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | SECURITY AGREEMENT | 030704 | /0446 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jul 14 2012 | 4 years fee payment window open |
Jan 14 2013 | 6 months grace period start (w surcharge) |
Jul 14 2013 | patent expiry (for year 4) |
Jul 14 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 14 2016 | 8 years fee payment window open |
Jan 14 2017 | 6 months grace period start (w surcharge) |
Jul 14 2017 | patent expiry (for year 8) |
Jul 14 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 14 2020 | 12 years fee payment window open |
Jan 14 2021 | 6 months grace period start (w surcharge) |
Jul 14 2021 | patent expiry (for year 12) |
Jul 14 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |