The present invention is directed to peptide analogues of fragment of parathyroid hormone (PTH) or parathyroid hormone-related protein (PTHrP), a method of using said analogues alone or in combination with a bisphosphonate or calcitonin to treat osteoporosis and pharmaceutical compositions comprising said analogues alone or in combination with a bisphosphonate or calcitonin.
|
24. A peptide of the formula [Nle31]±hPTH±(1-34)NH2 [Nle31]hPTH(1-34)NH2; or a pharmaceutically acceptable salt thereof.
12. A peptide of the formula: [Cha7,11,15]hPTH(1-34) NH2; or a pharmaceutically acceptable salt thereof.
17. A peptide of the formula: [aib17]hPTH(1-34)NH2 or [aib12]hPTH(1-34)NH2; or a pharmaceutically acceptable salt thereof.
6. A peptide of the formula; : [Cha22,23, Glu25, Lys26,30, Leu28, aib29]hPTHrP(1-34)NH2; [Cha22,23, Glu25, Lys26,30, aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26, aib29, Nle30]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,30,31, Lys26, aib29]hPTHrP(1-34)NH2, ] ; [Glu22,25,29, Leu23,28,30,31, Lys26]hPTHrP(1-34)NH2; [Glu22,25,28, Leu23,28,31, Lys26, Nle30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26, Nle30]hPTHrP(1-34)NH2; [Ser1, Ile5, met8, Asn10, Leu11,23,28,31, His14, Cha15, Glu22,25, Lys26,30, aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26, Leu28,31, aib29, Nle30]hPTHrP(1-34)NH2, [Cha22,23, Glu25, Lys26,30, Leu28,31, aib29]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26, Nle30]hPTHrP(1-34)NH2; [Cha7,11,15]hPTHrP(1-34)NH2; [Cha7,8,15]hPTHrP(1-34)NH2; [Glu22, Cha23, aib25,29, Lys26,30, Leu28,31]hPTHrP(1-34)NH2; [Glu22, Cha23, aib25,29, Lys26, Leu28]hPTHrP(1-34)NH2; [Glu22, Leu23,28, aib25,29, Lys26]hPTHrP(1-34)NH2; [aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26, Leu28,31, aib29, Nle30]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, aib29, Leu31]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26, aib29,31]hPTHrP(1-34)NH2 [Glu22,25, Leu23,28,31, Lys26, aib29,30]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26, aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, aib26,29, Lys30]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Leu28,31, aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Leu28, aib29]hPTHrP(1-34) NH2 [Glu22,25, Cha23, Lys26,30, Leu28, aib29]hPTHrP(1-34)NH2; or [Leu27, aib29]hPTHrP(1-34)NH2; or a pharmaceutically acceptable salt thereof.
40. A method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula:
##STR00016##
wherein
A1 is Ala, Ser or dap;
A3 is Ser or aib;
A5 is His, Ile, or Cha;
A7 is Leu, Cha, Nle, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A8 is Leu, met or Cha;
A10 is Asp or Asn;
A11 is Lys, Leu, Cha, Phe or βNal;
A12 is Gly or aib;
A14 is Ser or His;
A15 is Ile or Cha;
A16 is Gln or aib;
A17 is Asp or aib;
A18 is Leu, aib or Cha;
A19 is Arg or aib;
A22 is Phe, Glu, aib, Acc or Cha;
A23 is Phe, Leu, Lys, Acc or Cha;
A24 is Leu, Lys, Acc or Cha;
A25 is His, aib or Glu;
A26 is His, aib or Lys;
A27 is Leu, Lys, Acc or Cha;
A28 is Ile, Leu, Lys, Acc or Cha;
A29 is Ala, Glu or aib;
A30 is Glu, Cha, aib, Acc or Lys;
A31 is Ile, Leu, Cha, Lys, Acc or deleted;
A32 is His or deleted;
A33 is Thr or deleted;
A34 is Ala or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-2 C2-20 hydroxyalkenyl, C7-20 hydroxyphenylalkyl or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 C1-12 alkoxy or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A23, A24, A28 or A31 is Lys; or a pharmaceutically acceptable salt thereof.
50. A method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula (VI):
##STR00017##
wherein
A1 is Ala, Ser, or dap;
A3 is Ser or aib;
A5 is His, Ile, Acc, or Cha;
A7 is Leu, Cha, Nle, β-Nal, Trp, Pal, Acc, Phe or p-X-Phe in which X is OH, a halogen, or ch3;
A8 is Leu, met, Acc, or Cha;
A10 is Asp or Asn;
A11 is Lys, Leu, Cha, Acc, Phe, or β-Nal;
A12 is Gly, Acc, or aib;
A14 is Ser or His;
A15 is Ile, Acc, or Cha;
A16 is Gln or aib;
A17 is Asp or aib;
A18 is Leu, aib, Acc, or Cha;
A19 is Arg or aib;
A22 is Phe, Glu, aib, Acc, or Cha;
A23 is Phe, Leu, Lys, Acc, or Cha;
A24 is Leu, Lys, Acc, or Cha;
A25 is His, Lys, aib, Acc, or Glu;
A26 is His, aib, Acc, or Lys;
A27 is Leu, Lys, Acc, or Cha;
A28 is Ile, Leu, Lys, Acc, or Cha;
A29 is Ala, Glu, Acc, or aib;
A30 is Glu, Leu, Nle, Cha, aib, Acc, or Lys;
A31 is Ile, Leu, Cha, Lys, Acc, or deleted;
A32 is His or deleted;
A33 is Thr or deleted;
A34 is Ala or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkyl C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy, or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A5, A7, A8, A11, A12, A15, A18, A22, A23, A24, A25, A26, A27, A28, A29, A30, or A31 is Acc; or a pharmaceutically acceptable salt thereof.
52. A pharmaceutical composition comprising a bisphosphonate or calcitonin, a pharmaceutically acceptable carrier or diluent, and a peptide of the following formula (VI):
##STR00019##
wherein
A1 is Ala, Ser, or dap;
A3 is Ser or aib;
A5 is His, Ile, Acc, or Cha;
A7 is Leu, Cha, Nle, β-Nal, Trp, Pal, Acc, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A8 is Leu, met, Acc, or Cha;
A10 is Asp or Asn;
A11 is Lys, Leu, Cha, Acc, Phe, or β-Nal;
A12 is Gly, Acc, or aib;
A14 is Ser or His;
A15 is Ile, Acc, or Cha;
A16 is Gln or aib;
A17 is Asp or aib;
A18 is Leu, aib, Acc, or Cha;
A19 is Arg or aib;
A22 is Phe, Glu, aib, Acc, or Cha;
A23 is Phe, Leu, Lys, Acc, or Cha;
A24 is Leu, Lys, Acc, or Cha;
A25 is His, Lys, aib, Acc, or Glu;
A26 is His, aib, Acc, or Lys;
A27 is Leu, Lys, Acc, or Cha;
A28 is Ile, Leu, Lys, Acc, or Cha;
A29 is Ala, Glu, Acc, or aib;
A30 is Glu, Leu, Nle, Cha, aib, Acc, or Lys;
A31 is Ile, Leu, Cha, Lys, Acc, or deleted;
A32 is His or deleted;
A33 is Thr or deleted;
A34 is Ala or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy, or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A5, A7, A8, A11, A12, A15, A18, A22, A23, A24, A25, A26, A27, A28, A29, A30, or A31 is Acc; or a pharmaceutically acceptable salt thereof.
wherein
A1 is Ser, Ala, or dap;
A3 is Ser, Thr, or aib;
A5 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe or p-X-Phe, in which X is OH, a halogen, or ch3;
A7 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A8 is met, Nva, Leu, Val, Ile, Cha, Acc or Nle;
A11 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe or p-X-Phe in which X is OH, a halogen, or ch3;
A12 is Gly, Acc or aib;
A15 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, ACC Acc, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A16 is Ser, Asn, Ala, or aib;
A17 is Ser, Thr, or aib;
A18 is met, Nva, Leu, Val, Ile, Nle, Acc, Cha, or aib;
A19 is Glu or aib;
A21 is Val, Acc, Cha, or met;
A22 is Acc or Glu;
A23 is Trp, Acc, or Cha;
A24 is Leu, Acc, or Cha;
A27 is Lys, aib, Leu, hArg, Gln, Acc, or Cha;
A28 is Leu, Acc, or Cha;
A29 is Gln;
A30 is Asp or Lys;
A31 is Val, Leu, Nle, Acc, Cha, or deleted;
A32 is His or deleted;
A33 is Asn or deleted;
A34 is Phe, Tyr, Amp, aib, or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C7-20 C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxy-phenylalkyl, or C11-120 C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy, or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H, or CONH2;
provided that at least one of A5, A7, A8, A11, A12, A15, A18, A21, A22, A23, A24, A27, A28, and A31 is Acc; or a pharmaceutically acceptable salt thereof.
51. A method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a combination of a bisphosphonate or calcitonin and a peptide of the formula (VI):
##STR00018##
wherein
A1 is Ala, Ser, or dap;
A3 is Ser or aib;
As A5 is His, Ile, Acc, or Cha;
A7 is Leu, Cha, Nle, β-Nal, Trp, Pal, Acc, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A8 is Leu, met, Acc, or Cha;
A10 is Asp or Asn;
A11 is Lys, Leu, Cha, Acc, Phe, or β-Nal;
A12 is Gly, Acc, or aib;
A14 is Ser or His;
A15 is Ile, Acc, or Cha;
A16 is Gln or aib;
A17 is Asp or aib;
A18 is Leu, aib, Acc, or Cha;
A19 is Arg or aib;
A22 is Phe, Glu, aib, Acc, or Cha;
A23 is Phe, Leu, Lys, Acc, or Cha;
A24 is Leu, Lys, Acc, or Cha;
A25 is His, Lys, aib, Acc, or Glu;
A26 is His, aib, Acc, or Lys;
A27 is Leu, Lys, Acc, or Cha;
A28 is Ile, Leu, Lys, Acc, or Cha;
A29 is Ala, Glu, Acc, or aib;
A30 is Glu, Leu, Nle, Cha, aib, Acc, or Lys;
A31 is Ile, Leu, Cha, Lys, Acc, or deleted;
A32 is His or deleted;
A33 is Thr or deleted;
A34 is Ala or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkyl C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy, or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A5, A7, A8, A11, A12, A15, A18, A22, A23, A24, A25, A26, A27, A28, A29, A30, or A31 is Acc; or a pharmaceutically acceptable salt thereof.
38. A method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula:
##STR00015##
wherein
A1 is Ala, Ser or dap;
A3 is Ser or aib;
A5 is His, Ile, or Cha;
A7 is Leu, Cha, Nle, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A8 is Leu, met or Cha;
A10 is Asp or Asn;
A11 is Lys, Leu, Cha, Phe or β-Nal;
A12 is Gly or aib;
A14 is Ser or His;
A15 is Ile or Cha;
A16 is Gln or aib;
A17 is Asp or aib;
A18 is Leu, aib or Cha;
A19 is Arg or aib;
A22 is Phe, Glu, aib or Cha;
A23 is Phe, Leu, Lys or Cha;
A24 is Leu, Lys or Cha;
A25 is His, aib or Glu;
A26 is His, aib or Lys;
A27 is Leu, Lys or Cha;
A28 is Ile, Leu, Lys or Cha;
A29 is Ala, Glu or aib;
A30 is Glu, Cha, aib or Lys;
A31 is Ile, Leu, Cha, Lys or deleted;
A32 is His or deleted;
A33 is Thr or deleted;
A34 is Ala, aib or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A5, A7, A8, A11, A15, A18, A22, A23, A24, A27, A28, A30, or A31 is Cha; or at least one of A3, A12, A16, A17, A18, A19, A22, A25, A26, A29, A30 or A34 is aib; or a pharmaceutically acceptable salt thereof; and
provided that said peptide is not [Glu22,25, Leu23,28, 31, aib29, Lys26,30]hPTHrP(1-34)NH2 [Glu22,25, Leu23,28,31, aib29, Lys26,30]hPTHrP(1-34)NH2.
36. A method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula:
##STR00014##
wherein
A1 is Ser or dap;
A3 is Ser, Thr, or aib;
A5 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe, in which X is OH, a halogen, or ch3;
A7 is Leu, Ile, Nle, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is H, OH, a halogen or ch3;
A8 is met, Nva, Leu, Val, Ile, Cha, or Nle;
A11 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A12 is Gly or aib;
A15 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A16 is Ser, Asn, Ala or aib;
A17 is Ser, Thr or aib;
A18 is met, Nva, Leu, Val, Ile, Nle, Cha or aib;
A19 is Glu or aib;
A21 is Val, Cha or met;
A23 is Trp or Cha;
A24 is Leu or Cha;
A27 is Lys, aib, Leu, hArg, Gln or Cha;
A28 is Leu or Cha;
A30 is Asp or Lys;
A31 is Val, Nle, Cha or deleted;
A32 is His or deleted;
A33 is Asn or deleted;
A34 is Phe, Tyr, Amp, aib or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxy-phenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A1 is dap; A7 is β-Nal, Trp, Pal, Phe, or p-X-Phe; A15 is β-Nal, Trp, Pal, Phe, or p-X-Phe; A27 is hArg; or A31 is Nle; or a pharmaceutically acceptable salt thereof; and
provided that said peptide is not [hArg27]hPTH(1-34)NH2.
32. A method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula:
##STR00012##
wherein
A1 is Ser, Ala or dap;
A3 is Ser, Thr or aib;
A5 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A7 is Leu, Nle, Tie Ile, Cha, β-Nal, Trp, Pal, Acc, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A8 is met, Nva, Leu, Val, tie Ile, Cha, Acc or Nle;
A11 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe or p-X-Phe in which X is OH, a halogen, or ch3;
A12 is Gly, Acc or aib;
A15 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Acc, Phe, or p-X-Phe in which X is OH, a halogen or ch3;
A16 is Ser, Asn, Ala or aib;
A17 is Ser, Thr or aib;
A18 is met, Nva, Leu, Val, Ile, Nle, Acc, Cha or aib;
A19 is Glu or aib;
A21 is Val, Acc, Cha or met;
A22 is Acc or Glu;
A23 is Trp, Acc or Cha;
A24 is Leu, Acc or Cha;
A27 is Lys, aib, Leu, hArg, Gln, Acc or Cha;
A28 is Leu, Acc or Cha;
A29 is Gln, Acc or aib;
A30 is Asp or Lys;
A31 is Val, Leu, Nle, Acc, Cha, or deleted;
A32 is His or deleted;
A33 is Asn or deleted;
A34 is Phe, Tyr, Amp, aib, or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxy-phenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A5, A7, A8, A11, A12, A15, A18, A21, A22, A23, A24, A27, A28, A29 and A31 is Acc; or a pharmaceutically acceptable salt thereof.
34. A method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula:
##STR00013##
wherein
A1 is Ser, Ala, or dap;
A3 is Ser, Thr, or aib;
A5 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe, in which X is OH, a halogen or ch3;
A7 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A8 is met, Nva, Leu, Val, Ile, Cha, or Nle;
A11 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A12 is Gly or aib;
A15 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen or ch3;
A16 is Ser, Asn, Ala or aib;
A17 is Ser, Thr or aib;
A18 is met, Nva, Leu, Val, Ile, Nle, Cha or aib;
A19 is Glu or aib;
A21 is Val, Cha or met;
A23 is Trp or Cha;
A24 is Leu or Cha;
A27 is Lys, aib, Leu, hArg, Gln or Cha;
A28 is Leu or Cha;
A30 is Asp or Lys;
A31 is Val, Nle, Cha or deleted;
A32 is His or deleted;
A33 is Asn or deleted;
A34 is Phe, Tyr, Amp, aib or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxy-phenylalkyl or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H or CONH2;
provided that at least one of A5, A7, A8, A11, A15, A18, A21, A23, A24, A27, A28, and A31 is Cha or at least one of A3, A12, A16, A17, A18, A19, and A34 is aib; or a pharmaceutically acceptable salt thereof; and
provided that the peptide is not [aib12, Tyr34]hPTH (1-34)NH2 or [Cha8]hPTH(1-34)NH2.
wherein
A1 is Ala, Ser, or dap;
A3 is Ser or aib;
A5 is His, Ile, or Cha;
A7 is Leu, Cha, Nle, β-Nal, Trp, Pal, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A8 is Leu, met, or Cha;
A10 is Asp or Asn;
A11 is Lys, Leu, Cha, Phe or β-Nal;
A12 is Gly or aib;
A14 is Ser or His;
A15 is Ile, or Cha;
A16 is Gln or aib;
A17 is Asp or aib;
A18 is Leu, aib, or Cha;
A19 is Arg or aib;
A22 is Phe, Glu, aib, or Cha;
A23 is Phe, Leu, Lys, or Cha;
A24 is Leu, Lys or Cha;
A25 is His, aib, or Glu;
A26 is His, aib, or Lys;
A27 is Leu, Lys, or Cha;
A28 is Ile, Leu, Lys or Cha;
A29 is Ala, Glu or aib;
A30 is Glu, Cha, aib or Lys;
A31 is Ile, Leu, Cha, Lys or deleted;
A32 is His or deleted;
A33 is Thr or deleted;
A34 is Ala, aib or deleted;
each or R1 and R2 is, independently, H, C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-20 hydroxyalkyl C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy, or NH—Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H, or CONH2;
provided that at least one of A5,A7, A8, A11, A15, A18, A22, A23, A24, A27, A28, A30, or A31 is Cha, or at least one of A3, A12, A16, A17, A18, A19, A22, A25, A26, A29, A30, or A34 is aib; or a pharmaceutically acceptable salt thereof;
provided that if A12 is Gly, then at least one of A1 is Ser; A5 is Ile; A8 is met; A10 is Asn; A11 is Leu; A14 is His; A22 is aib; A23 is Leu or Lys; A24 is Lys; A25 is aib or Glu; A27 is Lys; A28 is Leu or Lys; A29 is Glu or aib; A30 is Cha or aib; A31 is Leu or Lys; or A34 is aib and
provided that said peptide is not [Glu22,25, Leu23,28, 31, aib29, Lys26,30]hPTHrP(1-34)NH2 [Glu22,25, Leu23,28,31, aib29, Lys26,30]hPTHrP(1-34)NH2.
wherein
A1 is Ser or dap;
A3 is Ser, Thr, or aib;
A5 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe, in which X is OH, a halogen, or ch3;
A7 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe, or p-X-Phe in which X is H, OH, a halogen, or ch3;
A8 is met, Nva, Leu, Val, Ile, Cha, or Nle;
A11 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen, or ch3;
A12 is Gly or aib;
A15 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A16 is Ser, Asn, Ala, or aib;
A17 is Ser, Thr, or aib;
A18 is met, Nva, Leu, Val, Ile, Nle, Cha, or aib;
A19 is Glu or aib;
A21 is Val, Cha, or met;
A23 is Trp or Cha;
A24 is Leu or Cha;
A27 is Lys, aib, Leu, hArg, Gln, or Cha
A28 is Leu or Cha;
A30 is Asp or Lys;
A31 is Val, Nle, Cha, or deleted;
A32 is His or deleted;
A33 is Asn or deleted;
A34 is Phe, Tyr, Amp, aib, or deleted;
each of R1 and R2 is, independently, H, C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl, or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxy-phenylalkyl, or C1-120 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy, or NH′Y—CH2-Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H, or CONH2; or a pharmaceutically acceptable salt thereof;
provided that at least one of A1 is dap; A7 is β-Nal, Trp, Pal, Phe, or p-X-Phe; A15 is β-Nal, Trp, Pal, Phe, or p-X-Phe; A27 is hArg; or A31 is Nle;
provided that if A12 is Gly, then at least one of A5 is Leu, Nle, β-Nal, Trp, Phe or p-X-Phe; A11 is Pal or p-X-Phe; or A15 is Nle, Ile, β-Nal, Trp, Pal, Phe or p-X-Phe;
provided that if A12 is aib, then at least one of A1 is Ser, A5 is Leu, Nle, β-Nal, Trp, Phe or p-X-Phe; A11 is Pal or p-X-Phe; or A15 is Nle, Ile, β-Nal, Trp, Pal, Phe or p-X-Phe;
and also provided that said peptide of formula (III) is not [hArg27]hPTH(1-34)NH2.
wherein
A1 is Ser, Ala, or dap;
A3 is Ser, Thr, or aib;
A5 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe, in which X is OH, a halogen, or ch3;
A7 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A8 is met, Nva, Leu, Val, Ile, Cha, or Nle;
A11 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe or p-X-Phe in which X is OH, a halogen, or ch3;
A12 is Gly or aib;
A15 is Leu, Nle, Ile, Cha, β-Nal, Trp, Pal, Phe, or p-X-Phe in which X is OH, a halogen, or ch3;
A16 is Ser, Asn, Ala, or aib,
A17 is Ser, Thr, or aib;
A18 is met, Nva, Leu, Val, Ile, Nle, Cha, or aib;
A19 is Glu or aib;
A21 is Val, Cha, or met;
A23 is Trp or Cha;
A24 is Leu or Cha;
A27 is Lys, aib, Leu, hArg, Gln, or Cha;
A28 is Leu or Cha;
A30 is Asp or Lys;
A31 is Val, Nle, Cha, or deleted;
A32 is His or deleted;
A33 is Asn or deleted;
A34 is Phe, Tyr, Amp, aib, or deleted;
each of R1 and R2 is independently, H, C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxyphenylalkyl, or C11-20 hydroxynaphthylalkyl; or one and only one of R1 and R2 is COE1 in which E1 is C1-12 alkyl, C2-12 alkenyl, C7-20 phenylalkyl, C11-20 naphthylalkyl, C1-12 hydroxyalkyl, C2-12 hydroxyalkenyl, C7-20 hydroxy-phenylalkyl, or C11-20 hydroxynaphthylalkyl; and
R3 is OH, NH2, C1-12 alkoxy, or NH—Y—C2-Z NH—Y—CH2-—Z in which Y is a C1-12 hydrocarbon moiety and Z is H, OH, CO2H, or CONH2;
provided that at least one of A5, A7, A8, A11, A15, A18, A21, A23, A24, A27, A28, and A31 is Cha, or at least one of A3, A12, A16, A17, A18, A19, and A34 is aib; or a pharmaceutically acceptable salt thereof;
provided that if A12 is Gly, then at least one of A5 is Leu, Nle, β-Nal, Trp, Pal, Phe or p-X-Phe; A15 is Nle, Ile, β-Nal, Trp, Pal, Phe, or p-X-Phe; A7 is Ile; or A11 is Ile or Pal;
provided that if A12 is aib and A1 is dap, then at least one of A5 is Leu, Nle, β-Nal, Trp, Pal, Phe or p-X-Phe; A7 is Ile; A11 is Ile or Pal; or A15 is Nle, Ile, β-Nal, Trp, Pal, Phe, or p-X-Phe; and further
provided that the peptide is not [aib12, Tyr34]hPTH (1-34)NH2 or [Cha8]hPTH(1-34)NH2.
7. A peptide of the formula: [Glu22,25, Leu23,28,31, Lys26, Ahc27, aib29, Nle30]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11, met8, Asn10, His14, Glu22,25, Leu23,28,31, Lys26,30, Ahc27, aib29]hPTHrP(1-34)NH2 [Ser1, Ile5, Cha7,11, met8, Asn10, His14, Glu22,25, Leu23,28,31, Lys26,30, Ahc27, aib29]hPTHrP(1-34)NH2; (Ser1, Ile5, met8, Asn10, Leu11,23,28,31, His14, Cha15, Glu22,25, Lys26,30, Ahc27, aib29]hPTHrP(1-34)NH2 [Ser1, Ile5, met8, Asn10, Leu11,23,28,31, His14, Cha15, Glu22,25, Lys26,30, Ahc27, aib29]hPTHrP(1-34)NH2; [Glu22, Ahc23, aib25,29, Lys26,30, Leu28,31]hPTHrP(1-34)NH2 [Glu22, Ahc23, aib25,29, Lys26,30, Leu28,31]hPTHrP(1-34) NH2; [Glu22,25, Leu23,28,31, Lys26,30, Ahc29]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Ahc24, Glu25, Lys26,30, aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Ahc24,27, Lys26,30, aib29]hPTHrP(1-34)NH2; [Ahc22,24,27, Leu23,28,31, Glu25, Lys26,30, aib29]hPTHrP (1-34)NH2; [Cha22, Leu23,28,31, aib25,29, Lys26,30, Ahc27]hPTHrP(1-34)NH2; [Ahc22,27, Leu23,28,31, aib25,29, Lys26,30]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24,27, Lys25,26,30, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24,27, Lys25,26,30, aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24,27, Lys25,26,30, Leu28, aib29]hPTHrP(1-34) NH2; [Glu22,25, Cha23, Ahc24,27, Lys25,26,30, Leu28,31, aib29]hPTHrP(1-34)NH2 [Glu22,25, Cha23, Ahc24,27, Lys26,30, Leu28,31, aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24,27, Lys25,26,30, Leu28,31, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24,27, Lys25,26,30, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24,27, Lys25,26, aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc , Lys25,26, Leu28,31, aib29]hPTHrP (1-34)NH2 [Glu22, Cha23, Ahc24,27, Lys25,26, Leu28,31, aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24,27, Lys25,26, Leu28,31, aib29]hPTHrP(1-34)NH2 [Glu22, Cha23, Ahc24,27, Lys25,26, Leu28, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Lys25,26, Ahc27, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Lys25,26, Ahc27, aib29]hPTHrP(1-34)NH2 [Glu22, Leu23,28,31, Lys25,26, Ahc27, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Lys25,26,30, Ahc27, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Lys25,26,30, Ahc27, aib29]hPTHrP(1-34) NH2; [Glu22,25, Leu23,28,31, Lys26, aib29, Ahc30]hPTHrP (1-34)NH2; [aib22,29, Leu23,28,31, Glu25, Lys26,30]hPTHrP (1-34)NH2; [Cha22, Ahc23, Glu25,29, Lys26,30, Leu26,31]hPTHrP(1-34)NH2 [Cha22, Ahc23, Glu25,29, Lys26,30, Leu28,31]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Ahc24, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26,30, Ahc27]hPTHrP(1-34)NH2; [Cha22, Leu23,31, Glu25,29, Lys26,30, Ahc28]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26, Ahc30]hPTHrP(1-34)NH2; [Cha22, Leu23,28, Glu25,29, Lys26,30, Ahc31]hPTHrP(1-34) NH2; [Glu22,29, Ahc23, aib25, Lys26,30, Leu28,31]hPTHrP (1-34)NH2; [Ahc22, Leu23,28,31, aib25, Lys26,30, Glu29]hPTHrP(1-34)NH2; (Glu22,29, Leu23,28,31, Ahc24, aib25, Lys26,30]hPTHrP(1-34)NH2 [Glu22,29, Leu23,28,31, Ahc24, aib25, Lys26,30]hPTHrP(1-34)NH2; [Glu22,29, Leu23,31, aib25, Lys26,30, Ahc28]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28, aib25, Lys26,30, Ahc31]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, aib25, Lys26, Ahc30]hPTHrP(1-34)NH2 [Glu22,29, Leu23,28,31, aib25, Lys26, Ahc30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26, Ahc27, aib30]hPTHrP(1-34) NH2; [Glu22,25,29, Leu23,28,31, Ahc24, Lys26, aib30]hPTHrP (1-34)NH2; [Ahc22, Leu23,28,31, Glu25,29, Lys26, aib30]hPTHrP(1-34)NH2; [Ahc22, Leu23,28, Glu25,29, Lys26,30,31]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28, Lys26,31, Ahc30]hPTHrP(1-34)NH2 [Glu22,25,29, Leu23,28, Lys26,31, Ahc30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28, Lys26,30,31, Ahc27]hPTHrP(1-34)NH2; [Ahc22, Cha23, Glu25, Lys26,30, Leu28,31, aib29]hPTHrP(1-34)NH2; [Ahc22, Cha23, Lys25,26,30, Leu28,31, aib29]hPTHrP(1-34)NH2; [Ahc22, Cha23, Lys25,26, Leu28,31, aib29]hPTHrP(1-34)NH2; [Ahc22, Leu23,28, Lys25,26, aib29]hPTHrP(1-34)NH2; [Ahc22, Leu23,28, Arg25, Lys26, aib29]hPTHrP(1-34)NH2; [Ahc22,24, Leu23,28,31, Glu25, Lys26,30, aib29]hPTHrP(1-34) NH2; [Ahc22,24, Leu23,28,31, Lys25,26,30, aib29]hPTHrP (1-34)NH2; [Ahc22,24, Leu23,28,31, Lys25,26, aib29]hPTHrP (1-34)NH2; [Ahc22,24, Leu23,28, Lys25,26, Aib29]hPTHrP (1-34)NH2 [Ahc22,24, Leu23,28, Lys25,26, aib29]hPTHrP(1-34)NH2; [Ahc22,24, Leu23,28, Arg25, Lys26, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Lys23,28,31, Ahc24, Lys25,26,30, aib29]hPTHrP(1-34)NH2 [Glu22, Leu23,28,31, Ahc24, Lys25,26,30, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,1, Ahc24, Lys25,26, aib29]hPTHrP(1-34)NH2 [Glu22, Leu23,28,31, Ahc24, Lys25,26, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24, Lys25,26, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24, Arg25, Lys26,30, aib29]hPTHrP(1-34) NH2; [Glu22, Leu23,28,31, Ahc24, Arg25, Lys26, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24, Arg25, Lys26, aib29]hPTHrP(1-34)NH2; [Glu22, Ahc23, aib25,29, Lys26,30, Leu28,31]hPTHrP(1-34)NH2; [Glu22, Ahc23, aib25,29, Lys26, Leu28]hPTHrP(1-34)NH2; [Glu22, Ahc23,31, aib25,29, Lys26, Leu28]hPTHrP(1-34)NH2; [Glu22, Leu23,28, aib25,29, Lys26,30, Ahc31]hPTHrP(1-34)NH2; [Glu2, Leu23,28, aib25,29, Lys26, Ahc13]hPTHrP(1-34)NH2 [Glu22, Leu23,28, aib25,29, Lys26, Ahc31]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28, Ahc24,31, Lys26,30, aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24,31, Lys25,26, aib29]hPTHrP(1-34) NH2; [Glu22, Leu23,28,31, Ahc24, aib25,29, Lys26,30, ]hPTHrP (1-34)NH2 [Glu22, Leu23,28,31, Ahc24, aib25,29, Lys26,30]hPTHrP(1-34)NH2; or a pharmaceutically acceptable salt thereof.
2. A peptide of
A3 is Ser;
A5 is Ile or Acc;
A7 is Leu, Acc, or Cha;
A8 is Acc, met, Nva, Leu, Val, Ile, or Nle;
A11 is Leu, Acc, or Cha;
A12 is Acc or Gly;
A15 is Leu, Acc, or Cha;
A16 is Asn or aib;
A17 is Ser or aib;
A18 is Acc, met, or Nle;
A21 is Val or Acc;
A27 is Lys, hArg, Acc, or Cha;
A31 is Val, Leu, Nle, Acc, or Cha;
A32 is His;
A33 is Asn;
A34 is Phe, Tyr, Amp, or aib;
or a pharmaceutically acceptable salt thereof.
3. A peptide of
A5 is Ile or Ahc;
A7 is Leu, Ahc, or Cha;
A8 is Ahc, met, or Nle;
A11 is Leu, Ahc, or Cha;
A12 is Ahc or Gly;
A15 is Leu, Ahc, or Cha;
A18 is met or Ahc;
A21 is Val or Ahc;
A22 is Glu or Ahc;
A23 is Trp, Ahc, or Cha;
A24 is Leu, Ahc, or Cha;
A27 is Lys, hArg, Ahc, or Cha;
A28 is Leu, Ahc, or Cha;
A31 is Val, Leu, Nle, Ahc, or Cha;
R1 is H;
R2 is H; and
R3 is NH2;
or a pharmaceutically acceptable salt thereof.
4. A peptide of
9. A peptide of
A3 is Ser;
A5 is Ile;
A7 is Leu or Cha;
A8 is met, Nva, Leu, Val, Ile, or Nle;
A11 is Leu or Cha;
A12 is Gly;
A15 is Leu or Cha;
A16 is Asn or aib;
A17 is Ser;
A18 is met or Nle;
A21 is Val;
A27 is Lys, hArg, or Cha;
A32 is His;
A31 is Val, Nle, or Cha;
A32 is His;
A33 is Asn;
A34 is Phe, Tyr, Amp, or aib;
R1 is H;
R2 is H; and
R3 is NH2;
or a pharmaceutically acceptable salt thereof.
11. A peptide of
13. A peptide of
14. A peptide of
15. A peptide of
A3 is Ser or aib;
A5 is Ile;
A7 is Leu or Cha;
A8 is met, Nva, Leu, Val, Ile, or Nle;
A11 is Leu or Cha;
A15 is Leu or Cha;
A16 is Asn or aib;
A18 is met, aib, or Nle;
A21 is Val;
A27 is Lys, aib, Leu, hArg, or Cha;
A31 is Val, Nle, or Cha;
A32 is His;
A33 is Asn;
A34 is Phe, Tyr, Amp, or aib;
R1 is H;
R2 is H; and
R3 is NH2;
or a pharmaceutically acceptable salt thereof.
16. A peptide of
18. A peptide of
19. A peptide of
A3 is Ser or aib;
A5 is Ile;
A7 is Leu or Cha;
A8 is met, Nva, Leu, Val, Ile, or Nle;
A11 is Leu or Cha;
A15 is Leu or Cha;
A16 is Asn or aib;
A18 is met, aib, or Nle;
A21 is Val;
A27 is Lys, aib, Leu, hArg, or Cha;
A31 is Val, Nle, or Cha;
A32 is His;
A33 is Asn;
A34 is Phe, Tyr, Amp, or aib;
R1 is H;
R2 is H; and
R3 is NH2;
or a pharmaceutically acceptable salt thereof.
20. A peptide of
21. A peptide of
23. A peptide of
A1 is Ser or dap;
A3 is Ser or aib;
A8 is met, Nva, Leu, Val, Ile, or Nle;
A16 is Asn or aib;
A18 is met, aib, or Nle;
A21 is Val;
A27 is Lys, aib, Leu, hArg, or Cha;
A31 is Val, Nle, or Cha;
A32 is His;
A33 is Asn;
A34 is Phe, Tyr, Amp, or aib;
R1 is H;
R2 is H; and
R3 is NH2;
or a pharmaceutically acceptable salt thereof.
26. A peptide of
27. A peptide of
28. A peptide of
29. A peptide of
30. A peptide of
31. A peptide of
33. The method according to
35. The method according to
37. The method according to claim 34 36, further comprising administering to said patient a bisphosphonate or calcitonin.
39. The method according to
41. The method according to
42. A pharmaceutical composition comprising the peptide of
43. A pharmaceutical composition comprising the peptide of
44. A pharmaceutical composition comprising the peptide of
45. A pharmaceutical composition comprising the peptide of
46. A pharmaceutical composition comprising the peptide of
47. A pharmaceutical composition comprising the peptide of
48. A pharmaceutical composition comprising the peptide of
49. A pharmaceutical composition comprising the peptide of
|
This application is a continuation of U.S. application Ser. No. 09/399,499 filed Sep. 20, 1999, now issued as U.S. Pat. No. 6,544,949, which is a continuation-in-part of both U.S. application Ser. No. 08/779,768 filed Jan. 7, 1997, now issued as U.S. Pat. No. 5,969,095, and Ser. No. 09/341,217, filed Nov. 22, 1999, now abandoned, which is the national phase application of International Application No. PCT/US97/22498, filed Dec. 8, 1997, which is a continuation-in-part of U.S. application Ser. No. 08/813,354, filed Mar. 7, 1997, now issued as U.S. Pat. No. 5,955,574, which is a continuation-in-part of U.S. application Ser. No. 08/779,768, filed Jan. 7, 1997, now issued as U.S. Pat. No. 5,969,095, which is a continuation-in-part of U.S. application Ser. No. 08/626,186, filed Mar. 29, 1996, now issued as U.S. Pat. No. 5,723,577, which claims the benefit of priority of U.S. application No. 60/003,305, filed Sep. 6, 1995 and U.S. application No. 60/001,105, filed Jul. 13, 1995.
Parathyroid hormone (“PTH”) is a polypeptide produced by the parathyroid glands. The mature circulating form of the hormone is comprised of 84 amino acid residues. The biological action of PTH can be reproduced by a peptide fragment of its N-terminus (e.g. amino acid residues 1 through 34). Parathyroid hormone-related protein (“PTHrP”) is a 139 to 173 amino acid-protein with N-terminal homology to PTH. PTHrP shares many of the biological effects of PTH including binding to a common PTH/PTHrP receptor. Tregear, et. al, Endocrinol. 93:1349 (1983). PTH peptides from many different sources, e.g. human, bovine, rat, chicken, have been characterized. Nissenson. et al., Receptor, 3:193 (1993).
PTH has been shown to both improve bone mass and quality Dempster, et al., Endocrine Rev., 14:690 (1993); and Riggs, Amer. J. Med. 91 (Suppl 5B):37S (1991). The anabolic effect of intermittently administered PTH has been observed in osteoporitic men and women either with or without concurrent antiresorptive therapy. Slovik, et al, J. Bone Miner. Res., 1:377 (1986); Reeve, et al., Br. Med. J., 301:314 (1990); and Hesch, R-D., et al., Calcif. Tissue Int'l, 44:176 (1989).
In one aspect, the invention features a peptide of the formula (I),
##STR00001##
wherein
A preferred embodiment of the immediately foregoing peptide is where A3 is Ser; A5 is Ile or Acc; A7 is Leu, Acc, or Cha; A8 is Acc, Met, Nva, Leu, Val, Ile, or Nle; A11 is Leu, Acc, or Cha; A12 is Acc or Gly; A15 is Leu, Acc, or Cha; A16 is Asn or Aib; A17 is Ser or Aib; A18 is Acc, Met, or Nle; A21 is Val or Acc; A27 is Lys, hArg, Acc, or Cha; A31 is Val, Leu, Nle, Acc, or Cha; A32 is His; A33 is Asn; A34 is Phe, Tyr, Amp, or Aib; or a pharmaceutically acceptable salt thereof.
A preferred embodiment of the immediately foregoing peptide, designated Group B, is where A5 is Ile or Ahc; A7 is Leu, Ahc, or Cha; A8 is Ahc, Met, or Nle; A11 is Leu, Ahc, or Cha; A12 is Ahc or Gly; A15 is Leu, Ahc, or Cha; A18 is Met or Ahc; A21 is Val or Ahc; A22 is Glu or Ahc; A23 is Trp, Ahc, or Cha; A24 is Leu, Ahc, or Cha; A27 is Lys, hArg, Ahc, or Cha; A28 is Leu, Ahc, or Cha; A29 is Gln, Ahc or Aib; A31 is Val, Leu, Nle, Ahc, or Cha; R1 is H; R2 is H; and R3 is NH2; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of Group B is where at least one of A7, A11, A15, A23, A24, A27, A28, or A31 is Cha.
Another preferred group of peptides of Group B is where at least one of A16, A17, A19, A29, or A34 is Aib.
Preferred peptides of formula (I) are [Ahc7,11]hPTH (1-34)NH2; [Ahc7,11, Nle8,18, Tyr34]hPTH(1-34)NH2; [Ahc11]hPTH(1-34)NH2; [Ahc7,11,15]hPTH(1-34)NH2; [Ahc7]hPTH(1-34)NH2; [Ahc23]hPTH(1-34)NH2; [Ahc24]hPTH(1-34)NH2; [Nle8,18, Ahc27]hPTH(1-34)NH2; [Ahc28]hPTH(1-34)NH2; [Ahc31]hPTH(1-34)NH2; [Ahc24,28,31]hPTH(1-34)NH2; [Ahc24,28,31, Lys30]hPTH (1-34)NH2; [Ahc28,31]hPTH(1-34)NH2; [Ahc5]hPTH (1-34)NH2; [Ahc24,27, Aib29, Lys30]hPTH(1-34)NH2; [Ahc24,27, Aib29, Lys30, Leu31]hPTH(1-34)NH2; [Ahc5]hPTH(1-34)NH2; [Ahc12]hPTH(1-34)NH2; [Ahc27]hPTH (1-34)NH2; [Ahc29]hPTH(1-34)NH2; [Ahc24,27]hPTH (1-34)NH2, [Ahc24,27, Aib29]hPTH(1-34)NH2; [Ahc24, Aib29]hPTH(1-34)NH2; [Ahc27, Aib29]hPTH(1-34)NH2; [Ahc18]hPTH(1-34)NH2; [Ahc8]hPTH(1-34)NH2; [Ahc18,27, Aib29]hPTH(1-34)NH2; or [Ahc18,24,27, Aib29]hPTH(1-34)NH2; [Ahc22, Leu27, Aib29]hPTH(1-34)NH2; [Ahc24, Leu27, Aib29]hPTH(1-34)NH2; [Ahc22]hPTH (1-34)NH2; and [Ahc22, Aib29]hPTH(1-34)NH2; or a pharmaceutically acceptable salt thereof.
The invention also features peptides of the following formulae; [Cha22,23, Glu25, Lys26,30, Leu28, Aib29]hPTHrP (1-34)NH2; [Cha22,23, Glu25, Lys26,30, Aib29]hPTHrP(1-34) NH2; [Glu22,23, Leu25,28,31, Lys26, Aib29, Nle30]hPTHrP (1-34)NH2; [Glu22,25, Leu23,28,30,31, Lys26, Aib29]hPTHrP (1-34)NH2; [Glu22,25,29, Leu23,28,30,31, Lys26]hPTHrP (1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26, Nle30]hPTHrP (1-34)NH2; [Ser1, Ile5, Met8, Asn10, Leu11,23,28,31, His14, Cha15, Glu22,25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26, Leu28,31, Aib29, Nle30]hPTHrP (1-34)NH2; [Cha22,23, Glu25, Lys26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26, Nle30]hPTHrP(1-34)NH2; [Cha7,11,15]hPTHrP(1-34)NH2; [Cha7,8,15]hPTHrP(1-34)NH2; [Glu22, Cha23, Aib25,29, Lys26,30, Leu28,31]hPTHrP(1-34)NH2; [Glu22, Cha23, Aib25,29, Lys26, Leu28]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Aib25,29, Lys26]hPTHrP(1-34)NH2; [Aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26, Leu28,31, Aib29, Nle30]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Aib29, Leu31]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26, Aib29,30]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Aib26,29, Lys30]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Leu28, Aib29]hPTHrP(1-34)NH2; or [Leu27, Aib29]hPTHrP(1-34)NH2; or a pharmaceutically acceptable salt thereof.
The following are examples of the peptides of the invention covered by the above formula: [Glu22,25, Leu23,28, Lys26,30, Aib29, Ahc31]hPTHrP(1-34)NH2; [Glu22,25, Ahc23, Lys26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2, [Glu22,25, Leu23,28,31, Lys26,30, Ahc27, Aib29]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26l Ahc30]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25, Lys26,30, Ahc27, Aib29]hPTHrP (1-34)NH2; [Glu22,25, Leu23,28,31, Ahc24, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28,31, Aib25, Lys26,30, Ahc27]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Aib25,29, Lys26,30, Ahc27]hPTHrP(1-34)NH2; [Ahc22, Leu23,28,31, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,31, Lys26,30, Ahc28, Aib29]hPTHrP(1-34)NH2; [Cha22, Ahc23, Glu25, Lys26,30, Leu28,31, Aib29]hPTHrP (1-34)NH2; [Ahc22,24,27, Leu23,28,31, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Ahc24,27, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24,27, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Ahc18,24,27, Glu22, Cha23, Lys25,26, Leu28, Aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24, Lys25,26, Leu28, Aib29]hPTHrP(1-34) NH2; [Glu22,25, Leu23,28,31, Lys26, Ahc27, Aib29, Nle30]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11, Met8, Asn10, His14, Glu22,25, Leu23,28,31, Lys26,30, Ahc27, Aib29]hPTHrP(1-34) NH2; [Ser1, Ile5, Met8, Asn10, Leu11,23,28,31, His14, Cha15, Glu22,25, Lys26,30, Ahc27, Aib29]hPTHrP(1-34)NH2; [Cha22, Ahc23, Glu25, Lys26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Glu22, Ahc23, Aib25,29, Lys26,30, Leu28,31]hPTHrP(1-34) NH2; [Glu22,25, Leu23,28,31, Lys26,30, Ahc29]hPTHrP(1-34) NH2; [Cha22, Leu23,28,31, Ahc24, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2, [Cha22, Leu23,28,31, Ahc24,27, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Ahc24,27, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Ahc22,24,27, Leu23,28,31, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Aib25,29, Lys26,30, Ahc27]hPTHrP(1-34) NH2; [Ahc22,27, Leu23,28,31, Aib25,29, Lys26,30]hPTHrP (1-34)NH2; [Glu22, Leu23,28,31, Ahc24,27, Lys25,26,30, Aib29]hPTHrP 1-34)NH2; [Glu22, Leu23,28, Ahc24,27, Lys25,26,30, Aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24,27, Lys25,26,30, Leu28, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Ahc24,27, Lys26,30, Leu28,31, Aib29]hPTHrP(1-34) NH2; [Glu22, Cha23, Ahc24,27, Lys25,26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24,27, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24,27, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24,27, Lys25,26, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24,27, Lys25,26, Leu28, Aib29]hPTHrP (1-34)NH2; [Glu22, Leu23,28, Lys25,26, Ahc27, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Lys25,26, Ahc27, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Lys25,26,30, Ahc27, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Lys25,26,30, Ahc27, Aib29]hPTHrP(1-34)NH2; [Glu22, Cha23, Ahc24, Lys25,26, Leu28, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26, Aib29, Ahc30]hPTHrP(1-34)NH2; [Aib22,29, Leu23,28,31, Glu25, Lys26,30]hPTHrP(1-34)NH2; [Cha22, Ahc23, Glu25,29, Lys26,30, Leu28,31]hPTHrP(1-34) NH2[Cha22, Leu23,28,31, Ahc24, Glu25,29, Lys26,30]hPTHrP (1-34)NH2, [Cha22, Leu23,28,31, Glu25,29, Lys26,30, Ahc27]hPTHrP(1-34)NH2, [Cha22, Leu23,31, Glu25,29, Lys26,30, Ahc28]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26, Ahc30]hPTHrP(1-34)NH2; [Cha22, Leu23,28, Glu25,29, Lys26,30, Ahc31]hPTHrP(1-34)NH2; [Glu22,29, Ahc23, Aib25, Lys26,30, Leu28,31]hPTHrP(1-34)NH2, [Ahc22, Leu23,28,31, Aib25, Lys26,30, Glu29]hPTHrP(1-34) NH2; [Glu22,29, Leu23,28,31, Ahc24, Aib25, Lys26,30]hPTHrP (1-34)NH2; [Glu22,29, Leu23,31, Aib25, Lys26,30, Ahc28]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28, Aib25, Lys26,30, Ahc31]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28,31, Aib25, Lys26, Ahc30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26, Ahc27, Aib30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Ahc24, Lys26, Aib30]hPTHrP(1-34)NH2; [Ahc22, Leu23,28,31, Glu25,29, Lys26, Aib30]hPTHrP(1-34) NH2; [Ahc22, Leu23,28, Glu25,29, Lys26,30,31]hPTHrP(1-34) NH2; [Glu22,25,29, Leu23,28, Lys26,31, Ahc30]hPTHrP(1-34) NH2; [Glu22,25,29, Leu23,28, Lys26,30,31, Ahc27]hPTHrP (1-34)NH2; [Ahc22, Cha23, Glu25, Lys26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Ahc22, Cha23, Lys25,26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Ahc22, Cha23, Lys25,26, Leu28,31, Aib29]hPTHrP(1-34)NH2, [Ahc22, Leu23,28, Lys25,26, Aib29]hPTHrP(1-34)NH2, [Ahc22, Leu23,28, Arg25, Lys26, Aib29]hPTHrP(1-34)NH2; [Ahc22,24, Leu23,28,31, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Ahc22,24, Leu23,28 31, Lys25,26,30, Aib29]hPTHrP(1-34)NH2; [Ahc22,24, Leu23,28,31, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Ahc22,24, Leu23,28, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Ahc22,24, Leu23,28, Arg25, Lys26, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24, Lys25,26,30, Aib29]hPTHrP(1-34) NH2; [Glu22, Leu23,28,31, Ahc24, Lys25,26, Aib2]hPTHrP (1-34)NH2 [Glu22, Leu23,28,31, Ahc24, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24, Arg25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24, Arg25, Lys26, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Ahc24, Arg25, Lys26, Aib29]hPTHrP(1-34)NH2, [Glu22, Ahc23, Aib25,29, Lys26,30, Leu28,31]hPTHrP(1-34) NH2; [Glu22, Ahc23, Aib25,29, Lys26, Leu28]hPTHrP(1-34) NH2; [Glu22, Ahc23,31, Aib25,29, Lys26, Leu28]hPTHrP (1-34)NH2; [Glu22, Leu23,28, Aib25,29, Lys26,30, Ahc31]hPTHrP(1-34)NH2; [Glu22, Leu23,28, Aib25,29, Lys26, Ahc31]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28, Ahc24,31, Lys26,30, Aib29]hPTHrP(1-34)NH2; or [Glu22, Leu23,28, Ahc24,31, Lys25,26, Aib29]hPTHrP(1-34)NH2; [Glu22, Leu23,28,31, Ahc24, Aib25,29, Lys26,30]hPTHrP(1-34)NH2; or a pharmaceutically acceptable salt thereof.
In another aspect, the invention relates to peptide variants of PTH(1-34) of the following generic formula:
##STR00002##
wherein
provided that (i) at least one of A5, A7, A8, A11, A15, A18, A21, A23, A24, A27, A28, and A31 is Cha, or at least one of A3, A12, A16, A17, A18, A19, and A34 is Aib; or that (ii) at least A1 is Dap, A7 is β-Nal, Trp, Pal, Phe, or p-X-Phe, A15 is β-Nal, Trp, Pal, Phe, or p-X-Phe, A27 is hArg, or A31 is Nle; or a pharmaceutically acceptable salt thereof.
In another aspect, the invention relates to peptide variants of PTH(1-34) of the following formula (II): ##STR00003##
provided that (i) at least one of A5, A7, A8, A11, A15, A18, A21, A23, A24, A27, A28, and A31 is Cha, or at least one of A3, A12, A16, A17, A18, A19, and A34 is Aib, and the peptide is not [Aib12, Tyr34]hPTH(1-34)NH2 or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of formula (II), designated Group (i) is where at least one of A7, A11, A15, A23, A24, A27, A28, and A31 is Cha; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of Group (i), designated Group (ii), is where A3 is Ser; A5 is Ile; A7 is Leu or Cha; A8 is Met, Nva, Leu, Val, Ile, or Nle; A12 is Leu or Cha; A12 is Gly; A15 is Leu or Cha; A16 is Asn or Aib; A17 is Ser; A18 is Met or Nle. A21 is Val; A27 is Lys, hArg, or Cha; A32 is His; A31 is Val, Nle, or Cha; A33 is Asn; A34 is Phe, Tyr, Amp, or Aib; R1 is H; R2 is H, and R3 is NH2; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of Group (ii), designated Group (iii), is where at least one of A7 and A11 is Cha, or a pharmaceutically acceptable salt thereof.
Preferred peptides of Group (iii) are [Cha7,11]hPTH (1-34)NH2, [Cha7,11, Nle8,18, Tyr34]hPTH(1-34)NH2; [Cha11]hPTH(1-34)NH2; [Cha7,11,15]hPTH(1-34)NH2; and [Cha7]hPTH(1-34)NH2; or a pharmaceutically acceptable salt thereof.
Another preferred group of peptides of Group (ii), designated Group (iv), is where at least one of A15, A23, A24, A27, A28, and A31 is Cha; or a pharmaceutically acceptable salt thereof.
Preferred peptides of Group (iv) are [Cha23]hPTH(1-34) NH2, [Cha24]hPTH(1-34)NH2, [Nle8,18, Cha27]hPTH (1-34)NH2, [Cha28]hPTH(1-34)NH2, [Cha31]hPTH(1-34) NH2, [Cha24,28,31]hPTH(1-34)NH2; [Cha24,28,31, Lys30]hPTH(1-34)NH2; [Cha28,31]hPTH(1-34)NH2; and [Cha15]hPTH(1-34)NH2; or a pharmaceutically acceptable salt thereof.
Another preferred group of peptides of formula (II), designated Gropu (v), is where at least one of A3, A12, A16, A17, A18, A19, and A34 is Aib; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of Group (v), designated Group (vi), is where A3 is Ser or Aib; A5 is Ile, A7 is Leu or Cha; A8 is Met, Nva, Leu, Val, Ile, or Nle; A11 is Leu or Cha; A15 is Leu or Cha; A16 is Asn or Aib; A18 is Met, Aib, or Nle; A21 is Val; A27 is Lys, Aib, Leu, hArg, or Cha; A31 is Val, Nle, or Cha; A32 is His; A33 is Asn; A34 is Phe, Tyr, Amp, or Aib; R1 is H; R2 is H, and R3 is NH2; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of Group (vi), designated Group (vii), is where at least one of A3, A12, A16, A17, A19, and A34 is Aib; or a pharmaceutically acceptable salt thereof.
Preferred peptides of Group (vii) are [Aib16]hPTH(1-34) NH2, [Aib19]hPTH(1-34)NH2[Aib34]hPTH(1-34)NH2; [Aib16,19]hPTH(1-34)NH2; [Aib]hPTH(1-34)NH2, [Aib17]hPTH(1-34)NH2; and [Aib12]hPTH(1-34)NH2; or a pharmaceutically acceptable salt thereof.
Another preferred group of peptides of formula (II), designated Group (viii), is where at least one of A7, A11, A15, A23, A24, A27, A28, and A31 is Cha and at least one of A3, A12, A16, A17, A18, A19, and A34 is Aib; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of Group (viii), designated Group (ix), is where A3 is Ser or Aib; A5 is Ile; A7 is Leu or Cha; A8 is Met, Nva, Leu, Val, Ile, or Nle; A11 is Leu or Cha; A15 is Leu or Cha; A16 is Asn or Aib; A18 is Met, Aib, or Nle, A21 is Val; A27 is Lys, Aib, Leu, hArg, or Cha; A31 is Val, Nle, or Cha; A32 is His; A33 is Asn; A34 is Phe, Tyr, Amp, or Aib; R1 is H, R2 is H; and R3 is NH2, or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of Group (ix), designated Group (x), is where at least one of A7 and A11 is Cha and at least one of A16, A19, and A34 is Aib; or a pharmaceutically acceptable salt thereof.
Preferred peptides of Group (x) are [Cha7,11, Nle8,18, Aib16,19, Tyr34]hPTH(1-34)NH2, [Cha7,11, Nle8,18,31, Aib16,19, Tyr34]hPTH(1-34)NH2, [Cha7,11, Aib19]hPTH(1-34) NH2; [Cha7,11, Aib16]hPTH(1-34)NH2; [Cha7,11, Nle8,18, Aib34]hPTH(1-34)NH2; or [Cha7,11, Aib19, Lys30]hPTH (1-34)NH2; or a pharmaceutically acceptable salt thereof.
Another preferred group of peptides of Group (ix), designated Group (xi), is where at least one of A24, A28, and A31 is Cha and at least one of A16 and A17 is Aib; or a pharmaceutically acceptable salt thereof.
Preferred peptides of Group (xi) are [Cha28, Nle8,18, Aib16,19, Tyr34]hPTH(1-34)NH2, and [Cha28, Aib16,19]PTH (1-34)NH2; or a pharmaceutically acceptable salt thereof.
In another aspect, the present invention is directed to a peptide of the formula (III): ##STR00004##
provided that at least one of A1 is Dap, A7 is β-Nal, Trp, Pal, Phe, or p-X-Phe; A15 is β-Nal, Trp, Pal, Phe, or p-X-Phe, A27 is hArg, or A31 is Nle; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of formula (III) is where A1 is Ser, Gly, or Dap; A3 is Ser or Aib; A8 is Met, Nva, Leu, Val, Ile, or Nle; A16 is Asn or Aib; A18 is Met, Aib, or Nle; A21 is Val; A27 is Lys, Aib, Leu, hArg, or Cha; A31 is Val, Nle, or Cha; A32 is His; A33 is Asn; A34 is Phe, Tyr, Amp, or Aib; R1 is H; R2 is H; and R3 is NH2, or a pharmaceutically acceptable salt thereof.
Preferred peptides of the immediately foregoing peptides are [Nle31]hPTH(1-34)NH2, [hArg27]hPTH(1-34)NH2, and [Dap1, Nle8,18, Tyr34]hPTH(1-34)NH2; or a pharmaceutically acceptable salt thereof.
In another aspect, the present invention is directed to a peptide of the formula (IV): ##STR00005##
provided that at least one of A5, A7, A8, A11, A15, A18, A22, A23, A24, A27, A28, A30, or A31 is Cha, or at least one of A3, A12, A16, A17, A18, A19, A22, A25, A26, A29, A30, or A34 is Aib; or a pharmaceutically acceptable salt thereof.
A preferred group of peptides of formula (IV) is where A22 is Phe or Cha; A23 is Phe or Cha; A25 is His; A26 is His; A27 is Leu or Cha; A28 is Ile or Cha; A29 is Ala; A30 is Glu or Lys; A31 is Ile or Cha; A32 is His; A33 is Thr; and A34 is Ala; or a pharmaceutically acceptable salt thereof. Two preferred groups of peptides of the immediately foregoing group of peptides is where at least one of A7 and A11 is Cha; or where at least one of A16 or A19 is Aib; or a pharmaceutically acceptable salt thereof.
Another preferred group of peptides of formula (IV), is where A22 is Glu, Aib, or Cha; A23 is Leu, Lys, or Cha; A25 is Aib or Glu; A26 is Aib or Lys; A28 is Leu, Lys, or Cha; A29 is Glu or Aib; A30 is Cha, Aib, or Lys, A31 is Leu, Cha, or Lys A32 is His; A33 is Thr; and A34 is Ala; or a pharmaceutically acceptable salt thereof. Two preferred groups of peptides of the immediately foregoing group of peptides is where at least one of A7 and A11 is Cha; or where at least one of A16 or A19 is Aib; or a pharmaceutically acceptable salt thereof.
In another aspect, this invention is directed to a peptide of the formula (V): ##STR00006##
A preferred group of peptides of formula (V) is where A22 is Glu, Aib, Acc, or Cha; A23 is Leu, Lys, Acc, or Cha; A25 is Aib or Glu; A26 is Aib or Lys, A28 is Leu, Lys, Acc, or Cha; A29 is Glu or Aib; A30 is Cha, Aib, Acc, or Lys; A31 is Leu, Cha, Acc, or Lys; A32 is His; A33 is Thr; and A34 is Ala; or a pharmaceutically acceptable salt thereof. Two preferred groups of peptides of the immediately foregoing group of peptides is where at least one of A7 and A11 is Cha; or where at least one of A16 or A19 is Aib, or a pharmaceutically acceptable salt thereof.
The following are examples of peptides of this invention as encompassed by formula (II); [Cha7]hPTH(1-34)NH2; [Cha11]hPTH(1-34)NH2; [Cha15]hPTH(1-34)NH2, [Cha7,11]hPTH(1-34)NH2; [Cha7,11, Nle8,18, Tyr34]hPTH (1-34)NH2; [Cha23]hPTH(1-34)NH2; [Cha24]hPTH(1-34) NH2; [Nle8,18, Cha27]hPTH(1-34)NH2, [Cha28]hPTH (1-34)NH2; [Cha31]hPTH(1-34)NH2; [Cha27]hPTH(1-34) NH2; [Cha27,29]hPTH(1-34)NH2; [Cha28]bPTH(1-34) NH2; [Cha28]hPTH(1-34)NH2; [Cha24,28,31]hPTH(1-34) NH2; [Aib16]hPTH(1-34)NH2; [Aib19]hPTH(1-34)NH2; [Aib34]hPTH(1-34)NH2; [Aib16,19]hPTH(1-34)NH2; [Aib16,19,34]bPTH(1-34)NH2; [Aib16,34]hPTH(1-34)NH2; [Aib19,34]hPTH(1-34)NH2; [Cha7,11, Nle8,18, Aib16,19, Tyr34]hPTH(1-34)NH2; [Cha7,11, Nle8,18,31, Aib16,19, Tyr34]hPTH(1-34)NH2; [Cha7, Aib16]hPTH(1-34)NH2;[Cha11, Aib16]hPTH(1-34)2, [Cha7, Aib34]hPTH(1-34)NH2; [Cha11, Aib34]hPTH(1-34)NH2; [Cha27, Aib16]hPTH(1-34) NH2; [Cha27, Aib34]hPTH(1-34)NH2; [Cha28, Aib16]hPTH (1-34)NH2; [Cha28, Aib34]hPTH(1-34)NH2; [Nle31]hPTH (1-34)NH2, [hArg27]hPTH(1-34)NH2; [Dap1, Nle8,18, Tyr34]hPTH(1-34)NH2; [Nle31]bPTH(1-34)NH2; [Nle31]hPTH(1-34)NH2, [hArg27]bPTH(1-34)NH2; [hArg27]hPTH(1-34)NH2; [Cha7,11, Aib19, Lys30]hPTH(1-34)NH2; [Aib12]hPTH(1-34)NH2, [Cha24,28,31, Lys30]hPTH(1-34) NH2; [Cha28,31]hPTH(1-34)NH2, [Cha7,11, Nle8,18, Aib34]hPTH(1-34)NH2; [Aib3]hPTH(1-34)NH2, [Cha8]hPTH (1-34)NH2; [Cha15]hPTH(1-34)NH2; [Cha7,11, Aib19]hPTH(1-34)NH2; [Cha7,11, Aib16]hPTH(1-34)NH2; [Aib17]hPTH(1-34)NH2; [Cha5]hPTH(1-34)NH2; [Cha7,11,15]hPTH(1-34)NH2; [Cha7,11, Nle8,18, Aib19, Tyr34]hPTH (1-34)NH2; [Cha7,11, Nle8,18, Aib19, Lys30, Tyr34]hPTH (1-34)NH2; [Cha7,11,15]hPTH(1-34)NH2; [Aib17]hPTH (1-34)NH2; [Cha7,11, Leu27]hPTH(1-34)NH2; [Cha7,11,15, Leu27]hPTH(1-34)NH2, [Cha7,11,27]hPTH(1-34)NH2; [Cha7,11,15,27]hPTH(1-34)NH2; [Trp15]hPTH(1-34)NH2; [Nal15]hPTH(1-34)NH2; [Trp15, Cha23hPTH(1-34)NH2; [Cha15,23]hPTH(1-34)NH2; [Phe7,11]hPTH(1-34)NH2; [Nal7,11]hPTH(1-34)NH2; [Trp7,11]hPTH(1-34)NH2, [Phe7,11,15]hPTH(1-34)NH2; [Nal7,11,15]hPTH(1-34)NH2; [Trp7,11,15]hPTH(1-34)NH2; and [Tyr7,11,15]hPTH(1-34) NH2.
The following are specific examples of peptides encompassed by one or more of formulas (III) to (V), hereinabove. [Cha7]hPTHrP(1-34)NH2; [Cha11]hPTHrP(1-34)NH2; [Cha7,11,15]hPTHrP(1-34)NH2; [Aib16, Tyr34hPTHrP(1-34) NH2; [Aib19]hPTHrP(1-34)NH2, [Aib16,19]hPTHrP(1-34) NH2; [Cha7,11, Aib16hPTHrP(1-34)NH2; [Cha7,11, Aib19]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26,27,30]hPTHrP(1-34)NH2; [Cha22,23, Glu25,29, Leu28,31, Lys26,30]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP(1-34)NH2; [Glu22,25,29, Lys23,26,30, Leu28,31]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26, Cha30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26, Aib30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,31, Lys26,28,30]hPTHrP(1-34)NH2; [Cha22,23,24,27,28,31, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Glu22,25,29, Cha23,24,28,31, Lys26,27,30]hPTHrP(1-34)NH2; [Glu22,25,29, Cha23,24,27,31, Lys26,28,30]hPTHrP(1-34)NH2; [Glu22,25,29, Lys23,26,30, Cha24,27,28,31]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26,27,30]hPTHrP(1-34)NH2; [Cha22, Leu23,31, Glu25,29, Lys26,28,30]hPTHrP(1-34)NH2; [Cha22, Leu23,26,30, Glu25,29, Leu28,31]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26, Aib30]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26,27,30, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Lys23,26,30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,31, Lys26,28,30, Aib29]hPTHrP(1-34)NH2; [Cha7,11, Glu22,25,29, Leu23,28,31, Lys26,30]hPTHrP(1-34) NH2; [Cha7,11,22, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP (1-34)NH2; [Cha7,11, Glu22,25,29, Leu23,28,31, Lys26,27,30]hPTHrP(1-34)NH2; [Cha7,11,22,23, Glu25,29, Leu28,31, Lys26,30]hPTHrP(1-34)NH2; [Cha7,11, Glu22,25,29, Lys23,26,30, Leu28,31]hPTHrP(1-34)NH2; [Cha7,11, Glu22,25,29, Leu23,31, Lys26,28,30]hPTHrP(1-34)NH2; [Cha7,11, Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP (1-34)NH2; [Cha7,11, Glu22,25,29, Leu23,28,31, Lys26, Aib30]hPTHrP(1-34)NH2; [Cha15, Glu22,25,29, Leu23,28,31, Lys26,30]hPTHrP(1-34)NH2; [Cha15,22, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Cha15, Glu22,25,29, Leu23,28,31, Lys26,27,30]hPTHrP(1-34)NH2; [Cha15,22,23, Glu25,29, Leu28,31, Lys26,30]hPTHrP(1-34)NH2; [Cha15, Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP(1-34)NH2; [Cha15, Glu22,25,29, Lys23,26,30, Leu28,31]hPTHrP(1-34) NH2; [Cha15, Glu22,25,29, Leu23,28,31, Lys26, Aib30]hPTHrP (1-34)NH2; [Cha15 Glu22,28,29, Leu23,31, Lys26,28,30]hPTHrP(1-34)NH2; [Cha15,30, Glu22,25,29, Leu23,28,31, Lys26]hPTHrP(1-34)NH2; [Cha7,8,22, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Cha7,8, Glu22,25,29, Leu23,28,31, Lys26,27,30]hPTHrP(1-34)NH2; [Cha7,8,22,23, Glu25,29, Leu28,31, Lys26,30]hPTHrP(1-34)NH2; [Cha7,8, Glu22,25,29, Leu23,28,31, Lys26,30]hPTHrP(1-34)NH2; [Cha7,8, Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP(1-34) NH2; [Cha7,8, Glu22,25,29, Lys23,26,30, Leu28,31]hPTHrP (1-34)NH2; [Cha7,8, Glu22,25,29, Leu23,28,31, Lys26, Aib30]hPTHrP(1-34)NH2. [Cha7,8, Glu22,25,29, Leu23,31, Lys26,28,30]hPTHrP(1-34)NH2; [Cha7,8,30, Glu22,25,29, Leu23,28,31, Lys26]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11,22, Met8, Asn10, His14, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11, Met8, Asn10, His14, Glu22,25,29, Leu23,28,31, Lys26,27,30]hPTHrP (1-34)NH2; [Ser1, Ile5, Cha7,11, Met8, Asn10, His14, Glu22,25,29, Leu23,31, Lys26,28,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11, Met8, Asn10, His14, Glu22,25,29, Lys23,26,30, Leu28,31]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11, Met8, Asn10, His14, Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP (1-34)NH2; [Ser1, Ile5, Cha7,11, Met8, Asn10, His14, Glu22,25,29, Leu23,28,31, Lys26, Aib30]PTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11,22,23, Met8, Asn10, His14, Glu25,29, Leu28,31, Lys26,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11,15, Met8, Asn10, His14]hPTHrP(1-34)NH2; [Ser1, Ile5, Met8, Asn10, Leu11, His14, Aib16]hPTHrP(1-34)NH2; [Ser1, Ile5, Met8, Asn10, Leu11,28,31, His14, Cha22,23, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,11, Met8, Asn10, His14, Glu22,25,29, Leu23,28,31, Lys26,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Met8, Asn10, His14 Cha15, Glu22,25,29, Leu23,28,31, Lys26,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Cha7,8, Asn10, His14, Glu22,25,29, Leu23,28,31, Lys26,30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys24,26,30]hPTHrP(1-34)NH2; [Aib23, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28,31, Aib25, Lys26,30]hPTHrP(1-34)NH2; [Glu22,24,29, Leu23,28,31, Aib26, Lys30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28, Lys26,30,31]hPTHrP(1-34)NH2; [Ser1, Ile5, Met8, Asn10, Leu11,23,28,31, His14, Cha22, Glu25,29, Lys26,30]hPTHrP(1-34)NH2, [Ser1, Ile5, Met8, Asn10, Leu11,2831, His14, Glu22,25,29, Lys23,26,30PTHrP(1-34)NH2; [Ser1, Ile5, Met8, Asn10, Leu11,23,28,31, His14, Glu22,25,29, Lys26,27,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Met8, Asn10, Leu11,23,31, His14, Glu22,25,29, Lys26,28,30]hPTHrP(1-34) NH2; [Ser1, Ile5, Met8 Asn10, Leu11,23,28,31, His14, Glu22,25, Aib29, Lys26,30]hPTHrP(1-34)NH2; [Ser1, Ile5, Met8, Asn10, Leu11,23,28,31, His14, Glu22,25,29, Lys26, Aib30]hPTHrP (1-34)NH2; or [Ser1, Ile5, Met8]hPTHrP(1-34)NH2 [Glu22,25, Ahc23, Lys26,30, Leu28,31, Aib29]hPTHrP(1-34) NH2; [Glu22,25, Leu23,28,31, Lys26,30, Ahc27, Aib29]hPTHrP (1-34)NH2; [Glu22,25, Leu23,28, Lys26,30, Aib29, Ahc31]hPTHrP(1-34)NH2, [Glu22,25, Cha23, Lys26, 30, Leu28,31, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30 Leu28, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Aib29]hPTHrP(1-34)NH2, [Ahc22, Leu23,28,31, Glu25, Lys26,30, Aib29]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Lys26, Aib29, Ahc30]hPTHrP(1-34)NH2; [Glu22,25, Cha23, Lys26,30, Aib29, Leu31]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28,31, Ahc24, Lys26,30, Aib29]hPTHrP(1-34) NH2; [Glu22,25, Leu23,31, Lys26,30, Ahc28, Aib29]hPTHrP (1-34)NH2; [Glu22,23, Leu23,28,3, Lys26, Aib29,30]hPTHrP (1-34)NH2; [Aib22,29, Leu23,28,31, Glu25, Lys26,30]hPTHrP (1-34)NH2; [Glu22,25, Leu23,28,31, Aib26,29, Lys30]hPTHrP (1-34)NH2; [Cha22, Ahc23, Glu25,29, Lys26,30, Leu28,31]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Ahc24, Glu25,29, Lys26,30]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26,30, Ahc27]hPTHrP(1-34)NH2; [Cha22, Leu23,31, Glu25,29, Lys26,30, Ahc28]hPTHrP(1-34)NH2; [Cha22, Leu23,28,31, Glu25,29, Lys26, Leu28, Ahc30]hPTHrP(1-34) NH2, [Cha22,23, Glu25,29, Lys26,30, Leu31]hPTHrP(1-34) NH2; [Cha22, Leu23,28, Glu25,29, Lys26,30, Ahc31]hPTHrP (1-34)NH2; [Cha22,23, Glu25,29, Lys26,30, Leu31]hPTHrP (1-34)NH2; [Cha22,23, Glu25,29, Lys26,30, Leu28]hPTHrP (1-34)NH2; [Cha22,23, Glu25,29, Lys26,30]hPTHrP(1-34) NH2; [Glu22, Leu23,28,31, Aib25,29, Lys26,30]hPTHrP(1-34) NH2; [Glu22,29, Ahc23, Aib25, Lys26,30, Leu28,31]hPTHrP (1-34)NH2; [Ahc22, Leu23,21,31, Aib25, Lys26,30, Glu29]hPTHrP(1-34)NH2; [Aib22,25, Leu23,28,31, Lys26,30, Glu29]hPTHrP (1-34)NH2; [Glu22,29, Leu23,28,31, Ahc24, Aib25, Lys26,30]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28,31, Aib25,26, Lys30]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28,31, Aib25, Lys26,30, Ahc27]hPTHrP(1-34)NH2; [Glu22,29, Leu23,31, Aib25, Lys26,30, Ahc28]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28, Aib25, Lys26,30, Ahc31]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28,31, Aib25,30, Lys26]hPTHrP(1-34)NH2; [Glu22,29, Leu23,28,31, Aib25, Lys26, Ahc30]hPTHrP(1-34) NH2; [Glu22,29, Cha23, Aib25, Lys26,30, Leu28,31]hPTHrP (1-34)NH2; [Glu22,29, Cha23, Aib25, Lys26,30, Leu31]hPTHrP(1-34)NH2; [Glu22,29, Cha23, Aib25, Lys26,30]hPTHrP(1-34)NH2; [Glu22,29, Cha23, Aib25, Lys26,30, Leu28]hPTHrP(1-34)NH2; [Glu22,25,29, Cha23, Lys26, Leu28,31, Aib30]hPTHrP(1-34)NH2; [Glu22,25,29, Cha23, Lys26, Aib30, Leu31]hPTHrP(1-34)NH2; [Glu22,25,29, Cha23, Lys26, Aib30]hPTHrP(1-34)NH2; [Glu22,25,29, Cha23, Lys26, Leu28, Aib30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Lys26, Ahc27, Aib30]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28,31, Ahc24, Lys26, Aib30]hPTHrP(1-34)NH2; [Ahc22, Leu23,28,31, Glu25,29, Lys26, Aib30]hPTHrP(1-34)NH2; [Aib22,30, Leu23,28,31, Glu25,29, Lys26]hPTHrP(1-34)NH2; [Glu22,25, Leu23,28, Lys26,30,31, Aib29]hPTHrP(1-34)NH2; [Cha22, Leu23,28, Glu25,29, Lys26,30,31]hPTHrP(1-34)NH2; [Ahc22, Leu23,28, Glu25,29, Lys26,30,31]hPTHrP(1-34)NH2; [Glu22,25,29, Leu23,28, Lys26,30,31, Ahc30]hPTHrP(1-34) NH2; [Glu22,25,29, Leu23,28,31, Lys26, Ahc30]hPTHrP(1-34) NH2; [Ahc22, Leu23,28,31, Glu25,29, Lys26,30]hPTHrP(1-34) NH2; [Glu22,25,29, Leu23,28, Lys26,30,31, Ahc27]hPTHrP (1-34)NH2.
In another aspect, the present invention is directed to a method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a compound of formula (I), (II), (III), (IV) or (V) or a pharmaceutically acceptable salt thereof, as defined hereinabove.
In another aspect, the present invention is directed to a method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a combination of a bisphosphonate or calcitonin and a compound of formula (I), (II), (III), (IV) or (V) or a pharmaceutically acceptable salt thereof, as defined hereinabove.
In another aspect, the present invention is directed to a pharmaceutical composition comprising a compound of formula (I), (II), (III), (IV) or (V) or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent.
In another aspect, the present invention is directed to a pharmaceutical composition comprising a compound of formula (I), (II), (III), (IV) or (V) or a pharmaceutically acceptable salt thereof as defined hereinabove, a bisphosphonate or calcitonin and a pharmaceutically acceptable carrier or diluent.
In another aspect, the present invention is directed to a method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula [Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP (1-34)NH2 or a pharmaceutically acceptable salt thereof.
In another aspect, the present invention is directed to a method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a combination of a bisphosphonate or calcitonin and a peptide of the formula [Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP (1-34)NH2 or a pharmaceutically acceptable salt thereof.
In another aspect, the present invention is directed to a pharmaceutical composition comprising a peptide of the formula [Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP (1-34)NH2 or a pharmaceutically acceptable salt thereof and a pharmaceutically acceptable carrier or diluent.
In another aspect, the present invention is directed to a pharmaceutical composition comprising a peptide of the formula [Glu22,25, Leu23,28,31, Aib29, Lys26,30]hPTHrP (1-34)NH2 or a pharmaceutically acceptable salt thereof, a bisphosphonate or calcitonin, and a pharmaceutically acceptable carrier or diluent.
In another aspect, the present invention is directed to a method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a peptide of the formula (VI): ##STR00007##
provided that at least one of A5, A7, A8, A11, A12, A15, A18, A22, A23, A24, A25, A26, A27, A28, A29, A30, or A31 is Acc; or a pharmaceutically acceptable salt thereof.
In another aspect, the present invention is directed to a method of treating osteoporosis in a patient in need thereof, which comprises administering to said patient a combination of bisphosphonate or calcitonin and a peptide of formula (VI), as defined hereinabove.
In another aspect, the present Invention is directed to a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent and a peptide of formula (VI), as defined hereinabove.
In another aspect, the present invention is directed to a pharmaceutical composition comprising a bisphosphonate or calcitonin, a pharmaceutically acceptable carrier or diluent, and a peptide of formula (VI), as defined hereinabove.
With the exception of the N-terminal amino acid, all abbreviations (e.g. Ala or A1) of amino acids in this disclosure stand for the structure of —NH—CH(R)—CO—, wherein R is a side chain of an amino acid (e.g., CH3 for Ala). For the N-terminal amino acid, the abbreviation stands for the structure of ═N—CH(R)—CO—, wherein R is a side chain of an amino acid, β-Nal, Nle, Dap, Cha, Nva, Amp, Pal, Ahc, and Aib are the abbreviations of the following α-amino acids; : β-(2-naphthyl)alanine, norleucine, α,β-diaminopropionic acid, cyclohexylalanine, norvaline, 4-amino-phenylalanine, β-(3-pyridinyl)alanine, 1-amino-1-cyclo-hexanecarboxylic acid, and α-aminoisobutyric acid, respectively. What is meant by Acc is an amino acid selected from the group of 1-amino-1-cyclopropanecarboxylic acid. , 1-amino-1-cyclobutanecarboxylic acid; , 1-amino-1-cyclopentanecarboxylic acid; , 1-amino-1-cyclohexanecarboxylic acid; , 1-amino-1-cycloheptanecarboxylic acid, 1-amino-1-cyclooctanecarboxylic acid, and 1-amino-1-cyclononanecarboxylic acid. In the above formula, hydroxyalkyl, hydroxyphenyl-alkyl, and hydroxynaphthylalkyl may contain 1-4 hydroxy substituents. Also, COE1 stands for —C═O.E1 —C═O.E1. Examples of —C═O.E1 —C═O.E1 include, but are not limited to, acetyl and phenylpropionyl.
A peptide of this invention is also denoted herein by another format, e.g., [Ahc7,11]hPTH(1-34)NH2, with the substituted amino acids from the natural sequence placed between the second set of brackets (e.g., Ahc7 for Leu7, and Ahc11 for Leu11 in hPTH). The abbreviation hPTH stands for human PTH; hPTHrP for human PTHrP, rPTH for rat PTH, and bPTH for bovine PTH. The numbers between the parentheses refer to the number of amino acids present in the peptide (e.g., hPTH(1-34) is amino acids 1 through 34 of the peptide sequence for human PTH). The sequences for hPTH (1-34), hPTHrP(1-34), bPTH(1-34), and rPTH(1-34) are listed in Nissenson, et al., Receptor, 3 193 (1993). The designation of “NH2” in PTH(1-34)NH2 indicates that the C-terminus of the peptide is amidated. PTH(1-34), on the other hand, has a free acid C-terminus.
Each of the peptides of the invention is capable of stimulating the growth of bone in a subject (i.e., a mammal such as a human patient). Thus, it is useful in the treatment of osteoporosis and bone fractures when administered alone or concurrently with antiresorptive therapy, e.g., bisphosphonate and calcitonin.
The peptides of this invention can be provided in the form of pharmaceutically acceptable salts. Examples of such salts include, but are not limited to, those formed with organic acids (e.g., acetic, lactic, maleic, citric, malic, ascorbic, succinic, benzoic, methanesulfonic, toluenesulfonic, or pamoic acid), inorganic acids (e.g., hydrochloric acid, sulfuric acid, or phosphoric acid), and polymeric acids (e.g., tannic acid, carboxymethyl cellulose, polylactic, polyglycolic, or copolymers of polylactic-glycolic acids).
A therapeutically effective amount of a peptide of this invention and a pharmaceutically acceptable carrier substance (e.g., magnesium carbonate, lactose, or a phospholipid with which the therapeutic compound can form a micelle) together form a therapeutic composition (e.g., a pill, tablet, capsule, or liquid) for administration (e.g., orally, intravenously, transdermally, pulmonarily, vaginally, subcutaneously, nasally, iontophoretically, or by intratracheally) to a subject. The pill, tablet, or capsule that is to be administered orally can be coated with a substance for protecting the active composition from the gastric acid or intestinal enzymes in the stomach for a period of time sufficient to allow it to pass undigested into the small intestine. The therapeutic composition can also be in the form of a biodegradable or nonbiodegradable sustained release formulation for subcutaneous or intramuscular administration. See, e.g., U.S. Pat. Nos. 3,773,919 and 4,767,628 and PCT Application No WO 94/15587. Continuous administration can also be achieved using an implantable or external pump (e.g., INFUSAID™ pump). The administration can also be conducted intermittently, e.g., single daily injection, or continuously at a low dose, e.g., sustained release formulation.
The dose of a peptide of the present invention for treating the above-mentioned diseases or disorders varies depending upon the manner of administration, the age and the body weight of the subject, and the condition of the subject to be treated, and ultimately will be decided by the attending physician or veterinarian.
Also contemplated within the scope of this invention is a peptide covered by the above generic formula for use in treating diseases or disorders associated with deficiency in bone growth or the like, e.g. osteoporosis or fractures.
Other features and advantages of the present invention will be apparent from the detailed description and from the claims.
Based on the description herein, the present invention can be utilized to its fullest extent. The following specific examples are to be construed as merely illustrative, and should not be construed as a limitation of the remainder of the disclosure in any way whatsoever. Further, all publications cited herein are incorporated by reference.
Structure
PTH(1-34) and PTHrP(1-34) have been reported to have two amphophilic alpha helical domains. See, e.g., Barden, et al., Biochem., 32:7126 (1992). The first ″-helix is formed between amino acid residues 4 through 13, while the second ″-helix is formed between amino acid residues 21 through 29. Some peptides of this invention contain the substitution of Acc for one or more residues within or near these two regions of PTH(1-34) and PTHrP(1-34), e.g., Ahc7 and Ahc11 within the first ″-helix or Ahc27 and Ahc28 within the second ″-helix; or Cha7 and Cha11 within the first α-helix or Cha27 and Cha28 within the second α-helix.
Synthesis
The peptides of the invention can be prepared by standard solid phase synthesis. See, e.g., Stewart, J. M., et al., Solid Phase Synthesis (Pierce Chemical Co., 2d ed. 1984). The following is a description of how [Glu22,25, Leu23,28, Lys26,30, Aib29, or Ahc31]hPTH(1-34)NH2 was prepared. Other peptides of the invention can be prepared in an analogous manner by a person of ordinary skill in the art.
1-[N-tert-Butoxycarbonyl-amino]-1-cyclohexanecarboxylic acid(Boc-Ahc-OH) was synthesized as follows.
19.1 g (0.133 mol) of 1-amino-1-cyclohexanecarboxylic acid (Acros Organics, Fisher Scientific, Pittsburgh, Pa) was dissolved in 200 ml of dioxane and 100 ml of water. To it was added 67 mg of 2N NaOH. The solution was cooled in an ice-water bath. 32.0 g (0.147 mol) of di-tert-butyl-dicarbonate was added to this solution. The reaction mixture was stirred overnight at room temperature. Dioxane was then removed under reduced pressure. 200 ml of ethyl acetate was added to the remaining aqueous solution The mixture was cooled in an ice-water bath. The pH of the aqueous layer was adjusted to about 3 by adding 4N HCl. The organic layer was separated. The aqueous layer was extracted with ethyl acetate (1×100 ml). Two organic layers were combined and washed with water (2×150 ml), dried over anhydrous MgSO4, filtered and concentrated to dryness under reduced pressure. The residue was recrystallized in ethyl acetate/hexanes, 9.2 g of a pure product was obtained, 29% yield. Other protected Acc amino acids can be prepared in an analogous manner by a person or ordinary skill in the art.
The peptide was synthesized on an Applied Biosystems (Foster City, Calif.) model 430A peptide synthesizer which was modified to do accelerated Boc-chemistry solid phase peptide synthesis. See Schnoize, et al., Int. J. Peptide Protein Res., 90:180 (1992). 4-Methylbenz-hydrylamine (MBHA) resin (Peninsula, Belmont, Calif.) with the substitution of 0.93 mmol/g was used. The Boc amino acids (Bachem, Calif., Torrance, Calif.; Nova Biochem., LaJolla, Calif.) was used with the following side chain protection: Boc-Ala-OH, Boc-Arg(Tos)-OH, Boc-Asp(OcHex)-OH, Boc-Glu(OcHex)-OH, Boc-His(DNP)-OH, Boc-Val-OH, Boc-Leu-OH, Boc-Gly-OH, Boc-Gln-OH, Boc-Ile-OH, Boc-Lys (2ClZ)-OH, Boc-Ahc-OH, Boc-Thr(Bzl)-OH, Boc-Ser (Bzl)-OH; and Boc-Aib-OH. The synthesis was carried out on a 0.14 mmol scale. The Boc groups were removed by treatment with 100% TFA for 2×1 min. Boc amino acids (2.5 mmol) were pre-activated with HBTU (2.0 mmol) and DIEA (1.0 mL) in 4 mL of DMF and were coupled without prior neutralization of the peptide-resin TFA salt. Coupling times were 5 min except for the Boc-Aib-OH, and its following residue Boc-Leu-OH, and Boc-Ahc-OH, and its following residue Boc-Lys(2Clz)-OH, wherein the coupling times for these four residues were 2 hrs.
At the end of the assembly of the peptide chain, the resin was treated with a solution of 20% mercaptoethanol/10% DIEA in DMF for 2×30 min. to remove the DNP group on the His side chain. The N-terminal Boc group was then removed by treatment with 100% TFA for 2×2 min. The partially-deprotected peptide-resin was washed with DMF and DCM and dried under reduced pressure. The final cleavage was done by stirring the peptide-resin in 10 mL of HF containing 1 mL of anisole and dithiothreitol (24 mg) at OEC for 75 min. HF was removed by a flow of nitrogen. The residue was washed with ether (6×10 mL) and extracted with 4N HOAc (6×10 mL).
The peptide mixture in the aqueous extract was purified on a reversed-phase preparative high pressure liquid chromatography (HPLC) using a reversed phase VYDAC™ C18 column (Nest Group, Southborough, Mass.) The column was eluted with a linear gradient (10% to 45% of solution B over 130 min.) at a flow rate of 10 mL/min (Solution A=0.1% aqueous TFA; Solution B=acetonitrile containing 0.1% of TFA). Fractions were collected and checked on analytical HPLC. Those containing pure product were combined and lyophilized to dryness, 85 mg of a white solid was obtained. Purity was >99% based on analytical HPLC analysis. Electro-spray mass spectrometer analysis gave the molecular weight at 3972.4 (in agreement with the calculated molecular weight of 3972.7).
The synthesis and purification of [Cha22, Leu23,2831, Glu25, Lys26,30, Ahc27, Aib29]hPTHrP(1-34)NH2 was carried out in the same manner as the above synthesis of [Glu22,25, Leu23,28, Lys26,30, Aib29, Ahc31]hPTHrP(1-34) NH2 The protected amino acid Boc-Cha-OH was purchased from Bachem, Calif. The purity of the final product was >99%, and the electron-spray mass spectrometer gave the molecular weight at 3997.2 (calculated molecular weight is 3996.8).
The following is a description of how [Aib34]hPTH(1-34) NH2 was prepared. The peptide, [Aib34]hPTH(1-34)NH2, was synthesized on an Applied Biosystems (Foster City, Calif.) model 430A peptide synthesizer which was modified to do accelerated Boc-chemistry solid phase peptide synthesis. See Schnoize, et al. Int. J. Peptide Protein Res., 90:180 (1992). 4-Methylbenz-hydrylamine (MBHA) resin (Peninsula, Belmont, Calif.) with the substitution of 0.93 mmol/g was used. The Boc amino acids (Bachem, Calif. Torrance, Calif.; Nova Biochem., LaJolla, Calif.) were used with the following side chain protection: Boc-Arg(Tos)-OH, Boc-Asp(OcHxl)-OH, Boc-Asn(Xan)-OH, Boc-Glu (OcHxl)-OH. Boc-His(DNP)-OH, Boc-Asn-GH, Boc-Val-OH, Boc-Leu-OH, Boc-Ser-OH, Boc-Gly-Oh, Boc-Met-OH, Boc-Gln-OH, Boc-Ile-OH, Boc-Lys(2ClZ)-OH, Boc-Ser(Bzl)-OH, and Boc-Trp(Fm)-OH The synthesis was carried out on a 0.14 mmol scale. The Boc groups were removed by treatment with 100% TFA for 2×1 min. Boc amino acids (2.5 mmol) were pre-activated with HBTU (2.0 mmol) and DIEA (1.0 mL) in 4 mL of DMF and were coupled without prior neutralization of the peptide-resin TFA salt. Coupling times were 5 min except for the Boc-Aib-OH and the following residue. Boc-Asn(Xan)-OH, wherein the coupling times were 20 min.
At the end of the assembly of the peptide chain, the resin was treated with a solution of 20% mercaptoethanol/10% DIEA in DMF for 2×30 min. to remove the DNP group on the His side chain. The N-terminal Boc group was then removed by treatment with 100% TFA for 2×2 min. After neutralization of the peptide-resin with 10% DIEA in DMF (1×1 min.). the formyl group on the side chain of Trp was removed by treatment with a solution of 15% ethanolamine/15% water/70% DMF for 2×30 min. The partially-deprotected peptide-resin was washed with DMF and DCM and dried under reduced pressure. The final cleavage was done by stirring the peptide-resin in 10 mL of HF containing 1 mL of anisole at 0° C. for 75 min. HF was removed by a flow of nitrogen. The residue was washed with ether (6×10 mL) and extracted with 4N HOAc (6×10 mL).
The peptide mixture in the aqueous extract was purified on a reversed-phase preparative high pressure liquid chromatography (HPLC) using a reversed phase VYDAC™ C18 column (Nest Group, Southborough, Mass.). The column was eluted with a linear gradient (10% to 45% of solution B over 130 min.) at a flow rate of 10 mL/min (Solution A=0.1% aqueous TFA; Solution B=acetonitrile containing 0.1% of TFA). Fractions were collected and checked on analytical HPLC. Those containing pure product were combined and lyophilized to dryness. 62.3 mg of a white solid was obtained Punty was >99% based on analytical HPLC analysis. Electro-spray mass spectrometer analysis gave the molecular weight at 4054.7 (in agreement with the calculated molecular weight of 4054.7).
The synthesis and purification of [Cha7,11]hPTH(1-34) NH2 was carried out in the same manner as the above synthesis of [Aib34]hPTH(1-34)NH2. The protected amino acid Boc-Cha-OH was purchased from Bachem, Calif. The purity of the final product was >98%, and the electron-spray mass spectrometer gave the molecular weight at 4197 0 (calculated molecular weight is 4196.9).
The following is a description of how [Glu22,25, Leu23,28, Lys26,30, Aib29, Ahc31]hPTH(1-34)NH2 was prepared. Other peptides of the invention can be prepared in an analogous manner by a person of ordinary skill in the art.
1-[N-tert-Butoxycarbonyl-amino]-1-cyclohexane-carboxylic acid (Boc-AHC-OH) was synthesized as follows:
19.1 g (0.133 mol) of 1-amino-1-cyclohexanecarboxylic acid (Acros Organics, Fisher Scientific, Pittsburgh, Pa) was dissolved in 200 ml of dioxane and 100 ml of water To it was added 67 mg of 2N NaOH. The solution was cooled in an ice-water bath. 32.0 g (0.147 mol) of di-tert-butyl-dicarbonate was added to this solution. The reaction mixture was stirred overnight at room temperature. Dioxane was then removed under reduced pressure. 200 ml of ethyl acetate was added to the remaining aqueous solution. The mixture was cooled in an ice-water bath. The pH of the aqueous layer was adjusted to about 3 by adding 4N HCl. The organic layer was separated. The aqueous layer was extracted with ethyl acetate (1×100 ml). Two organic layers were combined and washed with water (2×150 ml), dried over anhydrous MgSO4, filtered and concentrated to dryness under reduced pressure. The residue was recrystallized in ethyl acetate/hexanes 9.2 g of a pure product was obtained, 29% yield. Other protected Acc amino acids can be prepared in an analogous manner by a person or ordinary skill in the art.
The peptide was synthesized on an Applied Biosystems (Foster City, Calif.) model 430A peptide synthesizer which was modified to do accelerated Boc-chemistry solid phase peptide synthesis. See Schnoize, et al., Int. J. Peptide Protein Res., 90:180 (1992). 4-Methylbenz-hydrylamine (MBHA) resin (Peninsula, Belmont, Calif.) with the substitution of 0.93 mmol/g was used. The Boc amino acids (Bachem, Calif., Torrance, Calif.; Nova Biochem., LaJolla, Calif.) was used with the following side chain protection: Boc-Ala-OH, Boc-Arg(Tos)-OH, Boc-Asp(OcHex)-OH, Boc-Glu(OcHex)-OH, Boc-His(DNP)-OH, Boc-Val-OH. Boc-Leu-OH, Boc-Gly-OH, Boc-Gln-OH, Boc-Ile-OH, Boc-Lys (2ClZ)-OH, Boc-Ahc-OH, Boc-Thr(Bzl)-OH, Boc-Ser (Bzl)-OH; and Boc-Aib-OH. The synthesis was carried out on a 0.14 mmol scale. The Boc groups were removed by treatment with 100% TFA for 2×1 min. Boc amino acids (2.5 mmol) were pre-activated with HBTU (2.0 mmol) and DIEA (1.0 mL) in 4 mL of DMF and were coupled without prior neutralization of the peptide-resin TFA salt. Coupling times were 5 min except for the Boc-Aib-OH, and its following residue Boc-Leu-OH, and Boc-Ahc-OH, and its following residue Boc-Lys(2Clz)-OH, wherein the coupling times for these four residues were 2 hrs.
At the end of the assembly of the peptide chain, the resin was treated with a solution of 20% mercaptoethanol/10% DIEA in DMF for 2×30 min. to remove the DNP group on the His side chain. The N-terminal Boc group was then removed by treatment with 100% TFA for 2×2 min. The partially-deprotected peptide-resin was washed with DMF and DCM and dried under reduced pressure. The final cleavage was done by stirring the peptide-resin in 10 mL of HF containing 1 mL of anisole and dithiothreitol (24 mg) at 0° C. for 75 min. HF was removed by a flow of nitrogen. The residue was washed with ether (6×10 mL) and extracted with 4N HOAc (6×10 mL).
The peptide mixture in the aqueous extract was purified on a reversed-phase preparative high pressure liquid chromatography (HPLC) using a reversed phase VYDAC™ C18 column (Nest Group, Southborough, Mass.) The column was eluted with a linear gradient (10% to 45% of solution B over 130 min.) at a flow rate of 10 mL/min (Solution A=0.1% aqueous TFA; Solution B=acetonitrile containing 0.1% of TFA). Fractions were collected and checked on analytical HPLC. Those containing pure product were combined and lyophilized to dryness. 85 mg of a white solid was obtained. Purity was >99% based on analytical HPLC analysis. Electro-spray mass spectrometer analysis gave the molecular weight at 3972.4 (in agreement with the calculated molecular weight of 3972.7).
The synthesis and purification of [Cha22, Leu23,28,31, Glu25, Lys26,30, Ahc27, Aib29]hPTHrP(1-34)NH2 was carried out in the same manner as the above synthesis of [Glu22,25, Leu23,28, Lys26,30, Aib29, Ahc31]hPTHrP(1-34) NH2. The protected amino acid Boc-Cha-OH was purchased from Bachem, Calif. The purity of the final product was >99%, and the electron-spray mass spectrometer gave the molecular weight at 3997.2 (calculated molecular weight is 3996.8).
The full names for the abbreviations used above are as follows: Boc for t-butyloxycarbonyl, HF for hydrogen fluoride, Fm for formyl, Xan for xanthyl, Bzl for benzyl, Tos for tosyl, DNP for 2,4-dinitrophenyl, DMF for dimethylformamide, DCM for dichloromethane, HBTU for 2-(1H-Benzotnazol-1-yl)-1,1,3,3-tetramethyl uronium hexafluorophosphate, DIEA for diisopropylethylamine. HOAc for acetic acid, TFA for trifluoroacetic acid, 2ClZ for 2-chlorobenzyloxycarbonyl, and OcHex for O-cyclohexyl.
The substituents R1 and R2 of the above generic formula may be attached to the free amine of the N-terminal amino acid by standard methods known in the art. For example, alkyl groups, e.g., C1-12 alkyl, may be attached using reductive alkylation. Hydroxyalkyl groups, e.g., C1-12 hydroxyalkyl, may also be attached using reductive alkylation wherein the free hydroxy group is protected with a t-butyl ester. Acyl groups, e.g., COE1, may be attached by coupling the free acid, e.g., E1COOH, to the free amine of the N-terminal amino acid by mixing the completed resin with 3 molar equivalents of both the free acid and diisopropylcarbodiimide in methylene chloride for one hour and cycling the resulting resin through steps (a) to (f) in the above wash program. If the free acid contains a free hydroxy group, e.g., p-hydroxyphenylpropionic acid, then the coupling should be performed with an additional 3 molar equivalents of HOBT.
Other peptides of this invention can be prepared in an analogous manner by a person of ordinary skill in the art.
Functional Assays
A. Binding to PTH Receptor
The peptides of the invention were tested for their ability to bind to the PTH receptor present on the SaOS-2 (human osteosarcoma cells). SaOS-2 cells (American Type Culture Collection. Rockville, Md.; ATCC #HTB 85) were maintained in RPMI 1640 medium (Sigma, St. Louis, Mo.) supplemented with 10% fetal bovine serum (FBS) and 2 mM glutamine at 37EC in a humidified atmosphere of 5% CO2 in air. The medium was changed every three or four days and the cells were subcultured every week by trypsinization.
SaOS-2 cells were maintained for four days until they had reached confluence. The medium was replaced with 5% FBS in RPMI 1640 medium and incubated for 2 hrs at room temperature with 10×104 cpm mono-125I-[Nle8,18, Tyr34(3-125I)]bPTH(1-34)NH2 in the presence of a competing peptides of the invention at various concentrations between 10−11M to 10−4M. The cells were washed four times with ice-cold PBS and lysed with 0.1 M NaOH, and the radioactivity associated with the cells was counted in a scintillation counter. Synthesis of mono-125I-[Nle8,18, Tyr34(3-125I)bPTH(1-34)NH2 was carried out as described in Goldman, M. E., et al., Endocrinol., 123:1468 (1988).
The binding assay was conducted with various peptides of the invention, and the Kd value (half maximal inhibition of binding of mono-125I-[Nle8,18, Tyr34(3-125I)]bPTH(1-34) NH2) for each peptide was calculated.
As shown in Table I, all of the tested peptides had a high binding affinity for the PTH receptor on the SaOS-2 cell.
B. Stimulation of Adenylate Cyclase Activity
The ability of the peptides of the invention to induce a biological response in SaOS-2 cells were measured. More specifically, any stimulation of the adenylate cyclase was determined by measuring the level of synthesis of cAMP (adenosine 3′,5′-monophosphate) as described previously in Rodan, et al., J. Clin. Invest. 72: 1511 (1983) and Goldman, et al., Endocrinol., 123:1468 (1988). Confluent SAOS-2 cells in 24 wells plates were incubated with 0.5:Ci [3H] adenine (26.9 Ci/mmol, New England Nuclear, Boston, Mass.) in fresh medium at 37EC for 2 hrs, and washed twice with Hank's balanced salt solution (Gibco, Gaithersburg, Md.). The cells were treated with 1 mM IBMX [isobutylmethyl-xanthine, Sigma, St. Louis, Mo.] in fresh medium for 15 min, and the peptides of the invention were added to the medium to incubate for 5 min. The reaction was stopped by the addition of 1.2 M trichloroacetic acid (TCA) (Sigma, St. Louis, Mo.) followed by sample neutralization with 4N KOH. cAMP was isolated by the two-column chromatographic method (Salmon, et al. 1974, Anal. Biochem. 58, 541). The radioactivity was counted in a scintillation counter (Liquid Scintillation Counter 2200CA, PACKARD, Downers Grove, Ill.).
The respective EC50 values (half maximal stimulation of adenylate cyclase) for the tested peptides were calculated and shown in Table I. All tested peptides were found to be potent stimulators of adenylate cyclase activity, which is a biochemical pathway indicative as a proximal signal for osteoblast proliferation (e.g. bone growth).
TABLE I
PEPTIDE
Kd (μM)
EC50 (nM)
[Cha7,11]hPTH(1-34)NH2
0.01
0.6
[Cha23]hPTH(1-34)NH2
0.2
20
[Cha24]hPTH(1-34)NH2
0.1
10
[Nle8,18, Cha27]hPTH(1-34)NH2;
0.05
2
[Cha28]hPTH(1-34)NH2
0.05
2.5
[Cha31]hPTH(1-34)NH2
0.03
4
[Aib10]hPTH(1-34)NH2,
0.004
0.7
[Aib19]hPTH(1-34)NH2;
0.005
0.6
[Aib34]hPTH(1-34)NH2,
0.007
3
[Nle31]hPTH(1-34)NH2,
0.004
0.7
[hArg27]hPTH(1-34)NH2
0.007
1
[Dap, Nle8,18, Tyr34]hPTH(1-34)NH2
0.150
10
[Cha24,28,31, Lys30]hPTH(1-34)NH2;
0.5
7
[Cha7,11, Nle8,18, Tyr34]hPTH(1-34)NH2
0.006
0.6
[Cha7,11, Nle8,18, Aib16,19,
0.005
1.5
Tyr34]hPTH(1-34)NH2
[Cha7,11, Nle8,18,31, Aib16,19,
0.04
4
Tyr34]hPTH(1-34)NH2
[Cha11]hPTH(1-34)NH2
0.005
2
[Cha28,31]hPTH(1-34)NH2
0.06
7
[Cha7,11, Nle8,18,31, Aib34]hPTH(1-34)NH2
0.03
1.5
[Cha15]hPTH(1-34)NH2
0.005
1.3
[Cha7 11, Aib19]hPTH(1-34)NH2
0.007
0.5
[Cha7 11, Aib16]hPTH(1-34)NH2
0.004
1.1
[Aib16 19]hPTH(1-34)NH2
0.004
0.6
[Aib17]hPTH(1-34)NH2
0.005
2
[Aib3]hPTH(1-34)NH2
0.004
1.1
[Cha7,11, Aib19, Lys30]hPTH(1-34)NH2
0.004
2
[Cha7]hPTH(1-34)NH2
0.02
2.3
[Cha24,28,31]hPTH(1-34)NH2
1.0
30
[Aib17]hPTH(1-34)NH2
0.05
3
[Cha7,11,15]hPTH(1-34)NH2
0.01
1.4
TABLE II
PEPTIDE
Kd (μM)
EC50 (nM)
[Glu22,25, Leu23,28, Lys26,30, Aib29,
0.200
3.7
Ahc31]hPTHrP(1-34)NH2
[Glu22,25, Ahc23, Lys26,30, Leu28,31,
0.070
3.9
Aib29]hPTHrP(1-34)NH2
[Glu22,25, Leu23,28,31, Lys26,30, Ahc27,
0.230
3.0
Aib29]hPTHrP(1-34)NH2
[Glu22,25,29, Leu23,28,31, Lys26,
0.230
20
Ahc30]hPTHrP(1-34)NH2
[Cha22, Leu23,28,31, Glu25, Lys26,30, Ahc27,
0.060
2.0
Aib29]hPTHrP(1-34)NH2
[Glu22,25, Leu23,28,31, Ahc24, Lys26,30,
0.006
0.5
Aib29]hPTHrP(1-34)NH2
[Glu22,29, Leu23,28,31, Aib25, Lys26,30,
5
Ahc27]hPTHrP(1-34)NH2
[Glu22, Leu23,28,31, Aib25,29, Lys26,30,
2
Ahc27]hPTHrP(1-34)NH2
Ahc22, Leu23,28,31, Glu25, Lys26,30,
0.3
Aib29]hPTHrP(1-34)NH2
[Glu22,25, Leu23,31, Lys26,30, Ahc28,
0.5
Aib29]hPTHrP(1-34)NH2
[Cha22, Ahc23, Glu25, Lys26,30, Leu28,31,
0.4
Aib29]hPTHrP(1-34)NH2
Other Embodiments
It is to be understood that while the invention has been described in conjunction with the detailed description thereof, that the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the claims.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4656250, | Aug 05 1983 | Altana Pharma AG | [Nle8, Nle18, Tyr34 or Phe34 ]-h-PTH peptide derivatives |
5434246, | Mar 19 1992 | Takeda Chemical Industries, Ltd. | Parathyroid hormone derivatives |
5455329, | Feb 23 1989 | Gesellschaft fur Biotechnologische Forschung mbH (GBF) | DNA sequences coding for PTH variants, PTH variants, expression vector, bacterial host, use and therapeutic composition |
5457047, | Feb 23 1989 | Gesellschaft fur Biotechnologische Forschung mbH (GBF) | DNA Sequences coding for PTH variants, PTH variants, expression vector, bacterial host, use and therapeutic composition |
5589452, | Jul 14 1992 | SYNTEX U S A INC PATENT LAW AND LICENSING DEPARTMENT MAILSTOP A2-200 3401 HILLVIEW AVENUE | Analogs of parathyroid hormone and parathyroid hormone related peptide: synthesis and use for the treatment of osteoporosis |
5599792, | Jun 19 1992 | NPS Pharmaceuticals, Inc | Bone-stimulating, non-vasoactive parathyroid hormone variants |
5723577, | Mar 29 1996 | IPSEN PHARMA S A S | Analogs of parathyroid hormone |
5955574, | Jul 13 1995 | IPSEN PHARMA S A S | Analogs of parathyroid hormone |
5969095, | Jul 13 1995 | IPSEN PHARMA S A S | Analogs of parathyroid hormone |
6544949, | Jul 13 1995 | IPSEN PHARMA S A S | Analogs of parathyroid hormone |
7410948, | Jul 13 1995 | IPSEN PHARMA S A S | Analogs of parathyroid hormone |
AU6483496, | |||
EP293158, | |||
EP477885, | |||
EP561412, | |||
EP672057, | |||
EP415867, | |||
EP451867, | |||
EP748817, | |||
GB2269176, | |||
HU217843, | |||
HU9500110, | |||
HU9500115, | |||
JP6184198, | |||
WO9401460, | |||
WO9402510, | |||
WO9502610, | |||
WO9504752, | |||
WO9619246, | |||
WO9640775, | |||
WO9702834, | |||
WO9010067, | |||
WO9306846, | |||
WO9401460, | |||
WO9402510, | |||
WO9502610, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 19 2006 | Societe de Conseils de Recherches et d'Applications Scientifiques, S.A.S. | (assignment on the face of the patent) | / | |||
Jan 05 2007 | DONG, ZHENG XIN | Biomeasure, Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018775 | /0017 | |
Jan 11 2007 | Biomeasure, Incorporated | SOCIETE DE CONSEILS DE RECHERCHES ET D APPLICATIONS SCIENTIFIQUES, S A S | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 018823 | /0158 | |
Nov 28 2008 | SOCIETE DE CONSEILS DE RECHERCHES ET D APPLICATIONS SCIENTIFIQUES, S A S | IPSEN PHARMA S A S | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR NAME PREVIOUSLY RECORDED ON REEL 296336 FRAME 0777 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 037430 | /0194 | |
Nov 28 2008 | SOCIETE DE CONSEILS DE RECHERCHES ET D APPLICATION SCIENTIFIQUES S C R A S | IPSEN PHARMA S A S | CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS PREVIOUSLY RECORDED ON REEL 023034 FRAME 0251 ASSIGNOR S HEREBY CONFIRMS THE ADDRESS SHOULD BE 65 QUAI GEORGES GORSE, 92100 BOULOGNE-BILLANCOURT, FRANCE | 029636 | /0777 | |
Nov 28 2008 | SOCIETE DE CONSEILS DE RECHERCHES ET D APPLICATION SCIENTIFIQUES S C R A S | IPSEN PHARMA S A S | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 023034 | /0251 |
Date | Maintenance Fee Events |
Jun 25 2009 | ASPN: Payor Number Assigned. |
Dec 27 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 03 2017 | REM: Maintenance Fee Reminder Mailed. |
Jul 26 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 14 2012 | 4 years fee payment window open |
Jan 14 2013 | 6 months grace period start (w surcharge) |
Jul 14 2013 | patent expiry (for year 4) |
Jul 14 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 14 2016 | 8 years fee payment window open |
Jan 14 2017 | 6 months grace period start (w surcharge) |
Jul 14 2017 | patent expiry (for year 8) |
Jul 14 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 14 2020 | 12 years fee payment window open |
Jan 14 2021 | 6 months grace period start (w surcharge) |
Jul 14 2021 | patent expiry (for year 12) |
Jul 14 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |