A method of forming a mold having cavities for molding loop-engageable, hook-shaped fastener elements, includes: supporting a first plate having an outer surface that defines a plane; manipulating a material-cutting beam of a laser along a predetermined curved profile to cut a cavity into the outer surface of the first plate, the predetermined curved profile being generally hook-shaped, the cavity defined by a wall extending into the first plate from the outer surface; in a series of subsequent actions, repeatedly indexing the first plate relative to the laser to direct the material-cutting beam at further positions on the first plate and repeating the step of manipulating the material-cutting beam of the laser relative to the first plate to form a series of cavities, each having a hook-shaped profile; and positioning a second plate adjacent the outer surface of the first plate, the second plate providing a side wall surface for each of the cavities of the first plate, the first plate and the second plate in combination forming a mold having cavities for molding loop-engageable, hook-shaped fastener elements. Various methods for aligning such mold plates in a fastener element molding apparatus are also provided. A hook product includes a stem portion integrally molded with and extending from a sheet-form base to a distal end, the stem portion having a planar side; and a crook portion extending from the distal end of the stem portion to overhang the sheet-form base in an overhang direction, the crook portion having a flat planar side co-planar with the planar side of the stem, and an upper surface extending upward from an upper extent of the planar side of the crook portion to an apex.
|
1. A method of forming a mold having cavities for molding loop-engageable, hook-shaped fastener elements, the method comprising:
(a) supporting a first plate having an outer surface that defines a plane,
(b) manipulating a relative position of a material-cutting beam of a laser with respect to said first plate along a predetermined curved profile to cut a cavity into said outer surface of said first plate, said predetermined curved profile being generally hook-shaped, the cavity defined by a wall extending into said first plate from said outer surface;
(c) in a series of subsequent actions, repeatedly indexing the first plate relative to the laser to direct the material-cutting beam at further positions on the first plate and repeating the step of manipulating the material-cutting beam of the laser relative to the first plate to form a series of cavities, each having a hook-shaped profile; and
(d) positioning a second plate adjacent said outer surface of said first plate, said second plate providing a side wall surface for each of said cavities of said first plate, said first plate and said second plate in combination forming a mold having cavities for molding loop-engageable, hook-shaped fastener elements.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
providing an alignment shell defining a circular aligning surface, and at least one aligning bar; and
arranging the plates in said stack-form with each plate being supported on an outer circumferential surface by said aligning surface, said aligning bar extending through an aligning hole in each mold plate.
11. The method of
12. The method of
13. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
|
This application is a continuation-in-part of U.S. Ser. No. 09/341,908, filed May 8, 2002, now U.S. Pat. No. 6,533,981 which claims priority through PCT Application No. US98/01053, filed Jan. 20, 1998, from U.S. Continuation-in-Part application Ser. No. 08/926,517, filed Sep. 10, 1997, which issued as U.S. Pat. No. 6,039,556 on Mar. 21, 2000. Continuation-in-part of U.S. Ser. No. 09/341,908, filed as application No. PCT/US98/01053 on Jan. 20, 1998, now U.S. Pat. No. 6,533,981, which is a continuation-in-part of application Ser. No. 08/926,517, filed on Sep. 10, 1997, now U.S. Pat. No. 6,039,556, which is a continuation-in-part of application Ser. No. 08/786,226, filed on Jan. 21, 1997, now U.S. Pat. No. 5,971,738.
This invention relates to molding features that are integral with a base, and has particular application to the production of fastener elements for touch fasteners and the like.
Hook elements for hook-and-loop touch fasteners and other products are effectively produced by the machine and method of Fischer U.S. Pat. No. 4,794,028. In commercial production, a mold roll is formed by a large number of thin, disk-shaped mold rings (sometimes called mold plates) and spacer rings which are stacked concentrically about a central barrel.
Discrete products are also injection molded with fastener elements extending from a base surface by employing, as part of the mold, a series of stacked mold plates defining an array of mold cavities.
At the periphery of the mold rings or mold plates are cavities for molding the hook elements. In current production machines each cavity of a mold ring has been formed, one at a time, by wire electro-discharge machining (EDM). In the wire EDM process, an electrical discharge between a wire and the plate removes material from the plate while the wire is moved along a specified path to cut a profile through the mold plate. The minimum radius arc that can be cut is determined by the radius of the EDM wire.
Molten resin is forced into the mold cavities, tending to raise the temperature of the mold rings. In practice of the Fischer method, a fluid coolant is circulated through cooling passages within the barrel on which the rings are mounted to remove the heat from the rings.
In this way an appropriate temperature of the mold cavities is maintained so that the product becomes sufficiently solid that it can be withdrawn on a continuous basis, typically without opening the mold cavities.
In one aspect, the invention provides a method of forming a mold having cavities for molding loop-engageable, hook-shaped fastener elements. The method includes: supporting a first plate having an outer surface that defines a plane; manipulating a material-cutting beam of a laser along a predetermined curved profile to cut a cavity into the outer surface of the first plate, the predetermined curved profile being generally hook-shaped, the cavity defined by a wall extending into the first plate from the outer surface; in a series of subsequent actions, repeatedly indexing the first plate relative to the laser to direct the material-cutting beam at further positions on the first plate and repeating the step of manipulating the material-cutting beam of the laser relative to the first plate to form a series of cavities, each having a hook-shaped profile; and positioning a second plate adjacent the outer surface of the first plate, the second plate providing a side wall surface for each of the cavities of the first plate, the first plate and the second plate in combination forming a mold having cavities for molding loop-engageable, hook-shaped fastener elements.
Variations of this aspect of the invention can include one or more of the following features. The step of manipulating a material-cutting beam of a laser to cut a cavity includes positioning the material-cutting beam at an acute angle relative to the plane defined by the upper surface of the first plate to form at least a portion of the wall defining the cavity at a corresponding acute angle relative to the plane. The step of manipulating the material-cutting beam of the laser to cut the cavity includes cutting only partially through the first plate, a remaining portion of the first plate providing a second side surface of the cavity, opposite the side surface formed by the second plate. The method further includes a step of forming a series of cavities on the second plate, the cavities of the second plate being of mirror image relative to the cavities of the first plate, the step of positioning the second plate adjacent the outer surface of the first plate including aligning the cavities of the first plate with the cavities of the second plate to form a series of hook-shaped cavities, each having one side surface formed by a remaining portion of the second plate and an opposite side surface formed by a remaining portion of the first plate. The second plate has opposite planar surfaces, the method further includes a step of forming a series of cavities extending into the second plate from one of the opposite planar surfaces, the step of positioning the second plate adjacent the outer surface of the first plate including aligning a non-cavitated portion of one of the opposite planar surfaces of the second plate with each of the cavities of the first plate, the second plate providing a planar side wall for each of the cavities of the first plate. The step of manipulating a metal-cutting beam of a laser to cut a cavity includes cutting completely through the first plate, the wall of the cavity extending from the outer surface of the first plate to an opposite outer surface of the first plate, the method further including a step of positioning a third plate adjacent the opposite outer surface of the first plate, the second plate and the third plates defining opposite side surfaces of each of the cavities. The series of mold cavities is arranged on a circular periphery to define a mold ring.
In another aspect, the invention provides a method of forming a mold plate for forming at least a portion of an adjacent series of hook-defining mold cavities, the mold plate provided for assembly with additional plates to form a molding apparatus for molding a fastener member having loop-engaging hook fastener elements extending from a base. The method includes: supporting a metal plate to expose a planar outer surface of the metal plate; controllably directing a metal-cutting beam of a laser along a predetermined path to cut the metal plate to form the mold plate, the pre-determined path requiring the metal-cutting beam to cut completely through a portion of the metal plate to define a peripheral edge surface of the mold plate for molding a portion of the base of the fastener member, the predetermined path further requiring the metal-cutting beam to cut into the planar upper surface of the metal plate at predetermined intervals to define a series of cavities in the mold plate for forming the loop-engageable hook fastener elements of the fastener member, each of the cavities being defined by a wall extending into the mold plate from the planar upper surface and extending into the mold plate from the peripheral edge surface.
Variations of this aspect of the invention can include one or more of the following features. The metal-cutting beam is controllably directed to cut the metal plate so that at least a portion of the wall of each of the series of cavities forms an acute angle relative to the planar outer surface. The metal-cutting beam is controllably directed to cut the metal plate so that each of the series of cavities is defined by a wall extending from the planar outer surface completely through to an opposite outer surface of the metal plate.
In another aspect, the invention provides a method of forming a fastener member having a plurality of loop-engaging fastener elements extending from a base. The method includes: (a) providing a metal plate having a planar surface; (b) cutting the metal plate with a beam of energy from a laser to form a mold ring having a peripheral edge surface, the beam of energy articulated in a pre-determined manner along a curved path to form a series of cavities in the mold ring, each cavity of the series having a wall formed by the beam of energy that extends inwardly from the peripheral edge surface and extends inwardly from the planar surface of the mold ring; (c) repeating steps (a) and (b) to form a plurality of mold rings; (d) assembling the plurality of mold rings in a stack-form to provide a molding apparatus with an exposed outer surface including the peripheral edge surface of each mold ring and the series of cavities extending inwardly therefrom; (e) introducing molten thermoplastic resin onto the exposed outer surface of the molding apparatus and into the series of cavities, the peripheral edge surfaces shaping the thermoplastic resin to form a surface of the base of the fastener member, the series of cavities shaping the thermoplastic resin to form the plurality of loop-engaging fastener elements of the fastener member extending from the base; and (f) removing the thermoplastic resin in an at least partially solidified state from the molding apparatus to provide the fastener member.
Variations of this aspect of the invention can include one or more of the following features. The step of assembling the mold plates further includes providing additional flat plates adjacent the mold rings in the stack-form of the molding apparatus, the additional flat plates forming at least one side of some of the plurality of the loop-engaging fastener elements of the fastener member. At least one of the mold rings has laser cut cavities that are a mirror image of the cavities of another of the mold rings, the one and the another of the mold rings assembled adjacent each other in the molding apparatus so that their respective cavities mate to form opposite sides of a loop-engaging fastener when filled with thermoplastic resin. The step of cutting the metal plate with a beam of energy from a laser to form a mold ring further includes controllably directing the beam of energy of the laser to cut the metal plate to define the peripheral edge surface of the mold ring. The step of cutting the metal plate with a beam of energy from a laser to form a mold ring further includes controllably directing the beam of energy of the laser to cut the metal plate to define an alignment hole in the mold ring. The step of assembling the mold rings in a stack-form to provide a molding apparatus further includes: providing an alignment shell defining a circular aligning surface, and at least one aligning bar; and arranging the rings in the stack-form with each ring being supported on its outer circumferential surface by the aligning surface, the aligning bar extending through a the aligning hole in each mold ring.
In yet another aspect, the invention provides a method of aligning a multiplicity of thin, disk-shaped mold rings, each having an array of aligning holes and an outer circumferential surface, to form a mold roll. The method includes: providing an alignment shell defining a circular aligning surface, and at least one aligning bar; stacking the rings together to form a stack, each ring being supported on its outer circumferential surface by the aligning surface, with the aligning bar extending through a the aligning hole in each ring; axially compressing the stack of rings to maintain the radial alignment provided by the circular aligning surface; and removing the aligned stack of rings from the alignment shell.
Variations of this aspect of the invention can include one or more of the following features. The mold plates are round and the step of forming includes laser-cutting the outer edges of the mold plates. The step of stacking includes axially stacking the round mold plates to form a mold roll.
In another aspect, the invention provides a hook product for a hook and loop fastening system, the hook product including a plurality of hooks extending from a common sheet-form base. Each of the hooks has a stem portion and a crook portion. The stem portion is integrally molded with and extends from the sheet-form base to a distal end, and has a planar side. The crook portion extends from the distal end of the stem portion to overhang the sheet-form base in an overhang direction. The crook portion has a flat planar side coplanar with the planar side of the stem, and an upper surface extending upward from an tipper extent of the planar side of the crook portion to an apex.
Preferably, the upper surface extends at an angle of at least 30 degrees with respect to the base, at the uppermost region of the crook portion.
Preferably, the flat planar side of the crook portion has a width, at the uppermost region of the crook portion, of at least 50 percent of the overall width of the hook.
In some cases, the crook portion also includes an opposite side, the apex being located at one of the sides of the crook portion.
In some embodiments, the crook portion further includes a second upper surface extending from the second side of the crook portion to the apex, which may be located between the first and second sides of the crook portion.
In some examples, the crook portion also has a first lower surface that, in a cross-section taken perpendicular to the base and the first side surface through an uppermost region of an underside of the crook portion, extends downward from the first side surface of the crook portion. In some cases, the crook portion also has a second lower surface that, in the same cross-section, extends downward from the second side surface of the crook portion to intersect the first lower surface.
Preferably, the upper surface extends at an angle of at least 30 degrees with respect to the base, at the uppermost region of the crook portion.
Preferably, the flat planar side of the crook portion has a width, at the uppermost region of the crook portion, of at least 50 percent of the overall width of the hook.
The invention provides an advantageous hook product and advantages in the design and manufacture of fastening elements and hooks of such products by allowing great design flexibility in selecting and producing cavity shapes for forming such fastening elements. This design flexibility allows for the manufacture of fastening elements that are particularly well-suited for their intended applications because the base, stem and engaging head, or crook, design of such fastening elements can be specifically tailored to accommodate expected strength and/or engageability requirements, such as, for example, those presented by low-loft, nonwoven mating loop materials.
The invention further provides advantages in the manufacture of fastening elements by providing greater precision and accuracy in the construction and assembly of the various pieces that form the molding apparatus from which such fastening elements are manufactured. These construction and assembly advances provide for efficiency and reliability gains in the manufacture of fastening products.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
The mold roll 1 has miniature hook form mold cavities around its periphery for forming hook projections on an extruded strip-form touch fastener product 4. Mold roll 1 comprises many annular, thin mold rings, for instance of 0.006 to 0.020 inch thickness, held together as a stack. Heat-softened synthetic resin 5 is forced into the cavities under pressure. In a continuous process, the hook-form projections at least partially solidfy in the mold cavities, and are then pulled out of the cavities in area 8 after the product has cooled to a temperature at which the projections have solidified sufficiently to be pulled intact out of their mold cavities, remaining integral with the base sheet of the product. The projections are pulled out of mold roll 1 by passing the product around an idler roll 44, and from there to the takeup assembly 50.
In the present invention, the individual mold rings 9 of mold roll 1 are aligned and stacked axially around a common shaft 15. Rings 9 are held together under axial compression by an array of tie rods 16 extending through aligned holes in the stack of rings, running parallel to shaft 15 and tensioned by threaded nuts 17 at each end.
An array of many coolant passages 22 pass through mold roll 1 near the periphery of mold rings 9 for improved cooling of the mold cavities at the periphery of the mold roll. In one configuration, cooling fluid is pumped into the mold roll through an annular inlet 60 in shaft 15, and passes through shaft holes 62 and passages 64 of an inlet manifold 26. From the inlet manifold, the coolant passes through the mold roll along cooling passages 22 to an outlet manifold 25 at the other end of the mold roll, which also has passages 64 to direct the coolant through shaft holes 65 and a return passage 66 in shaft 15, to outlet 68.
Referring to
As seen in
An advantage of forming mold cavities 2 such that they do not extend through the thickness of mold ring 9 is that they may be used to form features with at least one curved side, formed by a concave surface 20. The resulting tapered and convex nature of the hooks, as shown in
In other embodiments (not shown), the mold cavities extend through the thickness of the mold rings. In these configurations, spacer rings void of mold cavities are stacked between mold rings to enclose the mold cavities that are otherwise defined in the mold rings. In yet another embodiment, mold cavities are formed on both sides of some mold rings, the array of mold cavities on the two sides of the ring being circumferentially offset to avoid interference between mold cavities on mating rings. In another preferred embodiment a mold cavity for a given feature is formed by accurately aligned cavity portions in two or more mold rings to form a single mold cavity.
Referring to
In other preferred embodiments, especially those involving large hook elements and other features, the mold cavities are formed with PC techniques by etching through the thickness of the sheet, e.g., as illustrated by cavity 2′ of
An advantage of the PC process is that all of the features on a mold ring 9, including the inner and outer diameters, coolant holes 21 and mold cavities 2, 2′ can be advantageously produced at the same time or in an appropriate sequence, using precisely positioned masks in accordance with general photo-lithographic techniques, as employed e.g., in the semiconductor industry. In some cases, for instance, one side of a sheet of mold ring stock is appropriately masked to etch all of the features to the depth of the mold cavities 2, and the other side of the sheet is masked by a system that holds registration to complete the etching of the inner and outer diameters and coolant holes 21 through the thickness of mold ring 9.
Referring to
In another embodiment, illustrated in
Programmable articulation of head 234 relative to sheet 236 allows for great design flexibility in choosing the shape of a hook-forming cavity 240 formed by emitted beam 231. Particularly, the angle of beam 231 relative to sheet 236 is manipulable to form mold ring features such as peripheral edges, coolant passages, ring alignment holes or features, and/or hook forming cavities having walls angled relative to a plane defined by outer side surface 242 of ring sheet stock 236. Moreover, as illustrated in
Referring to
In an alternative embodiment (not shown), the rings are aligned with an expandable center shaft.
In molding machines that employ substantially the Fischer process, other systems from that shown in
Shown in
As illustrated in
An advantage of forming mold surfaces that do not extend through the mold plate is that they may be used to form fastener elements with at least one convex surface which may contribute to the penetrability of the elements into shallow loops, such as those presented by non-woven fabrics. In this case, particularly close control of the deposition of laser energy is maintained by appropriate machine controls to limit the vaporization of the plate material to produce, for example, the concave mold surface 20 shown in
Referring to
Fastener elements formed with these laser machined surfaces smaller than those previously formed with mold surfaces produced by wire EDM methods. For instance, small fastener elements having an overall height of 0.020 inch, or even smaller elements, for example, having a height of the order of 0.008 inch, are readily produced with cavities formed by this method. Such small hooks can be used for engaging loop materials with low-lying loops as found in non-woven fabrics.
In the embodiment shown in
In
As illustrated in
Referring specifically to
Hook 250, and other such tapered hooks with angled outer surfaces can be produced, for example, by the techniques illustrated in
Alternatively, as illustrated in
As another example, a mold ring is, e.g., laser cut to form a multi-headed hook 260′ (
Other complex shapes with varying angled surfaces are also possible. For example, as illustrated in
The ability to shape hook-forming cavities with complex angled walls that transition in angle and depth along the path of the cavity provides distinct advantages. For example, having a tapered, angled-surfaced hook tip allows the tip of the hook to engage loop elements of relatively low loft, e.g., certain nonwoven loop materials. Simultaneously, it is advantageous to have a relatively thicker hook base and hook neck portion to provide overall hook strength and durability, and to provide hook resistance to disengagement of engaged loop fibers. The ability to cut hook-forming cavities of complex shape by using laser-machining techniques allows the hook designer to tailor the hook shape to the particular requirements of a given application. Further, the computer-controlled laser cutting of mold plate cavities provides an accurate, repeatable process for producing fastener member tooling.
The moldable resin may be any moldable plastic material depending upon the intended application for the fastener element. Currently, polypropylene is preferred. Nylon, polyesters, polyethylene, propylene, polyethylene and copolymers thereof, or other thermoplastic resins, may also be used.
With laser machining methods, mold surfaces can be cut through the thickness of a mold plate at speeds of up to one circumferential inch per minute. A finished mold plate can typically be machined in less than one hour. In applications when close control of the cavity surface depth is desired, a pulsed laser is preferred.
To provide very smooth surface finishes on laser-machined mold surfaces, such that the solidified hooks are more readily released, the laser-machined mold plates are immersed in a chemical etchant which preferentially removes mold plate material of the microscopic asperities left by the laser-machining process. Finished mold surfaces with a roughness of 63 microinches, for instance, have been found to acceptably release molded fastener elements.
The embodiments are within the scope of the claims. For instance, mold surfaces can be formed on both sides of some mold plates, the array of mold cavities on the two sides of the plate being circumferentially offset to avoid interference between mold cavities on mating plates. Multiple mold plate blanks can also be stacked together, with features extending through the thickness of the plates laser-machined simultaneously through all stacked plates. These and other features and advantages will be understood from the following claims, taken in conjunction with the foregoing specification and accompanying drawings.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, individual mold rings can be formed using any combination of the EDM, photochemical etching, and laser machining techniques disclosed herein. Accordingly, other embodiments are within the scope of the following claims.
Harvey, Andrew C., Formato, Richard M., Jens, Stephen C., Gallant, Christopher M.
Patent | Priority | Assignee | Title |
10864662, | Jul 11 2017 | Velcro IP Holdings LLC | Forming fastener elements |
11801624, | Jul 11 2017 | Velcro IP Holdings LLC | Forming fastener elements |
8522407, | Oct 26 2007 | APLIX | Insertion block for the formation of a hook field on an injection-moulded object, and a moulded object comprising a hook field of this type |
Patent | Priority | Assignee | Title |
3027595, | |||
3031730, | |||
3089191, | |||
3136026, | |||
3261069, | |||
3312583, | |||
3408705, | |||
3555601, | |||
3752619, | |||
3907486, | |||
4261692, | Nov 01 1979 | Davy McKee Corporation | Roll press for forming briquettes |
4573893, | Apr 02 1984 | FIRST NATIONAL BANK OF CHICAGO, THE | Extrusion die with external and internal cooling means |
4587700, | Jun 08 1984 | The Garrett Corporation | Method for manufacturing a dual alloy cooled turbine wheel |
4725221, | May 23 1986 | John H. Blanz Company, Inc. | Improved machine for continuously producing an element of a separable fastener |
4775310, | Apr 16 1984 | VELCRO INDUSTRIES B V | Apparatus for making a separable fastener |
4794028, | Apr 16 1984 | VELCRO INDUSTRIES B V | Method for continuously producing a multi-hook fastner member and product of the method |
4872243, | Apr 16 1984 | Velcro Industries B.V. | Multi-hook fastener member |
4894060, | Jan 11 1988 | Minnesota Mining and Manufacturing Company | Disposable diaper with improved hook fastener portion |
4984339, | Oct 20 1988 | Velcro Industries B.V.; VELCRO INDUSTRIES B V , AMSTERDAM, NETHERLANDS, A NETHERLANDS CORP | Hook for hook and loop fasteners |
5031483, | Oct 06 1989 | EDMOND DANTES HOLDING LLC | Process for the manufacture of laminated tooling |
5038469, | Aug 22 1989 | Masuda Seisakusho Co., Ltd. | Method of making a porous roll assembly |
5064537, | Apr 16 1987 | THERMO BLACK CLAWSON INC , A CORPORATION OF DELAWARE | Seamless screen cylinder with laser cut openings |
5131119, | Jul 03 1990 | YKK Corporation | Hook structure for integrally molded surface fastener |
5174937, | Sep 05 1987 | Canon Kabushiki Kaisha | Method for molding of substrate for information recording medium and method for preparing substrate for information recording medium |
5326612, | May 20 1991 | The Procter & Gamble Company | Nonwoven female component for refastenable fastening device and method of making the same |
5339499, | Feb 16 1993 | Velcro Industries B.V. | Hook design for a hook and loop fastener |
5361462, | Apr 24 1992 | YKK Corporation | Molded surface fastener |
5580466, | Apr 14 1993 | Hitachi Construction Machinery Co., Ltd. | Metal plate processing method, lead frame processing method, lead frame, semiconductor device manufacturing method, and semiconductor device |
5688418, | Feb 24 1994 | Mitsubishi Denki Kabushiki Kaisha | Method and apparatus for laser cutting |
5705254, | Mar 10 1994 | Canon Kabushiki Kaisha | Plastic molded article with a finished surface appearance |
5792411, | Jun 11 1993 | Minnesota Mining and Manufacturing Company | Laser machined replication tooling |
5884374, | Nov 20 1997 | Velcro BVBA | Fastener members and apparatus for their fabrication |
5971738, | Jan 21 1997 | VELCRO INDUSTRIES B V | Continuous molding of fasteners and other features |
6039556, | Jan 21 1997 | Velcro BVBA | Stackable mold plates having arrays of laser-cut mold surfaces at their edges |
6051103, | Dec 25 1997 | Aikawa Iron Works Co., Ltd. | Paper-making screen apparatus |
6061881, | Jan 20 1997 | YKK Corporation | Molded engaging member for surface fastener |
6083411, | Mar 31 1995 | Sony Corporation | Method for forming a hole and method for forming nozzle in orifice plate of printing head |
6163939, | Jun 06 1996 | Velcro BVBA | Molding of fastening hooks and other devices |
6190594, | Mar 01 1999 | 3M Innovative Properties Company | Tooling for articles with structured surfaces |
6287665, | Nov 09 1996 | GOTTLIEB BINDER GMBH & CO | Method and device for producing a hook-and-pile type closure part from thermoplastic plastics |
6433303, | Mar 31 2000 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Method and apparatus using laser pulses to make an array of microcavity holes |
6489003, | Oct 03 1997 | 3M Innovative Properties Company | Elastic fastener |
973380, | |||
EP709038, | |||
EP1042971, | |||
EP1616656, | |||
FR2801177, | |||
JP10201382, | |||
JP10202382, | |||
WO15069, | |||
WO9429070, | |||
WO9501863, | |||
WO9833131, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 22 2006 | Velcro Industries B.V. | (assignment on the face of the patent) | / | |||
Apr 15 2016 | VELCRO INDUSTRIES B V | Velcro BVBA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038528 | /0767 | |
Dec 22 2020 | Velcro BVBA | Velcro IP Holdings LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054891 | /0107 |
Date | Maintenance Fee Events |
Jul 31 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 31 2009 | M1554: Surcharge for Late Payment, Large Entity. |
Jan 15 2013 | ASPN: Payor Number Assigned. |
Feb 19 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Feb 16 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 21 2012 | 4 years fee payment window open |
Jan 21 2013 | 6 months grace period start (w surcharge) |
Jul 21 2013 | patent expiry (for year 4) |
Jul 21 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 21 2016 | 8 years fee payment window open |
Jan 21 2017 | 6 months grace period start (w surcharge) |
Jul 21 2017 | patent expiry (for year 8) |
Jul 21 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 21 2020 | 12 years fee payment window open |
Jan 21 2021 | 6 months grace period start (w surcharge) |
Jul 21 2021 | patent expiry (for year 12) |
Jul 21 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |