An automated system checks networked computers, such as computers on the internet, for watermarked audio, video, or image data. A report listing the location of such audio, video or image data is generated, and provided to the proprietor(s) thereof identified by the watermark information.
|
10. A method for surveying distribution of proprietary empirical data sets on computer sites accessible via the internet, comprising:
providing a master code signal useful for detecting steganographic coding within empirical data sets;
automatically downloading data, including empirical data sets, from a plurality of computer sites over the internet;
for each of a plurality of empirical data sets obtained by said downloading operation, discerning certain identification data, if any, steganographically encoded therein, said discerning employing said master code signal as a decoding key; and
generating a report identifying steganographically encoded empirical data sets identified by the foregoing steps, and the site from which each was downloaded;
wherein there is calibration data steganographically encoded within at least one empirical data set, said calibration data having one or more known properties facilitating identification thereof during the discerning step;
the method including identifying the calibration data within the empirical data set and using data obtained thereby to aid in discerning the identification data from the empirical data set;
wherein the empirical data set has been corrupted since being encoded, said corruption including a process selected from the group consisting of: misregistration and scaling of the empirical data set;
the method further including using said data to compensate for said corruption, wherein the identification data can nonetheless be recovered from the empirical data set notwithstanding said corruption.
1. A method for surveying distribution of proprietary empirical data sets, such as audio, image, or video data, on computer sites accessible via the internet, comprising:
automatically downloading data, including empirical data sets, from a plurality of computer sites over the internet;
for each of a plurality of empirical data sets obtained by said downloading operation, automatically screening same to identify the potential presence of identification data steganographically encoded therein;
for each of a plurality of empirical data sets screened by said screening operation, discerning identification data, if any, steganographically encoded therein; and
generating a report identifying steganographically encoded empirical data sets identified by the foregoing steps, and the site from which each was downloaded;
wherein there is calibration data steganographically encoded within at least one empirical data set, said calibration data having one or more known properties facilitating identification thereof during the discerning step;
the method including identifying the calibration data within the empirical data set and using data obtained thereby to aid in discerning the identification data from the empirical data set;
wherein the empirical data set has been corrupted since being encoded, said corruption including a process selected from the group consisting of: misregistration and scaling of the empirical data set;
the method further including using said data to compensate for said corruption, wherein the identification data can nonetheless be recovered from the empirical data set notwithstanding said corruption.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
converting said image data to pixel form, if not already in said form; and
performing a plurality of statistical analyses on said pixel form image data to discern the identification data therefrom.
9. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
17. The method of
converting said image data to pixel form, if not already in said form; and
performing a plurality of statistical analyses on said pixel form image data to discern the identification data therefrom.
18. The method of
|
This application is a continuation in part of the following copending applications: PCT/US96/06618 (May 7, 1996), Ser. No. 08/637,531 (filed Apr. 25, 1996) allowed, Ser. No. 08/534,005 (filed Sep. 25, 1995) allowed, Ser. No. 10
Here, n and m are simple indexing values on rows and columns of the image ranging from 0 to 3999. Sqrt is the square root. V is the DN of a given indexed pixel on the original digital image. The < >brackets around the RMS noise merely indicates that this is an expected average value, where it is clear that each and every pixel will have a random error individually. Thus, for a pixel value having 1200 as a digital number or “brightness value”, we find that its expected rms noise value is sqrt(1204)=34.70, which is quite close to 34.64, the square root of 1200.
We furthermore realize that the square root of the innate brightness value of a pixel is not precisely what the eye perceives as a minimum objectionable noise, thus we come up with the formula:
<RMS Addable Noisen,m>=X*sqrt(4+(Vn,m−30)−Y) (2)
Where X and Y have been added as empirical parameters which we will adjust, and “addable” noise refers to our acceptable perceived noise level from the definitions above. We now intend to experiment with what exact value of X and Y we can choose, but we will do so at the same time that we are performing the next steps in the process.
The next step in our process is to choose N of our N-bit identification word. We decide that a 16 bit main identification value with its 65536 possible values will be sufficiently large to identify the image as ours, and that we will be directly selling no more than 128 copies of the image which we wish to track, giving 7 bits plus an eighth bit for an odd/even adding of the first 7 bits (i.e. an error checking bit on the first seven). The total bits required now are at 4 bits for the 0101 calibration sequence, 16 for the main identification, 8 for the version, and we now throw in another 4 as a further error checking value on the first 28 bits, giving 32 bits as N. The final 4 bits can use one of many industry standard error checking methods to choose its four values.
We now randomly determine the 16 bit main identification number, finding for example, 1101 0001 1001 1110; our first versions of the original sold will have all 0's as the version identifier, and the error checking bits will fall out where they may. We now have our unique 32 bit identification word which we will embed on the original digital image.
To do this, we generate 32 independent random 4000 by 4000 encoding images for each bit of our 32 bit identification word. The manner of generating these random images is revealing. There are numerous ways to generate these. By far the simplest is to turn up the gain on the same scanner that was used to scan in the original photograph, only this time placing a pure black image as the input, then scanning this 32 times. The only drawback to this technique is that it does require a large amount of memory and that “fixed pattern” noise will be part of each independent “noise image.” But, the fixed pattern noise can be removed via normal “dark frame” subtraction techniques. Assume that we set the absolute black average value at digital number ‘100,’ and that rather than finding a 2 DN rms noise as we did in the normal gain setting, we now find an rms noise of 10 DN about each and every pixel's mean value.
We next apply a mid-spatial-frequency bandpass filter (spatial convolution) to each and every independent random image, essentially removing the very high and the very low spatial frequencies from them. We remove the very low frequencies because simple real-world error sources like geometrical warping, splotches on scanners, mis-registrations, and the like will exhibit themselves most at lower frequencies also, and so we want to concentrate our identification signal at higher spatial frequencies in order to avoid these types of corruptions. Likewise, we remove the higher frequencies because multiple generation copies of a given image, as well as compression-decompression transformations, tend to wipe out higher frequencies anyway, so there is no point in placing too much identification signal into these frequencies if they will be the ones most prone to being attenuated. Therefore, our new filtered independent noise images will be dominated by mid-spatial frequencies. On a practical note, since we are using 12-bit values on our scanner and we have removed the DC value effectively and our new rms noise will be slightly less than 10 digital numbers, it is useful to boil this down to a 6-bit value ranging from −32 through 0 to 31 as the resultant random image.
Next we add all of the random images together which have a ‘1’ in their corresponding bit value of the 32-bit identification word, accumulating the result in a 16-bit signed integer image. This is the unattenuated and un-scaled version of the composite embedded signal.
Next we experiment visually with adding the composite embedded signal to the original digital image, through varying the X and Y parameters of equation 2. In formula, we visually iterate to both maximize X and to find the appropriate Y in the following.
Vdist;n,m=Vorig;n,m+
where dist refers to the candidate distributable image, i.e. we are visually iterating to find what X and Y will give us an acceptable image; orig refers to the pixel value of the original image; and comp refers to the pixel value of the composite image. The n's and m's still index rows and columns of the image and indicate that this operation is done on all 4000 by 4000 pixels. The symbol V is the DN of a given pixel and a given image.
As an arbitrary assumption, now, we assume that our visual experimentation has found that the value of X=0.025 and Y=0.6 are acceptable values when comparing the original image with the candidate distributable image. This is to say, the distributable image with the “extra noise” is acceptably close to the original in an aesthetic sense. Note that since our individual random images had a random rms noise value around 10 DN, and that adding approximately 16 of these images together will increase the composite noise to around 40 DN, the X multiplication value of 0.025 will bring the added rms noise back to around 1 DN, or half the amplitude of our innate noise on the original. This is roughly a 1 dB gain in noise at the dark pixel values and correspondingly more at the brighter values modified by the Y value of 0.6.
So with these two values of X and Y, we now have constructed our first versions of a distributable copy of the original. Other versions will merely create a new composite signal and possibly change the X slightly if deemed necessary. We now lock up the original digital image along with the 32-bit identification word for each version, and the 32 independent random 4-bit images, waiting for our first case of a suspected piracy of our original. Storage wise, this is about 14 Megabytes for the original image and 32*0.5 bytes*16 million=−256 Megabytes for the random individual encoded images. This is quite acceptable for a single valuable image. Some storage economy can be gained by simple lossless compression.
Finding a Suspected Piracy of our Image
We sell our image and several months later find our two heads of state in the exact poses we sold them in, seemingly cut and lifted out of our image and placed into another stylized background scene. This new “suspect” image is being printed in 100,000 copies of a given magazine issue let us say. We now go about determining if a portion of our original image has indeed been used in an unauthorized manner.
The first step is to take an issue of the magazine, cut out the page with the image on it, then carefully but not too carefully cut out the two figures from the background image using ordinary scissors. If possible, we will cut out only one connected piece rather than the two figures separately. We paste this onto a black background and scan this into a digital form. Next we electronically flag or mask out the black background, which is easy to do by visual inspection.
We now procure the original digital image from our secured place along with the 32-bit identification word and the 32 individual embedded images. We place the original digital image onto our computer screen using standard image manipulation software, and we roughly cut along the same borders as our masked area of the suspect image, masking this image at the same time in roughly the same manner. The word ‘roughly’ is used since an exact cutting is not needed, it merely aids the identification statistics to get it reasonably close.
Next we rescale the masked suspect image to roughly match the size of our masked original digital image, that is, we digitally scale up or down the suspect image and roughly overlay it on the original image. Once we have performed this rough registration, we then throw the two images into an automated scaling and registration program. The program performs a search on the three parameters of x position, y position, and spatial scale, with the figure of merit being the mean squared error between the two images given any given scale variable and x and y offset. This is a fairly standard image processing methodology. Typically this would be done using generally smooth interpolation techniques and done to sub-pixel accuracy. The search method can be one of many, where the simplex method is a typical one.
Once the optimal scaling and x-y position variables are found, next comes another search on optimizing the black level, brightness gain, and gamma of the two images. Again, the figure of merit to be used is mean squared error, and again the simplex or other search methodologies can be used to optimize the three variables. After these three variables are optimized, we apply their corrections to the suspect image and align it to exactly the pixel spacing and masking of the original digital image and its mask. We can now call this the standard mask.
The next step is to subtract the original digital image from the newly normalized suspect image only within the standard mask region. This new image is called the difference image.
Then we step through all 32 individual random embedded images, doing a local cross-correlation between the masked difference image and the masked individual embedded image. ‘Local’ refers to the idea that one need only start correlating over an offset region of ±1 pixels of offset between the nominal registration points of the two images found during the search procedures above. The peak correlation should be very close to the nominal registration point of 0,0 offset, and we can add the 3 by 3 correlation values together to give one grand correlation value for each of the 32 individual bits of our 32-bit identification word.
After doing this for all 32 bit places and their corresponding random images, we have a quasi-floating point sequence of 32 values. The first four values represent our calibration signal of 0101. We now take the mean of the first and third floating point value and call this floating point value ‘0,’ and we take the mean of the second and the fourth value and call this floating point value ‘1.’ We then step through all remaining 28 bit values and assign either a ‘0’ or a ‘1’ based simply on which mean value they are closer to. Stated simply, if the suspect image is indeed a copy of our original, the embedded 32-bit resulting code should match that of our records, and if it is not a copy, we should get general randomness. The third and the fourth possibilities of 3) Is a copy but doesn't match identification number and 4) isn't a copy but does match are, in the case of 3), possible if the signal to noise ratio of the process has plummeted, i.e. the ‘suspect image’ is truly a very poor copy of the original, and in the case of 4) is basically one chance in four billion since we were using a 32-bit identification number. If we are truly worried about 4), we can just have a second independent lab perform their own tests on a different issue of the same magazine. Finally, checking the error-check bits against what the values give is one final and possibly overkill check on the whole process. In situations where signal to noise is a possible problem, these error checking bits might be eliminated without too much harm.
Benefits
Now that a full description of the first embodiment has been described via a detailed example, it is appropriate to point out the rationale of some of the process steps and their benefits.
The ultimate benefits of the foregoing process are that obtaining an identification number is fully independent of the manners and methods of preparing the difference image. That is to say, the manners of preparing the difference image, such as cutting, registering, scaling, etcetera, cannot increase the odds of finding an identification number when none exists; it only helps the signal-to-noise ratio of the identification process when a true identification number is present. Methods of preparing images for identification can be different from each other even, providing the possibility for multiple independent methodologies for making a match.
The ability to obtain a match even on sub-sets of the original signal or image is a key point in today's information-rich world. Cutting and pasting both images and sound clips is becoming more common, allowing such an embodiment to be used in detecting a copy even when original material has been thus corrupted. Finally, the signal to noise ratio of matching should begin to become difficult only when the copy material itself has been significantly altered either by noise or by significant distortion; both of these also will affect that copy's commercial value, so that trying to thwart the system can only be done at the expense of a huge decrease in commercial value.
An early conception of this technology was the case where only a single “snowy image” or random signal was added to an original image, i.e. the case where N=1. “Decoding” this signal would involve a subsequent mathematical analysis using (generally statistical) algorithms to make a judgment on the presence or absence of this signal. The reason this approach was abandoned as the preferred embodiment was that there was an inherent gray area in the certainty of detecting the presence or absence of the signal. By moving onward to a multitude of bit planes, i.e. N>1, combined with simple pre-defined algorithms prescribing the manner of choosing between a “0” and a “1”, the certainty question moved from the realm of expert statistical analysis into the realm of guessing a random binary event such as a coin flip. This is seen as a powerful feature relative to the intuitive acceptance of this technology in both the courtroom and the marketplace. The analogy which summarizes the inventor's thoughts on this whole question is as follows: The search for a single identification signal amounts to calling a coin flip only once, and relying on arcane experts to make the call; whereas the N>1 embodiment relies on the broadly intuitive principle of correctly calling a coin flip N times in a row. This situation is greatly exacerbated, i.e. the problem of “interpretation” of the presence of a single signal, when images and sound clips get smaller and smaller in extent.
Another important reason that the N>1 case is preferred over the N=1 embodiment is that in the N=1 case, the manner in which a suspect image is prepared and manipulated has a direct bearing on the likelihood of making a positive identification. Thus, the manner with which an expert makes an identification determination becomes an integral part of that determination. The existence of a multitude of mathematical and statistical approaches to making this determination leave open the possibility that some tests might make positive identifications while others might make negative determinations, inviting further arcane debate about the relative merits of the various identification approaches. The N>1 embodiment avoids this further gray area by presenting a method where no amount of pre-processing of a signal—other than pre-processing which surreptitiously uses knowledge of the private code signals—can increase the likelihood of “calling the coin flip N times in a row.”
The fullest expression of the present system will come when it becomes an industry standard and numerous independent groups set up with their own means or ‘in-house’ brand of applying embedded identification numbers and in their decipherment. Numerous independent group identification will further enhance the ultimate objectivity of the method, thereby enhancing its appeal as an industry standard.
Use of True Polarity in Creating the Composite Embedded Code Signal
The foregoing discussion made use of the 0 and 1 formalism of binary technology to accomplish its ends. Specifically, the 0's and 1's of the N-bit identification word directly multiplied their corresponding individual embedded code signal to form the composite embedded code signal (step 8, FIG. 2). This approach certainly has its conceptual simplicity, but the multiplication of an embedded code signal by 0 along with the storage of that embedded code contains a kind of inefficiency.
It is preferred to maintain the formalism of the 0 and 1 nature of the N-bit identification word, but to have the 0's of the word induce a subtraction of their corresponding embedded code signal. Thus, in step 8 of
At first glance this seems to add more apparent noise to the final composite signal. But it also increases the energy-wise separation of the 0's from the 1's, and thus the ‘gain’ which is applied in step 10.
We can refer to this improvement as the use of true polarity. The main advantage of this improvement can largely be summarized as ‘informational efficiency.’
‘Perceptual Orthogonality’ of the Individual Embedded Code Signals
The foregoing discussion contemplates the use of generally random noise-like signals as the individual embedded code signals. This is perhaps the simplest form of signal to generate. However, there is a form of informational optimization which can be applied to the set of the individual embedded signals, which the applicant describes under the rubric ‘perceptual orthogonality.’ This term is loosely based on the mathematical concept of the orthogonality of vectors, with the current additional requirement that this orthogonality should maximize the signal energy of the identification information while maintaining it below some perceptibility threshold. Put another way, the embedded code signals need not necessarily be random in nature.
Use and Improvements of the First Embodiment in the Field of Emulsion-Based Photography
The foregoing discussion outlined techniques that are applicable to photographic materials. The following section explores the details of this area further and discloses certain improvements which lend themselves to a broad range of applications.
The first area to be discussed involves the pre-application or pre-exposing of a serial number onto traditional photographic products, such as negative film, print paper, transparencies, etc. In general, this is a way to embed a priori unique serial numbers (and by implication, ownership and tracking information) into photographic material. The serial numbers themselves would be a permanent part of the normally exposed picture, as opposed to being relegated to the margins or stamped on the back of a printed photograph, which all require separate locations and separate methods of copying. The ‘serial number’ as it is called here is generally synonymous with the N-bit identification word, only now we are using a more common industrial terminology.
In
Now in the case of selling print paper and other duplication film products, this will still be the case, i.e., an “original” without the embedded codes will indeed exist and the basic methodology of the first embodiment can be employed. The original film serves perfectly well as an ‘unencoded original.’
However, in the case where pre-exposed negative film is used, the composite embedded signal pre-exists on the original film and thus there will never be an “original” separate from the pre-embedded signal. It is this latter case, therefore, which will be examined a bit more closely, along with observations on how to best use the principles discussed above (the former cases adhering to the previously outlined methods).
The clearest point of departure for the case of pre-numbered negative film, i.e. negative film which has had each and every frame pre-exposed with a very faint and unique composite embedded signal, comes at step 9 of
Getting back to the applying the principles of the foregoing embodiment in the case of pre-exposed negative film . . . At step 9,
A succinct definition of the problem is in order at this point. Given a suspect picture (signal), find the embedded identification code IF a code exists at al. The problem reduces to one of finding the amplitude of each and every individual embedded code signal within the suspect picture, not only within the context of noise and corruption as was previously explained, but now also within the context of the coupling between a captured image and the codes. ‘Coupling’ here refers to the idea that the captured image “randomly biases” the cross-correlation.
So, bearing in mind this additional item of signal coupling, the identification process now estimates the signal amplitude of each and every individual embedded code signal (as opposed to taking the cross-correlation result of step 12, FIG. 3). If our identification signal exists in the suspect picture, the amplitudes thus found will split into a polarity with positive amplitudes being assigned a ‘1’ and negative amplitudes being assigned a
The new image is applied to the fast fourier transform routine and a scale factor is eventually found which minimizes the integrated high frequency content of the new image. This general type of search operation with its minimization of a particular quantity is exceedingly common. The scale factor thus found is the sought-for “amplitude.” Refinements which are contemplated but not yet implemented are where the coupling of the higher derivatives of the acquired image and the embedded codes are estimated and removed from the calculated scale factor. In other words, certain bias effects from the coupling mentioned earlier are present and should be eventually accounted for and removed both through theoretical and empirical experimentation.
Use and Improvements in the Detection of Signal or Image Alteration
Apart from the basic need of identifying a signal or image as a whole, there is also a rather ubiquitous need to detect possible alterations to a signal or image. The following section describes how the foregoing embodiment, with certain modifications and improvements, can be used as a powerful tool in this area. The potential scenarios and applications of detecting alterations are innumerable.
To first summarize, assume that we have a given signal or image which has been positively identified using the basic methods outlined above. In other words, we know its N-bit identification word, its individual embedded code signals, and its composite embedded code. We can then fairly simply create a spatial map of the composite code's amplitude within our given signal or image. Furthermore, we can divide this amplitude map by the known composite code's spatial amplitude, giving a normalized map, i.e. a map which should fluctuate about some global mean value. By simple examination of this map, we can visually detect any areas which have been significantly altered wherein the value of the normalized amplitude dips below some statistically set threshold based purely on typical noise and corruption (error).
The details of implementing the creation of the amplitude map have a variety of choices. One is to perform the same procedure which is used to determine the signal amplitude as described above, only now we step and repeat the multiplication of any given area of the signal/image with a gaussian weight function centered about the area we are investigating.
Universal Versus Custom Codes
The disclosure thus far has outlined how each and every source signal has its own unique set of individual embedded code signals. This entails the storage of a significant amount of additional code information above and beyond the original, and many applications may merit some form of economizing.
One such approach to economizing is to have a given set of individual embedded code signals be common to a batch of source materials. For example, one thousand images can all utilize the same basic set of individual embedded code signals. The storage requirements of these codes then become a small fraction of the overall storage requirements of the source material.
Furthermore, some applications can utilize a universal set of individual embedded code signals, i.e., codes which remain the same for all instances of distributed material. This type of requirement would be seen by systems which wish to hide the N-bit identification word itself, yet have standardized equipment be able to read that word. This can be used in systems which make go/no go decisions at point-of-read locations. The potential drawback to this set-up is that the universal codes are more prone to be sleuthed or stolen; therefore they will not be as secure as the apparatus and methodology of the previously disclosed arrangement. Perhaps this is just the difference between ‘high security’ and ‘air-tight security,’ a distinction carrying little weight with the bulk of potential applications.
Use in Printing, Paper, Documents, Plastic Coated Identification Cards, and Other Material Where Global Embedded Codes Can Be Imprinted
The term ‘signal’ is often used narrowly to refer to digital data information, audio signals, images, etc. A broader interpretation of ‘signal,’ and the one more generally intended, includes any form of modulation of any material whatsoever. Thus, the micro-topology of a piece of common paper becomes a ‘signal’ (e.g. it height as a function of x-y coordinates). The reflective properties of a flat piece of plastic (as a function of space also) becomes a signal. The point is that photographic emulsions, audio signals, and digitized information are not the only types of signals capable of utilizing the principles described herein.
As a case in point, a machine very much resembling a braille printing machine can be designed so as to imprint unique ‘noise-like’ indentations as outlined above. These indentations can be applied with a pressure which is much smaller than is typically applied in creating braille, to the point where the patterns are not noticed by a normal user of the paper. But by following the steps of the present disclosure and applying them via the mechanism of micro-indentations, a unique identification code can be placed onto any given sheet of paper, be it intended for everyday stationary purposes, or be it for important documents, legal tender, or other secured material.
The reading of the identification material in such an embodiment generally proceeds by merely reading the document optically at a variety of angles. This would become an inexpensive method for deducing the micro-topology of the paper surface. Certainly other forms of reading the topology of the paper are possible as well.
In the case of plastic encased material such as identification cards, e.g. driver's licenses, a similar braille-like impressions machine can be utilized to imprint unique identification codes. Subtle layers of photoreactive materials can also be embedded inside the plastic and ‘exposed.’
It is clear that wherever a material exists which is capable of being modulated by ‘noise-like’ signals, that material is an appropriate carrier for unique identification codes and utilization of the principles disclosed herein. All that remains is the matter of economically applying the identification information and maintaining the signal level below an acceptability threshold which each and every application will define for itself.
While the first class of embodiments most commonly employs a standard microprocessor or computer to perform the encodation of an image or signal, it is possible to utilize a custom encodation device which may be faster than a typical Von Neuman-type processor. Such a system can be utilized with all manner of serial data streams.
Music and videotape recordings are examples of serial data streams—data streams which are often pirated. It would assist enforcement efforts if authorized recordings were encoded with identification data so that pirated knock-offs could be traced to the original from which they were made.
Piracy is but one concern driving the need for applicant's technology. Another is authentication. Often it is important to confirm that a given set of data is really what it is purported to be (often several years after its generation).
To address these and other needs, the system 200 of
The contents of the “black box” 202 can take various forms. An exemplary black box system is shown in FIG. 6 and includes a look-up table 204, a digital noise source 206, first and second scalers 208, 210, an adder/subtracter 212, a memory 214, and a register 216.
The input signal (which in the illustrated embodiment is an 8-20 bit data signal provided at a rate of one million samples per second, but which in other embodiments could be an analog signal if appropriate A/D and D/A conversion is provided) is applied from an input 218 to the address input 220 of the look-up table 204. For each input sample (i.e. look-up table address), the table provides a corresponding 8-bit digital output word. This output word is used as a scaling factor that is applied to one input of the first scaler 208.
The first scaler 208 has a second input, to which is applied an 8-bit digital noise signal from source 206. (In the illustrated embodiment, the noise source 206 comprises an analog noise source 222 and an analog-to-digital converter 224 although, again, other implementations can be used.) The noise source in the illustrated embodiment has a zero mean output value, with a full width half maximum (FWHM) of 50-100 digital numbers (e.g. from −75 to +75).
The first scaler 208 multiplies the two 8-bit words at its inputs (scale factor and noise) to produce—for each sample of the system input signal—a 16-bit output word. Since the noise signal has a zero mean value, the output of the first scaler likewise has a zero mean value.
The output of the first scaler 208 is applied to the input of the second scaler 210. The second scaler serves a global scaling function, establishing the absolute magnitude of the identification signal that will ultimately be embedded into the input data signal. The scaling factor is set through a scale control device 226 (which may take a number of forms, from a simple rheostat to a graphically implemented control in a graphical user interface), permitting this factor to be changed in accordance with the requirements of different applications. The second scaler 210 provides on its output line 228 a scaled noise signal. Each sample of this scaled noise signal is successively stored in the memory 214.
(In the illustrated embodiment, the output from the first scaler 208 may range between −1500 and +1500 (decimal) while the output from the second scaler 210 is in the low single digits, (such as between −2 and +2).)
Register 216 stores a multi-bit identification code word. In the illustrated embodiment this code word consists of 8 bits, although larger code words (up to hundreds of bits) are commonly used. These bits are referenced, one at a time, to control how the input signal is modulated with the scaled noise signal.
In particular, a pointer 230 is cycled sequentially through the bit positions of the code word in register 216 to provide a control bit of “0” or “1” to a control input 232 of the adder/subtracter 212. If, for a particular input signal sample, the control bit is a “1”, the scaled noise signal sample on line 10
where =\=is not equal to. This is somewhat an abstract notion to introduce at this point in the disclosure and will become more clear as
Turning now to the details of
To take a brief but potentially appropriate digression at this point, the use of the concept of a Markov process brings certain clarity to the discussion of optimizing the engineering implementation of the methods of FIG. 15. Briefly, a Markov process is one in which a sequence of events takes place and in general there is no memory between one step in the sequence and the next. In the context of
With the intent of preconditioning the ultimately utilized Master Snowy Movie 756, we now send the rendered High Brightness Master Snowy Movie 752 through both the MPEG compression AND decompression procedure 754. With the caveat previously discussed where it is acknowledged that the MPEG compression process is generally not distributive, the idea of the step 754 is to crudely segregate the initially rendered Snowy Movie 752 into two components, the component which survives the compression process 754 which is 756, and the component which does not survive, also crudely estimated using the difference operation 758 to produce the “Cheap Master Snowy Movie” 760. The reason use is made of the deliberately loose term “Cheap” is that we can later add this signature signal as well to a distributable movie, knowing that it probably won't survive common compression processes but that nevertheless it can provide “cheap” extra signature signal energy for applications or situations which will never experience compression. [Thus it is at least noted in FIG. 15]. Back to
Additional Elements of the Realtime Encoder Circuitry
It should be noted that the method steps represented in
Recognition based on more than one frame: non-Markovian signatures
As noted in the digression on Markov and non-Markov sequences of images, it is pointed out once again that in such circumstances where the embedded invisible signature signals are non-Markovian in nature, i.e., that there is some correlation between the master snowy image of one frame to that of the next, AND furthermore that a single N-bit identification word is used across a range of frames and that the sequence of N-bit identification words associated with the sequence of frames is not Markovian in nature, then it is possible to utilize the data from several frames of a movie or video in order to recognize a single N-bit identification word. All of this is a fancy way of saying that the process of recognizing the invisible signatures should use as much information as is available, in this case translating to multiple frames of a motion image sequence.
The concept of the “header” on a digital image or audio file is a well established practice in the art. The top of
A software version of a steganographic marking/decoding “plug-in” for use with Adobe Photoshop software, presented as commented source code, is included in the file of this patent on a compact disc in a file named Appendix B.txt, which is incorporated by reference. The code was written for compilation with Microsoft's Visual C++ compiler, version 4.0, and can be understood by those skilled in the art.
If marking of images becomes widespread (e.g. by software compatible with Adobe's image processing software), a user of such software can decode the embedded data from an image and consult a public registry to identify the proprietor of the image. In some embodiments, the registry can serve as the conduit through which appropriate royalty payments are forwarded to the proprietor for the user's use of an image. (In an illustrative embodiment, the registry is a server on the Internet, accessible via the World Wide Web, coupled to a database. The database includes detailed information on catalogued images (e.g. name, address, phone number of proprietor, and a schedule of charges for different types of uses to which the image may be put), indexed by identification codes with which the images themselves are encoded. A person who decodes an image queries the registry with the codes thereby gleaned to obtain the desired data and, if appropriate, to forward electronic payment of a copyright royalty to the image's proprietor.)
Particular Data Formats
While the foregoing steganography techniques are broadly applicable, their commercial acceptance will be aided by establishment of standards setting forth which pixels/bit cells represent what. The following discussion proposes one set of possible standards. For expository convenience, this discussion focuses on decoding of the data; encoding follows in a straightforward manner.
Referring to
The individual pixels 1212 are the smallest quanta of image data. In this arrangement, however, pixel values are not, individually, the data carrying elements. Instead, this role is served by bit cells 1208 (i.e. 2×2 arrays of bumps 1210). In particular, the bumps comprising the bits cells are encoded to assume one of the two patterns shown in FIG. 41. As noted earlier, the pattern shown in
(The nature of the image changes effected by the encoding follows the techniques set forth above under the heading MORE ON PERCEPTUALLY ADAPTIVE SIGNING; that discussion is not repeated here.)
In the illustrated embodiment, the embedded data includes two parts: control bits and message bits. The 16 bit cells 1208A in the center of each sub-block 1206 serve to convey 16 control bits. The surrounding 48 bit cells 1208B serve to convey 48 message bits. This 64-bit chunk of data is encoded in each of the sub-blocks 1206, and is repeated 64 times in each signature block 1204.
A digression: in addition to encoding of the image to redundantly embed the 64 control/message bits therein, the values of individual pixels are additionally adjusted to effect encoding of subliminal graticules through the image. In this embodiment, the graticules discussed in conjunction with
Returning to the data format, once the encoded image has been thus registered, the locations of the control bits in sub-block 1206 are known. The image is then analyzed, in the aggregate (i.e. considering the “northwestern-most” sub-block 1206 from each signature block 1204), to determine the value of control bit #1 (represented in sub-block 1206 by bit cell 1208Aa). If this value is determined (e.g. by statistical techniques of the sort detailed above) to be a “1,” this indicates that the format of the embedded data conforms to the standard detailed herein (the Digimarc Beta Data Format).
According to this standard, control bit #2 (represented by bit cells 1208Ab) is a flag indicating whether the image is copyrighted. Control bit #3 (represented by bit cells 1208Ac) is a flag indicating whether the image is unsuitable for viewing by children. Certain of the remaining bits are used for error detection/correction purposes.
The 48 message bits of each sub block 1206 can be put to any use; they are not specified in this format. One possible use is to define a numeric “owner” field and a numeric “image/item” field (e.g. 24 bits each).
If this data format is used, each sub-block 1206 contains the entire control/message data, so same is repeated 64 times within each signature block of the image. If control bit #1 is not a “1,” then the format of the embedded data does not conform to the above described standard. In this case, the reading software analyzes the image data to determine the value of control bit #4. If this bit is set (i.e. equal to “1”), this signifies an embedded ASCII message.
The reading software then examines control bits #5 and #6 to determine the length of the embedded ASCII message.
If control bits #5 and #6 both are “0,” this indicates the ASCII message is 6 characters in length. In this case, the 48 bit cells 1208B surrounding the control bits 1208A are interpreted as six ASCII characters (8 bits each). Again, each sub-block 1206 contains the entire control/message data, so same is repeated 64 times within each signature block 1204 of the image.
If control bit #5 is “0” and control bit #6 is “1,” this indicates the embedded ASCII message is 14 characters in length. In this case, the 48 bit cells 1208B surrounding the control bits 1208A are interpreted as the first six ASCII characters. The 64 bit cells 1208 of the immediately-adjoining subblock 1220 are interpreted as the final eight ASCII characters.
Note that in this arrangement, the bit-cells 1208 in the center of sub-block 1220 are not interpreted as control bits. Instead, the entire sub-block serves to convey additional message bits. In this case there is just one group of control bits for two sub-blocks.
Also note than in this arrangement, pairs of sub-blocks 1206 contains the entire control/message data, so same is repeated 32 times within each signature block 1204 of the image.
Likewise if control bit #5 is “1” and control bit #6 is “0.” This indicates the embedded ASCII message is 30 characters in length. In this case, 2×2 arrays of sub-blocks are used for each representation of the data. The 48 bit cells 1208B surrounding control bits 1208A are interpreted as the first six ASCII characters. The 64 bit cells of each of adjoining block 1220 are interpreted as representing the next 8 additional characters. The 64 bits cells of sub-block 1222 are interpreted as representing the next 8 characters. And the 64 bit cells of sub-block 1224 are interpreted as representing the final 8 characters. In this case, there is just one group of control bits for four sub-blocks. And the control/message data is repeated 16 times within each signature block 1204 of the image.
If control bits #5 and #6 are both “1”s, this indicates an ASCII message of programmable length. In this case, the reading software examines the first 16 bit cells 1208B surrounding the control bits. Instead of interpreting these bit cells as message bits, they are interpreted as additional control bits (the opposite of the case described above, where bit cells normally used to represent control bits represented message bits instead). In particular, the reading software interprets these 16 bits as representing, in binary, the length of the ASCII message. An algorithm is then applied to this data (matching a similar algorithm used during the encoding process) to establish a corresponding tiling pattern (i.e. to specify which sub-blocks convey which bits of the ASCII message, and which convey control bits.)
In this programmable-length ASCII message case, control bits are desirably repeated several times within a single representation of the message so that, e.g., there is one set of control bits for approximately every 24 ASCII characters. To increase packing efficiency, the tiling algorithm can allocate (divide) a sub-block so that some of its bit-cells are used for a first representation of the message, and others are used for another representation of the messages.
Reference was earlier made to beginning the decoding of the registered image by considering the “northwestern-most” sub-block 1206 in each signature block 1204. This bears elaboration.
Depending on the data format used, some of the sub-blocks 1206 in each signature block 1204 may not include control bits. Accordingly, the decoding software desirably determines the data format by first examining the “northwestern-most” sub-block 1206 in each signature block 1204; the 16 bits cells in the centers of these sub-blocks will reliably represent control bits. Based on the value(s) of one or more of these bits (e.g. the Digimarc Beta Data Format bit), the decoding software can identify all other locations throughout each signature block 1204 where the control bits are also encoded (e.g. at the center of each of the 64 sub-blocks 1206 comprising a signature block 1204), and can use the larger statistical base of data thereby provided to extract the remaining control bits from the image (and to confirm, if desired, the earlier control bit(s) determination). After all control bits have thereby been discerned, the decoding software determines (from the control bits) the mapping of message bits to bit cells throughout the image.
To reduce the likelihood of visual artifacts, the numbering of bit cells within sub-blocks is alternated in a checkerboard-like fashion. That is, the “northwestern-most” bit cell in the “northwestern-most” sub-block is numbered “0.” Numbering increases left to right, and successively through the rows, up to bit cell 63. Each sub-block diametrically adjoining one of its corners (i.e. sub-block 1224) has the same ordering of bit cells. But sub-blocks adjoining its edges (i.e. sub-blocks 1220 and 1222) have the opposite numbering. That is, the “northwestern-most” bit cell in sub-blocks 1220 and 1222 is numbered “63.” Numbering decreases left to right, and successively through the rows, down to 0. Likewise throughout each signature block 1204.
In a variant of the Digimarc beta format, a pair of sub-blocks is used for each representation of the data, providing 128 bit cells. The center 16 bit cells 1208 in the first sub-block 1206 are used to represent control bits. The 48 remaining bit cells in that sub-block, together with all 64 bit cells 1208 in the adjoining sub-block 1220, are used to provide a 112-bit message field. Likewise for every pair of sub-blocks throughout each signature block 1204. In such an arrangement, each signature block 1204 thus includes 32 complete representations of the encoded data (as opposed to 64 representations in the earlier-described standard). This additional length allows encoding of longer data strings, such as a numeric IP address (e.g. URL).
Obviously, numerous alternative data formats can be designed. The particular format used can be indicated to the decoding software by values of one or more control bits in the encoded image.
In the Appendix B software, the program SIGN_PUBLIC.CPP effects encoding of an image using a signature block/sub-block/bit cell arrangement like that detailed above. As of this writing, the corresponding decoding software has not yet been written, but its operation is straight-forward given the foregoing discussion and the details in the SIGN-PUBLIC.CPP software.
Other Applications
Before concluding, it may be instructive to review some of the other fields where principles of applicant's technology can be employed.
One is smart business cards, wherein a business card is provided with a photograph having unobtrusive, machine-readable contact data embedded therein. (The same function can be achieved by changing the surface microtopology of the card to embed the data therein.)
Another promising application is in content regulation. Television signals, images on the internet, and other content sources (audio, image, video, etc.) can have data indicating their “appropriateness” (i.e. their rating for sex, violence, suitability for children, etc.) actually embedded in the content itself rather than externally associated therewith. Television receivers, internet surfing software, etc., can discern such appropriateness ratings (e.g. by use of universal code decoding) and can take appropriate action (e.g. not permitting viewing of an image or video, or play-back of an audio source).
In a simple embodiment of the foregoing, the embedded data can have one or more “flag” bits, as discussed earlier. One flag bit can signify “inappropriate for children.” (Others can be, e.g., “this image is copyrighted” or “this image is in the public domain.”) Such flag bits can be in a field of control bits distinct from an embedded message, or can—themselves—be the message. By examining the state of these flag bits, the decoder software can quickly apprise the user of various attributes of the image.
(As discussed earlier, control bits can be encoded in known locations in the image—known relative to the subliminal graticules—and can indicate the format of the embedded data (e.g. its length, its type, etc.) As such, these control bits are analogous to data sometimes conveyed in prior art file headers, but in this case they are embedded within an image, instead of prepended to a file.)
The field of merchandise marking is generally well served by familiar bar codes and universal product codes. However, in certain applications, such bar codes are undesirable (e.g. for aesthetic considerations, or where security is a concern). In such applications, applicant's technology may be used to mark merchandise, either through an innocuous carrier (e.g. a photograph associated with the product), or by encoding the microtopology of the merchandise's surface, or a label thereon.
There are applications—too numerous to detail—in which steganography can advantageously be combined with encryption and/or digital signature technology to provide enhanced security.
Medical records appear to be an area in which authentication is important. Steganographic principles—applied either to film-based records or to the microtopology of documents—can be employed to provide some protection against tampering.
Many industries, e.g. automobile and airline, rely on tags to mark critical parts. Such tags, however, are easily removed, and cap often be counterfeited. In applications wherein better security is desired, industrial parts can be steganographically marked to provide an inconspicuous identification/authentication tag.
In various of the applications reviewed in this specification, different messages can be steganographically conveyed by different regions of an image (e.g. different regions of an image can provide different internet URLs, or different regions of a photocollage can identify different photographers). Likewise with other media (e.g. sound).
Some software visionaries look to the day when data blobs will roam the datawaves and interact with other data blobs. In such an era, it will be necessary for such blobs to have robust and incorruptible ways of identifying themselves. Steganographic techniques again bold much promise here.
Finally, message changing codes—recursive systems in which steganographically encoded messages actually change underlying steganographic code patterns—offer new levels of sophistication and security. Such message changing codes are particularly well suited to applications such as plastic cash cards where time-changing elements are important to enhance security.
Again while applicant prefers the particular forms of steganographic encoding detailed above, the diverse applications disclosed in this specification can largely be practiced with other steganographic marking techniques, many of which are known in the prior art. Likewise, while the specification has focused on applications of this technology to images, the principles thereof are generally equally applicable to embedding such information in audio, physical media, or any other carrier of information.
Finally, while the specification has been illustrated with particular embodiments, it will be recognized that elements, components and steps from these embodiments can be recombined in different arrangements to serve different needs and applications, as will be readily apparent to those of ordinary skill in the art.
In view of the wide variety of implementations and applications to which the principles of this technology can be put, it should be apparent that the detailed embodiments are illustrative only and in no way limit the scope of my invention. Instead, I claim as my invention all such embodiments as come within the scope and spirit of the following claims and equivalents thereto.
Patent | Priority | Assignee | Title |
10235465, | Jun 22 2004 | Digimarc Corporation | Internet and database searching with handheld devices |
10304152, | Mar 24 2000 | Digimarc Corporation | Decoding a watermark and processing in response thereto |
10510000, | Oct 26 2010 | Intelligent control with hierarchical stacked neural networks | |
11514305, | Oct 26 2010 | Intelligent control with hierarchical stacked neural networks | |
11868883, | Oct 26 2010 | Intelligent control with hierarchical stacked neural networks | |
11954188, | Nov 09 2016 | Wells Fargo Bank, N.A. | Systems and methods for dynamic bio-behavioral authentication |
12124954, | Oct 26 2010 | Intelligent control with hierarchical stacked neural networks | |
7650009, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Controlling use of audio or image content |
7697719, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for analyzing electronic media including video and audio |
7805500, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Network linking methods and apparatus |
7945781, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and systems for inserting watermarks in digital signals |
7949147, | Aug 26 1997 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermarking compressed data |
7953270, | Nov 12 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and arrangements employing digital content items |
7953824, | Aug 06 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Image sensors worn or attached on humans for imagery identification |
7957553, | Apr 24 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking apparatus and methods |
7961949, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Extracting multiple identifiers from audio and video content |
7965863, | Feb 19 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarks as a gateway and control mechanism |
7970166, | Apr 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganographic encoding methods and apparatus |
7970167, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Deriving identifying data from video and audio |
7974436, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods, apparatus and programs for generating and utilizing content signatures |
7978874, | Oct 21 2002 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking for workflow by tracking content or content identifiers with respect to time |
7983443, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for managing content using intentional degradation and insertion of steganographic codes |
7986845, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganographic systems and methods |
7991182, | Jan 20 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for steganographic encoding media |
7992003, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and systems for inserting watermarks in digital signals |
8000495, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking systems and methods |
8005254, | Nov 12 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Background watermark processing |
8023691, | Apr 24 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods involving maps, imagery, video and steganography |
8023695, | Nov 18 1993 | Digimarc Corporation | Methods for analyzing electronic media including video and audio |
8027507, | Sep 25 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and apparatus for embedding auxiliary information within original data |
8027509, | Apr 19 2000 | Digimarc Corporation | Digital watermarking in data representing color channels |
8027510, | Jan 13 2000 | Digimarc Corporation | Encoding and decoding media signals |
8027520, | Nov 12 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and arrangements employing digital content items |
8036419, | Apr 16 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarks |
8036420, | Dec 28 1999 | Digimarc Corporation | Substituting or replacing components in sound based on steganographic encoding |
8045748, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark embedding functions adapted for transmission channels |
8051169, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and systems useful in linking from objects to remote resources |
8055014, | Jun 01 2000 | Digimarc Corporation | Bi-directional image capture methods and apparatuses |
8077911, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods, apparatus and programs for generating and utilizing content signatures |
8078697, | May 08 1995 | Digimarc Corporation | Network linking methods and apparatus |
8091025, | Mar 24 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Systems and methods for processing content objects |
8094869, | Jul 02 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Fragile and emerging digital watermarks |
8099403, | Jul 20 2000 | Digimarc Corporation | Content identification and management in content distribution networks |
8103053, | Nov 04 1999 | Digimarc Corporation | Method and apparatus for associating identifiers with content |
8103542, | Jun 29 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally marked objects and promotional methods |
8103879, | Apr 25 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Processing audio or video content with multiple watermark layers |
8107674, | Feb 04 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Synchronizing rendering of multimedia content |
8108484, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Fingerprints and machine-readable codes combined with user characteristics to obtain content or information |
8116516, | May 08 1995 | Digimarc Corporation | Controlling use of audio or image content |
8123134, | Aug 31 2001 | Digimarc Corporation | Apparatus to analyze security features on objects |
8126201, | Sep 11 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark decoding from streaming media |
8150032, | May 08 1995 | Digimarc Corporation | Methods for controlling rendering of images and video |
8155378, | Feb 14 2000 | Digimarc Corporation | Color image or video processing |
8160304, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Interactive systems and methods employing wireless mobile devices |
8165341, | Apr 16 1998 | Digimarc Corporation | Methods and apparatus to process imagery or audio content |
8165342, | Feb 14 2000 | Digimarc Corporation | Color image or video processing |
8180844, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | System for linking from objects to remote resources |
8181884, | Nov 17 2003 | DIGIMARC CORPORATION AN OREGON CORPORATION | Machine-readable features for objects |
8184849, | May 07 1996 | Digimarc Corporation | Error processing of steganographic message signals |
8184851, | Nov 18 1993 | Digimarc Corporation | Inserting watermarks into portions of digital signals |
8194915, | Feb 14 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Wavelet domain watermarks |
8230337, | Oct 17 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Associating objects with corresponding behaviors |
8243980, | Apr 25 1996 | DIGIMARC CORPORATION AN OREGON CORPORATION | Image processing using embedded registration data to determine and compensate for geometric transformation |
8256665, | May 19 1999 | Digimarc Corporation | Methods and systems for interacting with physical objects |
8301453, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark synchronization signals conveying payload data |
8312168, | Mar 18 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for linking from objects to remote resources |
8355525, | Feb 14 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Parallel processing of digital watermarking operations |
8355526, | Apr 16 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digitally watermarking holograms |
8364966, | Feb 20 1997 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermark systems and methods |
8379908, | Aug 06 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Embedding and reading codes on objects |
8391851, | Nov 03 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Gestural techniques with wireless mobile phone devices |
8429205, | Jul 27 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Associating data with media signals in media signal systems through auxiliary data steganographically embedded in the media signals |
8434073, | Nov 03 2008 | CA, INC | Systems and methods for preventing exploitation of byte sequences that violate compiler-generated alignment |
8447067, | May 19 1999 | Digimarc Corporation | Location-based arrangements employing mobile devices |
8457346, | Apr 24 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Digital watermarking image signals on-chip |
8457449, | May 19 1999 | Digimarc Corporation | Wireless mobile phone methods |
8483426, | May 07 1996 | Digimarc Corporation | Digital watermarks |
8489598, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and devices employing content identifiers |
8520900, | May 19 1999 | Digimarc Corporation | Methods and devices involving imagery and gestures |
8528103, | Oct 01 1998 | Digimarc Corporation | System for managing display and retrieval of image content on a network with image identification and linking to network content |
8538064, | May 19 1999 | Digimarc Corporation | Methods and devices employing content identifiers |
8542870, | Dec 21 2000 | Digimarc Corporation | Methods, apparatus and programs for generating and utilizing content signatures |
8543661, | May 19 1999 | Digimarc Corporation | Fingerprints and machine-readable codes combined with user characteristics to obtain content or information |
8543823, | Apr 30 2001 | Digimarc Corporation | Digital watermarking for identification documents |
8565473, | Feb 04 2004 | DIGIMARC CORPORATION AN OREGON CORPORATION | Noise influenced watermarking methods and apparatus |
8607354, | Apr 20 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Deriving multiple fingerprints from audio or video content |
8611589, | Sep 25 1998 | Digimarc Corporation | Method and apparatus for embedding auxiliary information within original data |
8615471, | May 02 2001 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and related toy and game applications using encoded information |
8644548, | Apr 16 1998 | Digimarc Corporation | Digital watermarks |
8645838, | Oct 01 1998 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method for enhancing content using persistent content identification |
8745742, | Nov 03 2008 | CA, INC | Methods and systems for processing web content encoded with malicious code |
8792675, | Feb 14 2000 | Digimarc Corporation | Color image or video processing |
8825518, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Media methods and systems |
8953908, | Jun 22 2004 | DIGIMARC CORPORATION AN OREGON CORPORATION | Metadata management and generation using perceptual features |
8976998, | Apr 24 2001 | Digimarc Corporation | Methods involving maps, imagery, video and steganography |
9053431, | Oct 26 2010 | Intelligent control with hierarchical stacked neural networks | |
9058388, | Jun 22 2004 | DIGIMARC CORPORATION AN OREGON CORPORATION | Internet and database searching with handheld devices |
9179033, | Apr 19 2000 | Digimarc Corporation | Digital watermarking in data representing color channels |
9275053, | Mar 24 2000 | Digimarc Corporation | Decoding a watermark and processing in response thereto |
9497341, | May 19 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods and systems for user-association of visual stimuli with corresponding responses |
9792661, | Apr 24 2001 | Digimarc Corporation | Methods involving maps, imagery, video and steganography |
9843846, | Dec 21 2000 | DIGIMARC CORPORATION AN OREGON CORPORATION | Watermark and fingerprint systems for media |
9875440, | Oct 26 2010 | Intelligent control with hierarchical stacked neural networks | |
9940685, | Apr 19 2000 | Digimarc Corporation | Digital watermarking in data representing color channels |
Patent | Priority | Assignee | Title |
3493674, | |||
3569619, | |||
3585290, | |||
3655162, | |||
3703628, | |||
3805238, | |||
3809806, | |||
3838444, | |||
3914877, | |||
3922074, | |||
3971917, | Aug 27 1971 | Labels and label readers | |
3982064, | Sep 04 1973 | The General Electric Company Limited | Combined television/data transmission system |
3984624, | Jul 25 1974 | Weston Instruments, Inc. | Video system for conveying digital and analog information |
4025851, | Nov 28 1975 | A.C. Nielsen Company | Automatic monitor for programs broadcast |
4225967, | Jan 09 1978 | Fujitsu Limited | Broadcast acknowledgement method and system |
4230990, | Mar 16 1979 | JOHN G LERT, JR | Broadcast program identification method and system |
4231113, | Jun 26 1964 | International Business Machines Corporation | Anti-jam communications system |
4238849, | Dec 22 1977 | NOKIA DEUTSCHLAND GMBH | Method of and system for transmitting two different messages on a carrier wave over a single transmission channel of predetermined bandwidth |
4252995, | Feb 25 1977 | U.S. Philips Corporation | Radio broadcasting system with transmitter identification |
4262329, | Mar 27 1978 | COMPUTER PLANNING, INC | Security system for data processing |
4313197, | Apr 09 1980 | Bell Telephone Laboratories, Incorporated | Spread spectrum arrangement for (de)multiplexing speech signals and nonspeech signals |
4367488, | Dec 08 1980 | Sterling Television Presentations Inc. Video Data Systems Division | Data encoding for television |
4379947, | Feb 02 1979 | MUZAK, LLC AND MUZAK HOLDINGS, LLC | System for transmitting data simultaneously with audio |
4380027, | Dec 08 1980 | STERLING TELEVISION PRESENTATIONS, INC | Data encoding for television |
4389671, | Sep 29 1980 | Harris Corporation | Digitally-controlled analog encrypton |
4395600, | Nov 26 1980 | PROACTIVE SYSTEMS, INC | Auditory subliminal message system and method |
4423415, | Jun 23 1980 | LIGHT SIGNATURES, INC , FORMERLY NEW LSI, INC , 1901 AVENUE OF THE STARS, LOS ANGELES CA 90067 A CORP OF CA | Non-counterfeitable document system |
4425642, | Jan 08 1982 | APPLIED SPECTRUM TECHNOLOGIES, INC | Simultaneous transmission of two information signals within a band-limited communications channel |
4476468, | Jun 22 1981 | LIGHT SIGNATURES, INC , 1901 AVENUE OF THE STARS, LOS ANGELES CA 90067 | Secure transaction card and verification system |
4528588, | Sep 26 1980 | Method and apparatus for marking the information content of an information carrying signal | |
4532508, | Apr 01 1983 | Siemens Corporate Research & Support, Inc. | Personal authentication system |
4547804, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Method and apparatus for the automatic identification and verification of commercial broadcast programs |
4553261, | May 31 1983 | Document and data handling and retrieval system | |
4590366, | Jul 01 1983 | Esselte Security Systems AB | Method of securing simple codes |
4595950, | Sep 26 1980 | Method and apparatus for marking the information content of an information carrying signal | |
4637051, | Jul 18 1983 | Pitney Bowes Inc. | System having a character generator for printing encrypted messages |
4639779, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Method and apparatus for the automatic identification and verification of television broadcast programs |
4647974, | Apr 12 1985 | RCA Corporation | Station signature system |
4654867, | Jul 13 1984 | Motorola, Inc. | Cellular voice and data radiotelephone system |
4660221, | Jul 18 1983 | Pitney Bowes Inc. | System for printing encrypted messages with bar-code representation |
4663518, | Sep 04 1984 | YAMA CAPITAL, LLC | Optical storage identification card and read/write system |
4665431, | Jun 24 1982 | Technology Licensing Corporation | Apparatus and method for receiving audio signals transmitted as part of a television video signal |
4672605, | Mar 20 1984 | APPLIED SPECTRUM TECHNOLOGIES, INC | Data and voice communications system |
4675746, | Jul 22 1983 | Data Card Corporation | System for forming picture, alphanumeric and micrographic images on the surface of a plastic card |
4677435, | Jul 23 1984 | Communaute Europeenne de l'Energie Atomique (Euratom); Association pour la Promotion de la Technologie (Promotech) | Surface texture reading access checking system |
4682794, | Jul 22 1985 | PHOTON IMAGING CORP , A DE CORP | Secure identification card and system |
4703476, | Sep 16 1983 | ASONIC DATA SERVICES, INC | Encoding of transmitted program material |
4712103, | Dec 03 1985 | Door lock control system | |
4718106, | May 12 1986 | PRETESTING COMPANY, INC , THE | Survey of radio audience |
4739377, | Oct 10 1986 | Eastman Kodak Company | Confidential document reproduction method and apparatus |
4750173, | May 21 1985 | POLYGRAM INTERNATIONAL HOLDING B V , A CORP OF THE NETHERLANDS | Method of transmitting audio information and additional information in digital form |
4765656, | Oct 15 1985 | GAO Gesellschaft fur Automation und Organisation mbH | Data carrier having an optical authenticity feature and methods for producing and testing said data carrier |
4775901, | Dec 04 1985 | Sony Corporation | Apparatus and method for preventing unauthorized dubbing of a recorded signal |
4776013, | Apr 18 1986 | Rotlex Optics Ltd. | Method and apparatus of encryption of optical images |
4805020, | Mar 21 1983 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Television program transmission verification method and apparatus |
4807031, | Oct 20 1987 | KOPLAR INTERACTIVE SYSTEMS INTERNATIONAL, L L C | Interactive video method and apparatus |
4811357, | Jan 04 1988 | Rembrandt Communications, LP | Secondary channel for digital modems using spread spectrum subliminal induced modulation |
4811408, | Nov 13 1987 | Light Signatures, Inc. | Image dissecting document verification system |
4820912, | Sep 19 1985 | N. V. Bekaert S.A. | Method and apparatus for checking the authenticity of documents |
4835517, | Jan 26 1984 | The University of British Columbia | Modem for pseudo noise communication on A.C. lines |
4855827, | Jul 21 1987 | PHYXATION, INC | Method of providing identification, other digital data and multiple audio tracks in video systems |
4864618, | Nov 26 1986 | Pitney Bowes Inc | Automated transaction system with modular printhead having print authentication feature |
4866771, | Jan 20 1987 | The Analytic Sciences Corporation | Signaling system |
4874936, | Apr 08 1988 | UNITED PARCEL SERVICE OF AMERICA, INC , A DE CORP | Hexagonal, information encoding article, process and system |
4876617, | May 06 1986 | MEDIAGUIDE HOLDINGS, LLC | Signal identification |
4879747, | Mar 21 1988 | YAMA CAPITAL, LLC | Method and system for personal identification |
4884139, | Dec 24 1986 | Etat Francais, Represente Par Le Secretariat D'etat Aux Post Es Et | Method of digital sound broadcasting in television channels with spectrum interlacing |
4885632, | Feb 29 1988 | AGB TELEVISION RESEARCH AGB , 9145 GUILFORD ROAD, COLUMBIA, MD 21046 | System and methods for monitoring TV viewing system including a VCR and/or a cable converter |
4903301, | Feb 27 1987 | Hitachi, Ltd. | Method and system for transmitting variable rate speech signal |
4908836, | Oct 11 1988 | UNISYS CORPORATION, BLUE BELL, PA , A CORP OF DE | Method and apparatus for decoding multiple bit sequences that are transmitted simultaneously in a single channel |
4908873, | May 13 1983 | TOLTEK ELECTRONICS CORPORATION | Document reproduction security system |
4920503, | May 27 1988 | GALLUP, PATRICIA; HALL, DAVID | Computer remote control through a video signal |
4921278, | Apr 01 1985 | Chinese Academy of Sciences | Identification system using computer generated moire |
4939515, | Sep 30 1988 | GENERAL ELECTRIC COMPANY, A CORP OF NEW YORK | Digital signal encoding and decoding apparatus |
4941150, | May 06 1987 | Victor Company of Japan, Ltd. | Spread spectrum communication system |
4943973, | Mar 31 1989 | AT&T Company; AT&T INFORMATION SYSTEMS INC , 100 SOUTHGATE PARKWAY, MORRISTOWN, NJ 07960, A CORP OF DE; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, 550 MADISON AVE , NEW YORK, NY 10022-3201, A CORP OF NY | Spread-spectrum identification signal for communications system |
4943976, | Sep 16 1988 | Victor Company of Japan, Ltd. | Spread spectrum communication system |
4944036, | Dec 28 1970 | Signature filter system | |
4963998, | Apr 20 1988 | Thorn EM plc | Apparatus for marking a recorded signal |
4965827, | May 19 1987 | GENERAL ELECTRIC COMPANY THE, P L C , 1 STANHOPE GATE, LONDON W1A 1EH,UNITED KINGDOM | Authenticator |
4967273, | Apr 15 1985 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Television program transmission verification method and apparatus |
4969041, | Sep 23 1988 | Tektronix, Inc | Embedment of data in a video signal |
4972471, | May 15 1989 | Encoding system | |
4972476, | May 11 1989 | Counterfeit proof ID card having a scrambled facial image | |
4977594, | Oct 14 1986 | ELECTRONIC PUBLISHING RESOURCES, INC | Database usage metering and protection system and method |
4979210, | Jul 08 1987 | Matsushita Electric Industrial Co., Ltd. | Method and apparatus for protection of signal copy |
4993068, | Nov 27 1989 | Motorola, Inc. | Unforgeable personal identification system |
4996530, | Nov 27 1989 | Agilent Technologies Inc | Statistically based continuous autocalibration method and apparatus |
5010405, | Feb 02 1989 | Massachusetts Institute of Technology | Receiver-compatible enhanced definition television system |
5027401, | Jul 03 1990 | ZERCO SYSTEMS INTERNATONAL, INC | System for the secure storage and transmission of data |
5036513, | Jun 21 1989 | ACADEMY OF APPLIED SCIENCE INC , 98 WASHINGTON ST NH, A CORP OF MA | Method of and apparatus for integrated voice (audio) communication simultaneously with "under voice" user-transparent digital data between telephone instruments |
5063446, | Aug 11 1989 | General Electric Company | Apparatus for transmitting auxiliary signal in a TV channel |
5073899, | Jul 13 1988 | U S PHILIPS CORPORATION | Transmission system for sending two signals simultaneously on the same communications channel |
5075773, | Dec 07 1987 | British Broadcasting Corporation | Data transmission in active picture period |
5077608, | Sep 19 1990 | PRODUCT ACTIVATION CORPORATION | Video effects system able to intersect a 3-D image with a 2-D image |
5077795, | Sep 28 1990 | Xerox Corporation | Security system for electronic printing systems |
5079648, | Apr 20 1988 | Thorn EMI plc | Marked recorded signals |
5086469, | Jun 29 1990 | ENTERASYS NETWORKS, INC | Encryption with selective disclosure of protocol identifiers |
5091966, | Jul 31 1990 | XEROX CORPORATION, STAMFORD, CT, A CORP OF NY | Adaptive scaling for decoding spatially periodic self-clocking glyph shape codes |
5095196, | Dec 28 1988 | OKI ELECTRIC INDUSTRY CO , LTD | Security system with imaging function |
5113437, | Oct 25 1988 | MEDIAGUIDE HOLDINGS, LLC | Signal identification system |
5128525, | Jul 31 1990 | XEROX CORPORATION, STAMFORD, CT A CORP OF NY | Convolution filtering for decoding self-clocking glyph shape codes |
5144660, | Aug 31 1988 | Securing a computer against undesired write operations to or read operations from a mass storage device | |
5148498, | Aug 01 1990 | AWARE, INC , A CORP OF MA | Image coding apparatus and method utilizing separable transformations |
5150409, | Aug 13 1987 | Device for the identification of messages | |
5161210, | Nov 10 1988 | U S PHILIPS CORPORATION | Coder for incorporating an auxiliary information signal in a digital audio signal, decoder for recovering such signals from the combined signal, and record carrier having such combined signal recorded thereon |
5166676, | Feb 15 1984 | Destron Fearing Corporation | Identification system |
5168147, | Jul 31 1990 | XEROX CORPORATION, STAMFORD, CT A CORP OF NY | Binary image processing for decoding self-clocking glyph shape codes |
5181786, | Nov 15 1989 | N V NEDERLANDSCHE APPARATENFABRIEK NEDAP A LIMITED COMPANY OF THE NETHERLANDS | Method and apparatus for producing admission tickets |
5185736, | May 12 1989 | ALCATEL NETWORK SYSTEMS, INC | Synchronous optical transmission system |
5199081, | Dec 15 1989 | Kabushiki Kaisha Toshiba | System for recording an image having a facial image and ID information |
5200822, | Apr 23 1991 | NATIONAL BROADCASTING COMPANY, INC | Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs |
5212551, | Oct 16 1989 | Method and apparatus for adaptively superimposing bursts of texts over audio signals and decoder thereof | |
5213337, | Jul 06 1988 | RPX Corporation | System for communication using a broadcast audio signal |
5228056, | Dec 14 1990 | InterDigital Technology Corp | Synchronous spread-spectrum communications system and method |
5243423, | Dec 20 1991 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Spread spectrum digital data transmission over TV video |
5245165, | Dec 27 1991 | Xerox Corporation | Self-clocking glyph code for encoding dual bit digital values robustly |
5245329, | Feb 27 1989 | SECURITY PEOPLE INC | Access control system with mechanical keys which store data |
5247364, | Nov 29 1991 | Cisco Technology, Inc | Method and apparatus for tuning data channels in a subscription television system having in-band data transmissions |
5253078, | Mar 14 1990 | LSI Logic Corporation | System for compression and decompression of video data using discrete cosine transform and coding techniques |
5257119, | Mar 25 1991 | Canon Kabushiki Kaisha | Image processing apparatus which adds apparatus identification data to images |
5258998, | Oct 07 1985 | Canon Kabushiki Kaisha | Data communication apparatus permitting confidential communication |
5259025, | Jun 12 1992 | Audio Digitalimaging, Inc. | Method of verifying fake-proof video identification data |
5267334, | May 24 1991 | Apple Inc | Encoding/decoding moving images with forward and backward keyframes for forward and reverse display |
5280537, | Nov 26 1991 | Nippon Telegraph and Telephone Corporation | Digital communication system using superposed transmission of high speed and low speed digital signals |
5293399, | Oct 08 1987 | DATAMARS SA | Identification system |
5295203, | Mar 26 1992 | GENERAL INSTRUMENT CORPORATION GIC-4 | Method and apparatus for vector coding of video transform coefficients |
5299019, | Feb 28 1992 | Samsung Electronics Co., Ltd. | Image signal band compressing system for digital video tape recorder |
5305400, | Dec 05 1990 | Deutsche ITT Industries GmbH | Method of encoding and decoding the video data of an image sequence |
5315098, | Dec 27 1990 | Xerox Corporation; XEROX CORPORATION, A CORP OF NY | Methods and means for embedding machine readable digital data in halftone images |
5319453, | Jun 22 1989 | Airtrax | Method and apparatus for video signal encoding, decoding and monitoring |
5319724, | Apr 19 1990 | RICOH COMPANY, LTD A CORP OF JAPAN; RICOH CORPORATION A CORP OF DELAWARE | Apparatus and method for compressing still images |
5319735, | Dec 17 1991 | Raytheon BBN Technologies Corp | Embedded signalling |
5325167, | May 11 1992 | CANON INC | Record document authentication by microscopic grain structure and method |
5327237, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Transmitting data with video |
5337362, | Apr 15 1993 | RICOH COMPANY, LTD , A CORP OF JAPAN; RICOH CORPORATION, A DE CORP | Method and apparatus for placing data onto plain paper |
5349655, | May 24 1991 | Symantec Corporation | Method for recovery of a computer program infected by a computer virus |
5351302, | May 26 1993 | Method for authenticating objects identified by images or other identifying information | |
5379345, | Jan 29 1993 | NIELSEN COMPANY US , LLC, THE | Method and apparatus for the processing of encoded data in conjunction with an audio broadcast |
5387941, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Data with video transmitter |
5394274, | Jan 22 1988 | Anti-copy system utilizing audible and inaudible protection signals | |
5396559, | Aug 24 1990 | Anticounterfeiting method and device utilizing holograms and pseudorandom dot patterns | |
5398283, | Sep 21 1992 | KRYPTOFAX PARTNERS L P | Encryption device |
5404160, | Jun 24 1993 | Berkeley Varitronics Systems, Inc. | System and method for identifying a television program |
5404377, | Apr 08 1994 | Intel Corporation | Simultaneous transmission of data and audio signals by means of perceptual coding |
5408542, | May 12 1992 | Apple Inc | Method and apparatus for real-time lossless compression and decompression of image data |
5418853, | Jul 24 1992 | Sony Corporation | Apparatus and method for preventing unauthorized copying of video signals |
5422963, | Oct 15 1993 | American Telephone and Telegraph Company | Block transform coder for arbitrarily shaped image segments |
5422995, | Mar 30 1992 | International Business Machiens Corporation | Method and means for fast writing of run length coded bit strings into bit mapped memory and the like |
5425100, | Nov 25 1992 | NIELSEN COMPANY US , LLC, THE | Universal broadcast code and multi-level encoded signal monitoring system |
5428606, | Jun 30 1993 | Wistaria Trading Ltd | Digital information commodities exchange |
5428607, | Dec 20 1993 | AT&T IPM Corp | Intra-switch communications in narrow band ATM networks |
5432542, | Aug 31 1992 | AMBATO MEDIA, LLC | Television receiver location identification |
5432870, | Jun 30 1993 | Ricoh Company, LTD | Method and apparatus for compressing and decompressing images of documents |
5446273, | Mar 13 1992 | Credit card security system | |
5450122, | Nov 22 1991 | NIELSEN COMPANY US , LLC, THE | In-station television program encoding and monitoring system and method |
5450490, | Mar 31 1994 | THE NIELSEN COMPANY US , LLC | Apparatus and methods for including codes in audio signals and decoding |
5461426, | Aug 20 1993 | SAMSUNG ELECTRONICS CO , LTD | Apparatus for processing modified NTSC television signals, with digital signals buried therewithin |
5469506, | Jun 27 1994 | Pitney Bowes Inc. | Apparatus for verifying an identification card and identifying a person by means of a biometric characteristic |
5473631, | Apr 08 1924 | Intel Corporation | Simultaneous transmission of data and audio signals by means of perceptual coding |
5479168, | May 29 1991 | Microsoft Technology Licensing, LLC | Compatible signal encode/decode system |
5481294, | Oct 27 1993 | NIELSEN COMPANY US , LLC | Audience measurement system utilizing ancillary codes and passive signatures |
5488664, | Apr 22 1994 | YEDA RESEARCH AND DEVELOPMENT CO , LTD | Method and apparatus for protecting visual information with printed cryptographic watermarks |
5499294, | Nov 24 1993 | The United States of America as represented by the Administrator of the | Digital camera with apparatus for authentication of images produced from an image file |
5515081, | Nov 30 1993 | Borland Software Corporation | System and methods for improved storage and processing of BITMAP images |
5524933, | May 29 1992 | Alpvision SA | Method for the marking of documents |
5530759, | Feb 01 1995 | International Business Machines Corporation | Color correct digital watermarking of images |
5530852, | Dec 20 1994 | Sun Microsystems, Inc | Method for extracting profiles and topics from a first file written in a first markup language and generating files in different markup languages containing the profiles and topics for use in accessing data described by the profiles and topics |
5532920, | Apr 29 1992 | International Business Machines Corporation | Data processing system and method to enforce payment of royalties when copying softcopy books |
5537223, | Jun 02 1994 | Xerox Corporation | Rotating non-rotationally symmetrical halftone dots for encoding embedded data in a hyperacuity printer |
5539471, | May 03 1994 | Rovi Technologies Corporation | System and method for inserting and recovering an add-on data signal for transmission with a video signal |
5539735, | Jun 30 1993 | Wistaria Trading Ltd | Digital information commodities exchange |
5541662, | Sep 30 1994 | Intel Corporation | Content programmer control of video and data display using associated data |
5541741, | Sep 30 1991 | Canon Kabushiki Kaisha | Image processing with anti-forgery provision |
5544255, | Aug 31 1994 | CIC ACQUISTION CORP ; CIC ACQUISITION CORP | Method and system for the capture, storage, transport and authentication of handwritten signatures |
5548646, | Sep 15 1994 | Sun Microsystems, Inc | System for signatureless transmission and reception of data packets between computer networks |
5557333, | Jun 14 1991 | PLYMOUTH DEWITT, INC | System for transparent transmission and reception of a secondary data signal with a video signal in the video band |
5559559, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Transmitting a secondary signal with dynamic injection level control |
5568179, | May 19 1992 | THOMSON CONSUMER ELECTRONICS S A | Method and apparatus for device control by data transmission in TV lines |
5568570, | Sep 30 1994 | Intellectual Ventures Fund 83 LLC | Method and apparatus for reducing quantization artifacts in a hierarchical image storage and retrieval system |
5572010, | Jan 03 1995 | Xerox Corporation | Distributed type labeling for embedded data blocks |
5572247, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Processor for receiving data from a video signal |
5576532, | Jan 03 1995 | Xerox Corporation | Interleaved and interlaced sync codes and address codes for self-clocking glyph codes |
5579124, | Nov 16 1992 | THE NIELSEN COMPANY US , LLC | Method and apparatus for encoding/decoding broadcast or recorded segments and monitoring audience exposure thereto |
5582103, | Jun 04 1992 | NATIONAL PRINTING BUREAU INCORPORATTED ADMINISTRATIVE AGENCY, JAPAN | Method for making an anti-counterfeit latent image formation object for bills, credit cards, etc. |
5587743, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Signal processors for transparent and simultaneous transmission and reception of a data signal in a video signal |
5590197, | Apr 04 1995 | SSL SERVICES LLC | Electronic payment system and method |
5602920, | May 31 1995 | L G Electronics Inc | Combined DCAM and transport demultiplexer |
5606609, | Sep 19 1994 | SILANIS TECHNOLOGY INC | Electronic document verification system and method |
5611575, | Jan 03 1995 | Xerox Corporation | Distributed state flags or other unordered information for embedded data blocks |
5613004, | Jun 07 1995 | Wistaria Trading Ltd | Steganographic method and device |
5613012, | Nov 28 1994 | Open Invention Network, LLC | Tokenless identification system for authorization of electronic transactions and electronic transmissions |
5614940, | Oct 21 1994 | Intel Corporation | Method and apparatus for providing broadcast information with indexing |
5617148, | Jun 14 1991 | PLYMOUTH DEWITT, INC | Filter by-pass for transmitting an additional signal with a video signal |
5629770, | Dec 20 1993 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Document copying deterrent method using line and word shift techniques |
5629980, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of digital works |
5636292, | May 08 1995 | DIGIMARC CORPORATION AN OREGON CORPORATION | Steganography methods employing embedded calibration data |
5638443, | Nov 23 1994 | CONTENTGUARD HOLDINGS, INC | System for controlling the distribution and use of composite digital works |
5638446, | Aug 28 1995 | NYTELL SOFTWARE LLC | Method for the secure distribution of electronic files in a distributed environment |
5646997, | Dec 14 1994 | Sony Corporation | Method and apparatus for embedding authentication information within digital data |
5647017, | Aug 31 1994 | Peripheral Vision Limited; CIC ACQUISITION CORP | Method and system for the verification of handwritten signatures |
5659726, | Feb 23 1995 | Regents of the University of California, The | Data embedding |
5659732, | May 17 1995 | Google, Inc | Document retrieval over networks wherein ranking and relevance scores are computed at the client for multiple database documents |
5661574, | Sep 30 1994 | Canon Kabushiki Kaisha | Image processing method and apparatus for adding identifying information to an image portion and forming the portion at a lower of plural resolutions |
5664018, | Mar 12 1996 | Watermarking process resilient to collusion attacks | |
5666487, | Jun 28 1995 | Verizon Patent and Licensing Inc | Network providing signals of different formats to a user by multplexing compressed broadband data with data of a different format into MPEG encoded data stream |
5721788, | Jul 31 1992 | DIGIMARC CORPORATION AN OREGON CORPORATION | Method and system for digital image signatures |
5862260, | Nov 18 1993 | DIGIMARC CORPORATION AN OREGON CORPORATION | Methods for surveying dissemination of proprietary empirical data |
DE3806411, | |||
EP58482, | |||
EP372601, | |||
EP411232, | |||
EP441702, | |||
EP493091, | |||
EP551016, | |||
EP581317, | |||
EP605208, | |||
EP629972, | |||
EP649074, | |||
EP650146, | |||
EP705025, | |||
GB2063018, | |||
GB2067871, | |||
GB2196167, | |||
GB2204984, | |||
JP4248771, | |||
JP5242217, | |||
JP830759, | |||
WO8908915, | |||
WO9325038, | |||
WO9510835, | |||
WO9514289, | |||
WO9520291, | |||
WO9626494, | |||
WO9627259, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 22 1996 | RHOADS, GEOFFREY B | Digimarc Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025008 | /0073 | |
Nov 24 1999 | DIGIMARC CORPORATION AN OREGON CORPORATION | DIGIMARC CORPORATION A DELAWARE CORPORATION | MERGER SEE DOCUMENT FOR DETAILS | 024982 | /0707 | |
Jan 27 2004 | Digimarc Corporation | (assignment on the face of the patent) | / | |||
Aug 01 2008 | DIGIMARC CORPORATION A DELAWARE CORPORATION | DMRC LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025217 | /0508 | |
Aug 01 2008 | DMRC LLC | DMRC CORPORATION | MERGER SEE DOCUMENT FOR DETAILS | 025227 | /0808 | |
Sep 03 2008 | DMRC CORPORATION | Digimarc Corporation | MERGER SEE DOCUMENT FOR DETAILS | 025227 | /0832 | |
Oct 24 2008 | L-1 SECURE CREDENTIALING, INC FORMERLY KNOWN AS DIGIMARC CORPORATION | DIGIMARC CORPORATION FORMERLY DMRC CORPORATION | CONFIRMATION OF TRANSFER OF UNITED STATES PATENT RIGHTS | 021785 | /0796 | |
Apr 30 2010 | DIGIMARC CORPORATION A DELAWARE CORPORATION | DIGIMARC CORPORATION AN OREGON CORPORATION | MERGER SEE DOCUMENT FOR DETAILS | 024369 | /0582 |
Date | Maintenance Fee Events |
Jun 22 2010 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Jan 06 2011 | ASPN: Payor Number Assigned. |
Jan 06 2011 | RMPN: Payer Number De-assigned. |
Date | Maintenance Schedule |
Sep 22 2012 | 4 years fee payment window open |
Mar 22 2013 | 6 months grace period start (w surcharge) |
Sep 22 2013 | patent expiry (for year 4) |
Sep 22 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 22 2016 | 8 years fee payment window open |
Mar 22 2017 | 6 months grace period start (w surcharge) |
Sep 22 2017 | patent expiry (for year 8) |
Sep 22 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 22 2020 | 12 years fee payment window open |
Mar 22 2021 | 6 months grace period start (w surcharge) |
Sep 22 2021 | patent expiry (for year 12) |
Sep 22 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |