A method for achieving a highly uniform plasma density on a substrate by shaping an induced electric field including the steps of positioning the substrate in a processing chamber, supplying a high frequency power to a spiral antenna generating an induced electric field in the processing chamber, generating a plasma in the processing chamber, and shaping the electric field with respect to the substrate to achieve a uniform distribution of plasma on the substrate being processed.
|
1. A method for processing a substrate with plasma, comprising the steps of:
positioning the substrate in a processing chamber;
supplying a high frequency power to a substantially planar spiral antenna from a central area thereof and generating an induced electric field in the processing chamber;
generating a plasma in said processing chamber; and
shaping said induced electric field with respect to said substrate so as to achieve a uniform distribution of said plasma on said substrate.
0. 14. A method for processing a substrate by a plasma processing apparatus, comprising
positioning the substrate in a processing chamber;
applying a high frequency power to inner end portions of a plurality of elongated members of a spiral antenna, the inner end portions of the elongated members being positioned in a central area of the spiral antenna, and the elongated members be in outwardly extended from the central area in a curved shape to generate an induced electric field in the processing chamber; and
generating a plasma in the processing chamber to process the substrate;
wherein each of the plurality of elongated members is a separate member separately supplied with high frequency power.
0. 10. A method for processing a substrate by a plasma processing apparatus including a processing chamber, a susceptor having a supporting area for supporting the substrate in the processing chamber, a spiral antenna having at least two elongated members, each of the members having an inner end and an outer end and outwardly extending from a central area of the processing chamber, and a dielectric member positioned between the supporting area of the susceptor and the spiral antenna, the method comprising:
supporting the substrate in the supporting area of the susceptor;
introducing a processing gas into the processing chamber;
supplying a high frequency power to one of the inner and the outer end of each of the elongated members to generate an induced electric field in the processing chamber; and
generating a plasma in the processing chamber;
wherein each of the at least two elongated members is a separate member separately supplied with high frequency power.
2. The method according to
said supplying step includes supplying the high frequency power to the spiral antenna and impedance matching an output of a high frequency power supply to an input of said spiral antenna.
3. The method according to
4. The method according to
said supplying step comprises,
generating an alternating magnetic field having flux lines that pass through a dielectric member disposed between said spiral antenna and said substrate in said processing chamber.
5. The method according to
said supplying step comprises,
supplying the high frequency power to said spiral antenna which includes a plurality of curved antenna segments having inner ends which are positioned at the central area.
6. The method according to
said supplying step comprises,
supplying the high frequency power to said curved antenna segments, each of said curved antenna segments spiralling radially outward in a same direction, said direction being either clockwise or counterclockwise.
7. The method according to
said shaping step includes,
disposing a paramagnetic plate under said spiral antenna.
0. 8. The method according to
0. 9. The method according to
0. 11. The method according to
supplying the high frequency power to the inner end of each of the elongated members.
0. 12. The method according to
supplying the high frequency power to one of the inner end and the outer end of each of the elongated members through a matching circuit.
0. 13. The method according to
0. 15. The method according to
supplying high frequency power to the inner end of each of the elongated members through a matching circuit.
0. 16. The method according to
0. 17. The method according to
0. 18. The method according to
|
This application is a Division of application Ser. No. 08/788,636 filed on Jan. 27, 1997 now U.S. Pat. No. 5,938,883 on Aug. 17, 1999, which is a continuation of Ser. No. 08/180,281 filed Jan. 12, 1994, now abandoned.
1. Field of the Invention
The present invention relates to a plasma processing apparatus for performing a predetermined process using a plasma.
2. Description of the Related Art
In the manufacture of, for example, a semiconductor integrated circuit, plasma is utilized in the steps of ashing, etching, CVD and sputtering treatments in order to promote the ionization of a processing gas, the chemical reaction, etc. It was customary in the past to use in many cases a parallel plate type plasma apparatus using a high frequency (RF) energy as a means for generating a plasma. Recently, proposed is a high frequency induction type plasma processing apparatus using a substantially planar spiral antenna because the plasma processing apparatus of this type permits a desirable energy density distribution of the plasma, makes it possible to control highly accurately the bias potential between the plasma and the susceptor, and is effective for diminishing the contamination with the heavy metal coming from the electrode. As described in, for example, European Patent Laid-Open Specification No. 379828, the high frequency induction type plasma processing apparatus comprises a processing chamber and a wafer-supporting plate positioned within the processing chamber. In general, the upper wall portion, which is positioned to face the wafer-supporting plate, of the processing chamber is formed of an insulating material such as a silica glass. Also, a spiral antenna is fixed to the outer wall surface of the insulating region of the processing chamber. A high frequency current is allowed to flow through the antenna so as to generate a high frequency electromagnetic field. The electrons flowing within the region of the electromagnetic field are allowed to collide against neutral particles within the processing gas so as to ionize the gas and, thus, to generate a plasma.
In the high frequency induction type plasma processing apparatus, a plasma is formed within the inner space of the processing chamber right under the spiral antenna. Concerning the density distribution of the plasma thus formed relative to the intensity of the electric field, the highest plasma density is formed about midway between the center and the outermost region in the radial direction of the substantially planar spiral antenna, and the plasma density is gradually lowered toward the center and toward the outermost region of the spiral antenna. In other words, the plasma density is uneven in the radial direction of the spiral antenna. The plasma of the uneven distribution is the radial direction is diffused from the higher density region toward the lower density region, with the result that the plasma density is made considerably uniform near a semiconductor region positioned below the plasma-forming region.
In the conventional plasma processing apparatus of this type, however, the plasma diffusion in the radial direction tends to cause the plasma density in the central region of the semiconductor wafer to be higher than in the outer peripheral region of the wafer, leaving room for further improvement in the uniformity and reproducibility of the plasma processing.
The present invention which has been achieved in view of the situation described above, is intended to provide a high frequency induction type plasma processing apparatus which permits a highly uniform plasma density in the region around an object to be processed and is excellent in its uniformity and reproducibility of the plasma processing.
According to a first aspect of the present invention, there is provided a plasma processing apparatus, comprising:
According to a second aspect of the present invention, there is provided a plasma processing apparatus, comprising:
According to a third aspect of the present invention, there is provided a plasma processing apparatus, comprising:
According to a fourth aspect of the present invention, there is provided a plasma processing apparatus, comprising:
According to a fifth aspect of the present invention, there is provided a plasma processing apparatus, comprising:
According to a sixth aspect of the present invention, there is provided a plasma processing apparatus, comprising:
Further, according to a seventh aspect of the present invention, there is provided a plasma processing apparatus, comprising:
Let us describe some preferred embodiments of the present invention with reference to the accompanying drawings. First of all,
As shown in
A disc-like or columnar supporting table (i.e., susceptor) 14 is arranged in the central portion of the bottom wall of the processing chamber 10. A semiconductor wafer W, i.e., an object to be processed, is disposed on the upper surface of the susceptor 14, which is made of, for example, aluminum and having the surface subjected to an anodic oxidation treatment.
Where the plasma processing apparatus shown in the drawing is used as an etching apparatus, a high frequency power source 18 of, for example, 13.56 MHz for the etching treatment is connected to the susceptor 14 via a capacitor 16 acting as a matching circuit. A cooling water for preventing an excess heating by the high frequency power is supplied from a cooling water supply source (not shown) into an inner region of the susceptor 14. A high frequency bias power is applied appropriately from the high frequency power supply 18 to the susceptor 14 depending on the kind and pressure of the processing gas used so as to accelerate the ion stream within a plasma and make the ion stream uniform.
As shown in
An electrostatic chuck 30 is provided in the wafer-holding surface of the susceptor 14. The electrostatic chuck 30 comprises a copper foil 31 acting as an electrode and an insulating film, e.g., a polyimide film, covering the copper foil 31. It follows that the wafer W is electrostatically attracted accurately to and firmly held by the electrostatic chuck 30. A DC power supply 32 is connected to the electrostatic chuck 30. A DC voltage of, for example, 2 kV is applied from the DC power source 32 to the electrostatic chuck 30, with the result that the wafer W is held by the electrostatic chuck 30 without fail.
A gas inlet port 10a is formed in an upper part of the side wall of the processing chamber 10, and a gas supply pipe 20 is connected to the gas inlet port 10a. A processing gas is supplied from a gas supply source 37 into the processing chamber 10 through the gas supply pipe 20. In this case, the processing gas to be supplied differs depending on the kind of the treatment applied to the object. In the case of, for example, an etching treatment, an etching gas such as a CHF3 gas or a CF4 gas is supplied into the processing chamber 10. In the embodiment shown in the drawing, the apparatus comprises a single gas supply source 37 and a single gas supply pipe 20. Needless to say, however, a plurality of gas supply sources and a plurality of gas supply pipes are connected to the processing chamber 10 in the case where a plurality of different kinds of gases are used for the treatment.
A gas exhaust port 10b is formed in a lower part of the side wall of the processing chamber 10. A gas discharge pipe 22 is connected to the gas discharge port 10b. A gas discharge system including a vacuum pump, etc. is connected to the gas discharge pipe 22 so as to maintain a predetermined degree of vacuum within the processing chamber 10.
A spiral high frequency antenna 24 acting as an induction member is mounted to the outer surface of the upper wall 12 of the processing chamber 12. The antenna 24, which is made of a conductive wire material or a conductive tubular material, is positioned to face the semiconductor wafer W mounted on the susceptor 14 arranged within the chamber 10. It is desirable for the antenna 24 to be made of copper which exhibits an excellent cooling property. A high frequency voltage of, for example, 13.56 MHz is applied from a high frequency power supply 28 for forming a plasma to the antenna 24 through a capacitor 26 acting as a matching circuit. To be more specific, the high frequency voltage noted above is applied between an inner terminal 24c and an outer terminal 24b of the antenna 24. As a result, a high frequency current iRF flows through the antenna 24 so as to form an induced electric field in the free space right under the antenna 24 within the processing chamber 10 and, thus, to form a plasma of the processing gas, as described herein later. It should be noted that the high frequency power supplies 18 and 28 are controlled by a controller 36.
In the embodiment shown in
Let us describe with reference to
In the first step, a semiconductor wafer W acting as an object to be processed is transferred from a load lock chamber (not shown) adjacent to the processing chamber 10 into the chamber 10 which is evacuated in advance to a vacuum of, for example, 10−6 Torr. The semiconductor wafer W thus introduced into the chamber 10 is held by the electrostatic chuck 30.
In the next step, a predetermined processing gas such as a CHF3 gas or a CF4 gas is introduced into the processing chamber 10 through the gas supply pipe 20. In this step, the pressure within the chamber 30 is controlled to be, for example, 10−3 Torr. Under this condition, a high frequency voltage is applied from the high frequency power supply 28 to the spiral antenna 24, with the result that a high frequency current iRF is caused to flow through the spiral antenna 24. Flow of the high frequency current iRF permits generation of an alternating magnetic field B around the antenna conductor. A majority of the magnetic fluxes thus formed run in a vertical direction through the central portion of the antenna so as to form a closed loop. The alternating magnetic field B induces an alternating electric field E right under the antenna 24. The induced alternating electric field E is substantially concentric and runs in a circumferential direction. What should be noted is that electrons are accelerated in the circumferential direction by the alternating electric field E and collide against the neutral particles within the processing gas so as to ionize the gaseous molecules and, thus, to form a plasma.
The plasma thus formed right under the antenna 24 has the highest density substantially midway between the center and the outermost region in the radial direction of the antenna 24, as schematically shown in FIG. 2. In other words, the plasma density is gradually lowered from the highest density region noted above toward the center and toward the outermost region in the radial direction of the spiral antenna 24.
In the embodiment shown in the drawing, an eddy current flows within the copper plate 30 in a manner to obstruct the passage of the magnetic fluxes B therethrough with the result that the magnetic fluxes B are unlikely to run through the central portion of the antenna 24. As shown in
As described previously, the plasma is diffused from a higher density region toward a lower density region in the absence of the copper plate 30 so as to make the plasma density uniform in the vicinity of the semiconductor wafer W. As a result, the plasma density in the central region of the wafer W is rendered higher than in the outer peripheral region of the wafer, as denoted by “Pd′” in FIG. 3. It follows that a uniform treatment can be performed on the wafer surface.
On the other hand, where the copper plate 30 is disposed as shown in
When it comes to, for example, a plasma etching treatment, the gaseous molecules excited by the plasma into an active state are enabled to perform a chemical reaction with the substance of the workpiece. In this case, the reaction product is vaporized so as to cause the substances on the wafer surface to be taken away. In the case of a CVD treatment, the gaseous molecules excited by the plasma are allowed to react each other. In this case, the reaction product is deposited on the wafer surface so as to form a CVD film.
As exemplified above, a plasma is allowed to act with a uniform density on the entire surface of the semiconductor wafer W in the plasma processing apparatus of the present invention in any of the plasma processings, making it possible to achieve a uniform processing on the wafer surface.
When the plasma processing applied to the wafer W is finished within the processing chamber 10, the residual gas and the residual reaction product are exhausted out of the processing chamber 10 by the exhaust system 38, followed by taking the semiconductor wafer W disposed on the susceptor 14 out of the processing chamber 10 by using a transfer arm and subsequently putting the semiconductor wafer W in the load lock chamber.
As described above, the plasma processing apparatus shown in
In the embodiment described above, the antenna 24 used as an induction member is spiral. However, it is also possible to use an antenna in the form of a single loop, i.e., a ring-like antenna, as shown in FIG. 4. In the case of using such a ring-like antenna, it is also possible to form an alternating electric field as in the case of using a spiral antenna, making it possible to form a relatively uniform plasma. It is also possible to use a modified spiral antenna as shown in FIG. 5. In this case, the central portion of the spiral configuration is cut away to provide the modified spiral antenna. In the case of using the modified spiral antenna as shown in
The shape of the member formed of a paramagnetic metal need not be restricted to a plate. It should also be noted that it suffices for the paramagnetic metal member to be arranged in the vicinity of the antenna acting as an induction member. For example, the paramagnetic metal member may be arranged in the central portion of the antenna as in the embodiment shown in
Let us describe a second embodiment of the present invention. The basic construction of the plasma processing apparatus according to the second embodiment is substantially equal to that of the first embodiment described above. In the second embodiment, however, a paramagnetic metal is not used for controlling the plasma density. In place of using a paramagnetic metal, the state of the spiral antenna is changed so as to control the plasma density in the plasma processing apparatus of the second embodiment.
In the spiral antenna 24 shown in
Let us describe a plasma processing apparatus according to a third embodiment of the present invention. In this embodiment, two antennas used as an induction member are concentrically arranged, and the high frequency voltages supplied to these two antennas are independently controlled.
To be more specific,
These first and second high frequency power supplies 28A and 28B serve to supply independently first and second high frequency powers of the same frequency, e.g., 13.56 MHz, and same phase to the outer and inner ring-like antennas 24A and 24B. Where these antennas are arranged in substantially the same positions as in the embodiment shown in
Where the antennas used as an induction member are constructed as described above, it is possible to determine independently the high frequency power supplied to each of these inner and outer antennas, making it possible to control the plasma forming region more accurately over a wider range. Incidentally, it is possible to use commonly a single high frequency power supply in place of the first and second high frequency power supplies 28A and 28B by providing a power distributing circuit between the high frequency power supply and the antenna 24A and between the high frequency power supply and the other antenna 24B.
In the embodiment shown in
It is also possible to use a paramagnetic metal member as used in the first embodiment described previously in each of the embodiments shown in
Let us describe a plasma processing apparatus according to a fourth embodiment of the present invention with reference to
In this embodiment, a ring-like antenna 24 acting as an induction member is arranged on the outer surface of the upper wall 12 of the processing chamber 10 formed of an insulator. The antenna 24 is arranged to surround a region corresponding a semiconductor wafer W acting as an object to be processed. Also, a magnetic member 40 is arranged in substantially the central portion on the outer surface of the upper wall 12 such that the location of the magnetic member 40 corresponds to the position of the wafer W inside the ring-like antenna 24. As a result, a magnetic field is allowed to act in the plasma forming region within the processing chamber 10. The magnetic member 10, which is formed of a ferromagnetic material, should desirably be low in its electrical conductivity. For example, it is desirable to use a soft ferrite, e.g., a Ni—Zn based material, for forming the magnetic member 10. Where the magnetic member 40 is formed of a material having a high electrical conductivity, an eddy current is generated by an alternating magnetic field when a high frequency current is allowed to flow through the magnetic member 40, resulting in failure to form a desired magnetic field within the processing chamber 10.
The magnetic member 10 is formed to have a relatively thicker portion and a relatively thinner portion. To be more specific, that region of the magnetic member 10 which serves to form a magnetic field applied to a region in which it is desirable to relatively increase the plasma density is formed relatively thicker, with that region of the magnetic member 10 which serves to form a magnetic field applied to other regions is formed relatively thinner. The plasma density can be controlled as desired by controlling the thickness of the magnetic member 40 in this fashion. For example, the outer peripheral portion of the magnetic member 40 is formed thicker, with the central portion being formed thinner, as shown in
It is also important to pay attentions to the cross sectional area in the horizontal direction of the magnetic member 40, i.e., the cross sectional area substantially parallel with the processing surface of the wafer W disposed within the processing chamber 10. To be more specific, it is desirable to make the cross sectional area noted above of the magnetic member 40 larger than the processing area of the wafer W. The particular construction makes it possible to allow the magnetic field generated from the magnetic member 40 to act over the entire region of the processing area of the wafer W, with the result that the plasma density distribution can be controlled more accurately.
It should be noted that, where a high frequency current is allowed to flow through the antenna 24 for the plasma generation, a demagnetizing field is likely to be generated within the magnetic member 40 so as to adversely affect the magnetic field generated from the magnetic member 40. It follows that it is desirable to determine the thickness of the magnetic member 40 in a manner to make the influence given by the demagnetizing field negligible. It is also desirable to make, for example, the magnetic path longer so as to eliminate the adverse effect given by the diamagnetic field.
In the embodiment shown in
Let us describe more in detail the function of the magnetic member 40 included in the embodiment shown in
It is also necessary to control as desired the distribution of the plasma density over the entire processing surface of the semiconductor wafer W used as an object to be processed. To achieve the object, it is also important to pay attention to the cross sectional area in the horizontal direction of the magnetic member 40 formed of a soft ferrite, i.e., the cross sectional area substantially parallel with the processing surface of the semiconductor wafer W. To be more specific, it is necessary to make the cross sectional area noted above of the magnetic member 40 larger than the processing surface area of the wafer W. What should also be noted is that a diamagnetic field is generated within the magnetic member 40, if a high frequency current is allowed to flow through the antenna 24, as described previously. To overcome the difficulty, it is desirable to make the thickness of the magnetic member 40 negligibly small in terms of the demagnetizing field generation.
As described above, the distribution of the plasma density within the processing chamber 10 can be controlled as desired by controlling appropriately the shape of the magnetic member 40. Suppose that the magnetic member 40 is not included in the apparatus shown in FIG. 11. In this case, the plasma density in the peripheral portion within the processing chamber 10 is generally rendered lower than in the central portion, as described previously in conjunction with the first embodiment shown in
It should be noted that the required distribution of the plasma density depends on various factors including the kind of the object to be processed, the kind of the reactive gas used, and the gas pressure. In the present invention, however, a desired optimum distribution of the plasma density can be obtained by controlling appropriately the shape of the magnetic member 40 formed of a soft ferrite.
In the embodiment shown in, for example,
In the embodiment shown in
Further, in the embodiment shown in
In the embodiment shown in
Further, two ring-like antennas 24A and 24B can be concentrically arranged as shown in FIG. 18. In this case, a single high frequency power supply which is shared by two high frequency power supplies can be controlled independently so as to control more effectively the plasma density distribution, as described previously in conjunction with the third embodiment.
In any of the embodiments described above, it is desirable to provide a shower head 50 on the upper surface of the processing chamber 10 for supplying a processing gas into the processing chamber, as shown in
In the present invention, it is possible for the high frequency antenna to be shaped optionally. For example, the high frequency antenna may be plate-like, rod-like or tubular. Also, the diameter (or thickness) of the conductor forming the high frequency antenna need not be constant. For example, it is possible to use a hollow metal pipe. In this case, a cooling medium may be allowed to flow through the hollow pipe for the cooling purpose.
The plasma processing apparatus of the present invention need not be restricted to a plasma etching apparatus and a plasma CVD apparatus. In other words, the technical idea of the present invention can also be applied to, for example, a plasma sputtering apparatus and a plasma ashing apparatus. Further, the object to be processed by the apparatus of the present invention need not be restricted to a semiconductor wafer. For example, it is possible to use the apparatus of the present invention for applying a plasma processing to an LCD substrate. In the case of applying a plasma processing to an object having a square cross sectional shape such as an LCD substrate, used is a square single loop antenna 24 as shown in
Let us describe another plasma processing apparatus using an induction member, said apparatus comprising a plasma generating section and a plasma processing section. In this apparatus, a plasma stream generated in the plasma generating section is introduced into the plasma processing section so as to apply a plasma processing to an object disposed within the plasma processing section. An induction member is arranged within the plasma generating section. When a high frequency current is allowed to flow through the induction member, an alternating electric field is generated via an insulating member within the plasma processing section. Also, a magnetic field forming means is arranged to surround the plasma generating section so as to form a static magnetic field in a direction perpendicular to the alternating electric field noted above. In this case, the alternating electric field and the static magnetic field noted above are controlled so as to form an electron cyclotron resonance region within the plasma processing section. The apparatus outlined above is called a plasma apparatus utilizing an electron cyclotron resonance (ECR).
In recent years, a marked progress is being made in the miniaturization of the pattern formed in an object such as a semiconductor wafer. In accordance with the progress, it is required to perform a plasma processing more accurately in the sub-micron order. When it comes to, for example, an etching treatment, it is important to satisfy various severe conditions simultaneously. Specifically, it is necessary to achieve a vertical etching. The region to be etched should not be damaged or contaminated. An adverse effect should not be given to the device characteristics. Further, it is required to achieve a high etching selectivity.
Under the circumstances, a plasma apparatus utilizing an electron cyclotron resonance (ECR) has come to attract attentions in this technical field. A typical conventional ECR plasma apparatus is disclosed in, for example, Jap. Pat. Appln. KOKOKU Publication No. 3-43774. Compared with the conventional RIE plasma apparatus, the ECR plasma apparatus disclosed in this prior art permits forming a pattern of a high anisotropy and a high selectivity with a low ion energy. Thus, vigorous researches are being made in an attempt to introduce the ECR plasma apparatus into the manufacturing process of sub-micron devices in the future.
The conventional ECR plasma apparatus is constructed to utilize a micro wave of 2.45 GHz introduced from a magnetron oscillating device into a discharge section through an appropriate waveguide and a magnetic field of 875 Gauss generated from an electromagnetic coil arranged in the vicinity of the discharge section. These micro wave and magnetic field are allowed to act in a suitable region within the discharge section so as to achieve the ECR condition and, thus, to form a plasma stream.
In the conventional ECR plasma apparatus, however, a micro wave is utilized for achieving the ECR condition as pointed out above, with the result that a special waveguide is required for transmitting the micro wave. It is also necessary to form within the discharge section such a high magnetic field as 875 Gauss, which corresponds to the micro wave of 2.45 GHz which can be commercially utilized, making it necessary to install a large and heavy magnet. The particular construction pointed out above brings about enlargement and an increased manufacturing cost of the plasma processing apparatus in accordance with increase in the diameter of the semiconductor wafer. Of course, vigorous researches are being made in an attempt to find some coutermeasures. Further, the plasma stream is considerably affected by the diffusing magnetic field of such a large magnetic field as pointed out above.
The apparatus described above, which has been achieved in view of the inconveniences noted above, permits using a lower frequency region so as to make it possible to achieve the ECR condition with a smaller magnetic field. It follows that the apparatus permits miniaturizing and reducing the manufacturing cost of the plasma processing apparatus.
Let us describe the plasma apparatus, which is applied to an ECR plasma etching apparatus, with reference to the accompanying drawings.
As schematically shown in
The antenna 103 is connected to a first high frequency power supply 105 via a matching box 104. A high frequency power can be supplied to the antenna 103 in accordance with a command given from a controller 108. The electromagnetic coil 106 is connected to a power supply 107 and can be excited in accordance with a command given from the controller 108 so as to form a desired static magnetic field.
A first gas inlet passageway 110 is formed in the dome-shaped top portion of the quartz tube 102. A first processing gas, e.g., an inert gas such as an argon gas, is introduced from a first gas source 109 into the plasma generating section A through the first gas inlet passageway 110.
As shown in
As apparent from
As described herein later, the sizes and outputs of the quartz tube 102, the antenna 103 and the electromagnetic coil 106, which collectively form the plasma generating section, are determined to permit formation of an ECR region E about 20 to 30 cm above the reacting surface of the wafer W. To be more specific, in the apparatus shown in
Let us describe the construction of the plasma processing section B of the plasma processing apparatus utilizing ECR with reference to
A second gas supply passageway 119 is formed in a shoulder portion of the processing chamber 111. A second process gas is supplied from a second gas source 118 into the processing chamber 111 through the second gas supply passageway 119. A gas exhaust passageway 116 is formed in a lower portion, which is positioned opposite to the second gas supply passageway 119, of the processing chamber 111. The gas exhaust passageway 116 is connected to a gas exhaust system 115 including a vacuum pump, etc. The free space within the processing chamber 111 is evacuated into a desired degree of vacuum, as desired, by utilizing the gas exhaust system 115 and the gas exhaust passageway 116.
A magnetic field forming means 117 is arranged to surround the side wall of the processing chamber 111. The construction of the magnetic field forming means 117 is substantially equal to that of the magnetic field forming means 42 shown in FIG. 11. To reiterate, the plasma stream introduced from the plasma generating section A can be retained in a desired shape in the vicinity of the processing surface of the semiconductor wafer W, i.e., an object to be processed, by the magnetic field forming means 117.
Where the ECR plasma etching apparatus of the construction described above is used for applying an etching treatment to the semiconductor wafer W, the wafer W is transferred from a load lock chamber (not shown) located adjacent to the processing chamber 111 into the processing chamber 111 whose inner pressure is reduced in advance into, for example, 10−6 Torr. The wafer W thus transferred into the processing chamber 111 is held by a fixing means such as an electrostatic chuck (not shown) on the susceptor 112 arranged within the processing chamber 111.
In the next step, predetermined processing gases for applying a plasma etching treatment to the semiconductor wafer W are introduced into the quartz tube 102 and the processing chamber 111 through the first gas inlet passageway 110 formed in the dome-shaped top portion of the quartz tube 102 and the second gas inlet passageway 119 formed in the shoulder portion of the processing chamber 111, respectively. In this step, the pressure within the processing chamber 111 is controlled to be, for example, 10−3 Torr. For example, an inert gas such as an argon gas is introduced through the first gas supply passageway 110. On the other hand, a processing gas such as a Cl2 gas or a CHF3 gas is supplied through the second gas inlet passageway 119. What should be noted is that the apparatus is constructed to permit supplying processing gases into the plasma generating section A and the plasma processing section B through the two different gas inlet passageways. It follows that the optimum mixing ratio of the processing gases adapted for the etching treatment can be achieved by separately setting the parameters for the plasma generating section A and the plasma processing section B, making it possible to achieve a plasma etching treatment with an excellent control capability.
In generating a plasma, a suitable high frequency current is supplied from the first high frequency power supply 105 to the antenna 103. As a result, an alternating electric field is formed within the processing chamber. At the same time, the electromagnetic coil 106 is excited by the power supply 107 so as to form a static magnetic field having lines of magnetic force running downward in the vertical direction, i.e., running in the axial direction of the quartz tube. If the ECR condition, which is described later, is satisfied, the electrons present within the ECR region are enabled to make spiral movements in a manner to wind the lines of magnetic force of the magnetic field so as to arrive at the plasma potential. As a result, the moving electrons are accelerated in the direction of a weak magnetic field, i.e., accelerated downward in the vertical direction. It follows that formed is a plasma stream flowing in a direction perpendicular to the processing surface of the wafer W.
The condition for achieving the electron cyclotron resonance (ECR) can be obtained when the formula given below is satisfied:
B=2rmefc/e
The micro wave which can be commercially utilized has such a high frequency as 2.45 GHz. Thus, in the conventional micro wave ECR plasma apparatus, it is necessary to generate such a high magnetic field as 875 Gauss in order to meet the ECR condition. Naturally, it is necessary to use a large and heavy magnet for obtaining the high magnetic field, making it unavoidable for the apparatus to be rendered bulky. Further, it is necessary to use a special waveguide for transmitting the micro wave.
As apparent from the formula given above, the ECR condition can be achieved with a lower magnetic field in the case of using a lower frequency. In the plasma apparatus described above, a high frequency current having a low frequency, e.g., 100 MHz or less, is supplied to the antenna so as to form an alternating electric field. It follows that the ECR condition can be satisfied by forming such a low magnetic field as about 35 Gauss. Naturally, in the apparatus of the present invention, it suffices to use an electromagnetic coil much smaller than in the conventional apparatus, making it possible to simplify and diminish the apparatus.
As shown in
In the plasma processing apparatus described above, however, it is possible to use such a small magnetic field as, for example, 35 Gauss, making it possible to diminish the diverging magnetic field generated within the processing chamber 11. It follows that the diverging tendency of the plasma stream introduced into the processing chamber 11 can be suppressed to the minimum level. In particular, the effect of the diverging magnetic field can be made substantially negligible in a region about 20 to 30 cm apart from the ECR region. As a result, the plasma stream can be guided in a direction substantially perpendicular to the processing surface of the semiconductor wafer W, making it possible to achieve a satisfactory anisotropic etching having a high etching selectivity.
It should also be noted that, in the plasma apparatus shown in
Further, in the apparatus shown in
When the processing, e.g., the etching processing, is finished as described above, the residual processing gas and the reaction product within the processing chamber 111 are sufficiently withdrawn to the outside by operating the exhaust system 115, followed by taking the semiconductor wafer W supported on the susceptor into the load lock chamber by using a transfer arm.
Each of
In the apparatus shown in
In the apparatus shown in
What should also be noted is that, in the apparatus shown in
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3886896, | |||
4292153, | Mar 19 1979 | Fujitsu Limited | Method for processing substrate materials by means of plasma treatment |
4434742, | Sep 22 1982 | Installation for depositing thin layers in the reactive vapor phase | |
4539068, | Sep 20 1979 | Fujitsu Limited | Vapor phase growth method |
4948458, | Aug 14 1989 | Lam Research Corporation | Method and apparatus for producing magnetically-coupled planar plasma |
4985109, | Feb 08 1989 | Hitachi, Ltd. | Apparatus for plasma processing |
4989542, | Jul 21 1987 | National Institute for Research in Inorganic Materials | Apparatus for synthesizing diamond |
5091049, | Jun 13 1989 | SPTS TECHNOLOGIES LIMITED | High density plasma deposition and etching apparatus |
5180435, | Sep 24 1987 | Research Triangle Institute, Inc. | Remote plasma enhanced CVD method and apparatus for growing an epitaxial semiconductor layer |
5231334, | Apr 15 1992 | Texas Instruments Incorporated | Plasma source and method of manufacturing |
5277751, | Jun 18 1992 | Method and apparatus for producing low pressure planar plasma using a coil with its axis parallel to the surface of a coupling window | |
5304279, | Aug 10 1990 | International Business Machines Corporation | Radio frequency induction/multipole plasma processing tool |
5401350, | Mar 08 1993 | Lam Research Corporation | Coil configurations for improved uniformity in inductively coupled plasma systems |
5433812, | Jan 19 1993 | International Business Machines Corporation | Apparatus for enhanced inductive coupling to plasmas with reduced sputter contamination |
5556501, | Oct 03 1989 | Applied Materials, Inc. | Silicon scavenger in an inductively coupled RF plasma reactor |
5560776, | Sep 10 1993 | Kabushiki Kaisha Toshiba | Plasma discharge generating antenna |
5629653, | Jul 07 1995 | Applied Materials, Inc.; Applied Materials, Inc | RF match detector circuit with dual directional coupler |
5637961, | Aug 23 1994 | Tokyo Electron Limited | Concentric rings with different RF energies applied thereto |
5681393, | Jan 24 1995 | Anelva Corporation | Plasma processing apparatus |
5685942, | Dec 05 1994 | Tokyo Electron Limited | Plasma processing apparatus and method |
5728253, | Mar 04 1993 | Tokyo Electron Limited | Method and devices for detecting the end point of plasma process |
6080271, | Oct 16 1996 | Adtec Corporation Limited | Plasma source for generating inductively coupled, plate-shaped plasma, having magnetically permeable core |
EP379828, | |||
JP4290428, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 24 2003 | Tokyo Electron Limited | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 03 2010 | ASPN: Payor Number Assigned. |
Dec 27 2012 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 10 2012 | 4 years fee payment window open |
May 10 2013 | 6 months grace period start (w surcharge) |
Nov 10 2013 | patent expiry (for year 4) |
Nov 10 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 10 2016 | 8 years fee payment window open |
May 10 2017 | 6 months grace period start (w surcharge) |
Nov 10 2017 | patent expiry (for year 8) |
Nov 10 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 10 2020 | 12 years fee payment window open |
May 10 2021 | 6 months grace period start (w surcharge) |
Nov 10 2021 | patent expiry (for year 12) |
Nov 10 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |