There is formed on a semiconductor substrate a lamination of a first insulating film of nondoped silicon glass or the like and, on this first insulating film, a second insulating film of boron phosphor silicate glass or the like, with a conductor layer between the two insulating films. A hole is first dry-etched in the second insulating film, leaving the substrate surface covered by the first insulating film. Then the second insulating film is heated to a reflow temperature such that the hole is thermally deformed, flaring as it extends away from the insulating film. Then a second hole is dry-etched in the first insulating film through the first recited hole in the second insulating film, with the consequent exposure of the semiconductor surface. Then a contract electrode is fabricated by filling the first and the second hole with an electroconductive material into direct contact with the substrate surface. Being covered by the first insulating film, the substrate surface is not to be contaminated with impurities during the heating of the second insulating film.
|
1. A method of forming a contact electrode in a semiconductor device, comprising the steps of:
providing a semiconductor substrate having a surface;
forming a first insulating film on the surface of the semiconductor substrate, the first insulating film comprising a nondoped silicon glass;
forming a second insulating film on the first insulating film, the second insulating film comprising a boron phosphor silicate glass;
creating a first hole at least in the second insulating film by isotropic anisotropic etching, thereby leaving the surface of the semiconductor substrate covered by at least part of the thickness dimension of the first insulating film, the first hole being created using a gaseous etchant such that the second insulating film is etched at a higher rate than the first insulating film, the etchant containing carbon and fluorine;
heating the second insulating film to a reflowing temperature whereby the first hole in the second insulating film is reshaped to flare as it extends away from the first insulating film;
creating a second hole in the first insulating film by isotropic anisotropic etching, with use of a second gaseous etchant containing chf3 and CF4, the first insulating film through the first hole in the second insulating film, thereby exposing a part of the surface of the semiconductor substrate; and
forming a contact electrode by filling the first and the second hole with an electroconductive material.
2. A method of forming a contact hole according to
3. A method of forming a contact electrode according to
|
The present invention relates to a method of fabricating contact electrodes in semiconductor devices such as integrated circuits, transistors, and diodes. The method of this invention is particularly well applicable to the fabrication of contact electrodes in power-handling semiconductor devices in which the insulating films to be penetrated are generally thicker than in other semiconductor devices.
As semiconductor devices have grown finer in design in recent years, so have become less in size the contact holes that must be formed in and through their insulating films for creation of electrodes. In addition to that, at least as far as power-handling semiconductor devices are concerned, the insulating films in which are to be formed the contact holes remain relatively thick in order to withstand high voltages. The so-called aspect ratio of the contact holes, the ratio of hole depth to diameter, have become all the more higher in this type of semiconductor devices, making it proportionately more difficult to fill metal, such as aluminum, into these holes. An incomplete packing of the contact holes with metal is of course undesirable from the standpoint of reduction of contact resistance to a minimum.
A conventional remedy to this problem is what is known as the contact reflow process, which starts with the creation of a hole in a film of electrically insulating material on a semiconductor substrate, as by the more conventional method of photolithography or etching. The insulating film may be of either boron-phosphor-silicate glass (BSPG) or phosphor-silicate glass (PSG). Anisotropic etching is considered desirable for creation of a hole that extends approximately perpendicular to the substrate surface.
The next step is the heating of the insulating film to such a temperature that it undergoes deformation, or reflow, with the consequent flaring of the hole as it extends away from the substrate surface, or tapering thereof as it extends toward the substrate surface. Even though the insulating film may be relatively thick, and the original hole correspondingly high in aspect ratio, the tapering contact hole thus formed is bound to accept metal far more easily and more thoroughly than if it were constant in diameter, as the metal is introduced as by vacuum deposition. The result is an improvement in the so-called step coverage of the electrode.
The contact reflow process has its own shortcoming, however. Upon heating, as above, of the insulating film to a reflowing temperature following the creation of a hole therein, there occurs the so-called outward diffusion of such substances as phosphor and boron contained therein. These substances, especially boron, find their way onto the substrate surface exposed through the contact hole thereby preventing favorable electrical contact of the electrode with the substrate.
An obvious solution to this weakness of the contact reflow process might seem to create, as by thermal oxidation, a silicon oxide film on the substrate surface forming the bottom of the contact hole, preparatory to the heat treatment of the insulating film. This solution would be impractical because the noted outward diffusion of boron and the like would occur during creation of the silicon oxide film, to such an extent that the substrate surface would not be satisfactorily kept from contamination by the impurities.
The present invention represents an improvement of the contact reflow method, aiming specifically at preventing the outward diffusion of the impurities contained in the insulating film or films and reducing the contact resistance to an absolute minimum.
The invention also seeks to attain the first recited object in the simplest possible manner, without unnecessarily adding to the steps of electrode fabrication.
Briefly, the present invention may be summarized as a method of fabricating a contact electrode in a semiconductor device. There is first formed on a surface of a semiconductor substrate a lamination of a first and a second insulating film of different materials, possibly with any required conductor layer interposed therebetween. Then a first hole is etched at least in the second insulating film which overlies the first insulating film, thereby leaving the substrate surface covered by at least part of the thickness dimension of the first insulating film. Then the second insulating film is heated to a reflowing temperature such that the first hole in the second insulating film is so reshaped as to flare as it extends away from the first insulating film. Then a second hole is etched in the first insulating film through the first hole in the second insulating film, with consequent exposure of the substrate surface at the bottom of the second hole. Then a contact electrode is formed by filling the first and the second hole with an electroconductive material.
It is to be noted that two insulating films of different materials are formed on the semiconductor substrate according to the invention. A hole is first etched in the overlying second insulating film, leaving the substrate surface covered by the first insulating film during the subsequent reflow treatment of the second insulating film. This first hole is therefore deformed into a tapering shape without the least possibility of the substrate surface being contaminated by the impurities dispersed from the second insulating film. Fabricated following the subsequent creation of the second hole in the first insulating film through the first hole, the contact electrode is predestined to make low-resistance contact with the substrate surface forming the bottom of the second hole.
For successfully creating the first hole so as to leave the substrate surface covered by at least part of the thickness dimension of the first insulating film, it is recommended that materials for the two insulating films and an etchant for use be so chosen in relation to one another that the first insulating film is slower to be etched than the second. With the first insulating film thus left shielding the substrate surface by taking advantage of the difference between the etching rates of the two insulating films, the contamination of the substrate surface will be prevented without unnecessarily complicating the process of electrode fabrication.
It will also be appreciated that the tapering shape of the first hole remains intact upon creation of the second hole down to the substrate surface. Thus the invention saves the advantages of the prior art reflow process.
The above and other objects, features and advantages of this invention will become more apparent, and the invention itself will best be understood, from a study of the following detailed description and appended claims, with reference had to the attached drawings a preferred mode of carrying out the invention.
There may be first prepared a semiconductor substrate 10,
Then, as shown in
Then the second insulating film 12 is masked with an etchant resist 13,
A closer study of
Then, following the removal of the etchant resist 13, the second insulating film 12 is heated to a temperature range of approximately 900°-1000° C. Thereupon, as has been set forth in conjunction with the conventional contact reflow process, the second insulating film 12 of BSPG will be thermally caused to reflow with the consequent reshaping of the constant-diameter hole 14 into a hole 14a,
Then a hole 15,
Next comes the step of the creation of a metal-made contact electrode 17,
The advantages gained by the above-described exemplary method of this invention may be recapitulated as follows:
Notwithstanding the foregoing detailed disclosure it is not desired that the present invention be limited by the exact showing of the drawings or the description thereof. The following is a brief list of possible modifications of the illustrated exemplary method:
All these and other changes and adaptations of the illustrated method are intended in the foregoing disclosure. It is therefore appropriate that the invention be construed broadly and in a manner consistent with the fair meaning or proper scope of the subjoined claims.
Iwabuchi, Akio, Aoki, Hironori, Kaneko, Shuichi
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4807016, | Jul 15 1985 | Texas Instruments Incorporated; TEXAS INSTRUMENTS INCORPORATED, 13500 NORTH CENTRAL EXPRESSWAY, DALLAS, TEXAS 75265, A CORP OF DE | Dry etch of phosphosilicate glass with selectivity to undoped oxide |
5286677, | May 07 1993 | Transpacific IP Ltd | Method for etching improved contact openings to peripheral circuit regions of a dram integrated circuit |
5759869, | Dec 31 1991 | SGS-Thomson Microelectronics, Inc. | Method to imporve metal step coverage by contact reflow |
6524949, | Jan 26 2001 | Sanken Electric Co., Ltd. | Method of forming low-resistance contact electrodes in semiconductor devices |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 24 2005 | Sanken Electric Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 22 2009 | ASPN: Payor Number Assigned. |
Jul 28 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 30 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 10 2012 | 4 years fee payment window open |
May 10 2013 | 6 months grace period start (w surcharge) |
Nov 10 2013 | patent expiry (for year 4) |
Nov 10 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 10 2016 | 8 years fee payment window open |
May 10 2017 | 6 months grace period start (w surcharge) |
Nov 10 2017 | patent expiry (for year 8) |
Nov 10 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 10 2020 | 12 years fee payment window open |
May 10 2021 | 6 months grace period start (w surcharge) |
Nov 10 2021 | patent expiry (for year 12) |
Nov 10 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |