A bi-directional, redundant, optical transport system is configured to provide a non-blocking, bi-directional, multi-channel, protocol independent optical transport system for the simultaneously transfer of digital, analog, and discrete data between a plurality data terminal equipment. The optical transport system includes a light transmission line for transmitting light bi-directionally and a plurality of nodes, connected in series by the light transmission line for receiving, extracting and passing signal light. Each node comprises: data terminal equipment for issuing and receiving electrical signals; an electro-optical interface device, associated the data terminal equipment, for converting electrical signals issued by the associated data terminal to signal light for insertion onto the light transmission light and for converting signal light, extracted from the light transmission line into electrical signals to be received by the associated data terminal; a translation logic device connected between the optical interface device and the data terminal equipment, for performing required protocol translation for the data terminal equipment and an optical interface device, connected to the electro-optical interface device and the light transmission line, for extracting signal light from the light transmission line to be converted into electrical signals by the electro-optical interface device for recipient by the data terminal equipment, for inserting, onto the light transmission line, signal light received from the electro-optical interface device and for passing signal light bi-directionally on the light transmission line.

Patent
   RE41247
Priority
Apr 01 1997
Filed
Mar 29 2001
Issued
Apr 20 2010
Expiry
Apr 01 2017
Assg.orig
Entity
Large
4
216
all paid
0. 76. An optical system for communicating with at least one other system over a bi-directional optical bus, comprising:
an optical transmitter for receiving a first set of electrical signals and for producing a first set of optical signals;
a passive optical interface device for being coupled to the optical bus for routing the first set of optical signals received from the optical transmitter onto the optical bus in both directions and for permitting optical signals already traveling along the optical bus to pass by in both directions;
an optical receiver for receiving a second set of optical signals traveling along the optical bus from the passive optical interface device and for generating a second set of electrical signals; and
a fiber optical amplifier for performing bi-directional amplification of at least one of the first set and second set of optical signals;
wherein the optical amplifier is for compensating for at least some of the coupling losses associated with the passive optical interface device.
0. 81. A structure equipped with an optical system for communicating with at least one other system over a bi-directional optical bus, comprising:
the structure;
an optical transmitter contained within the structure for receiving a first set of electrical signals and for producing a first set of optical signals;
a passive optical interface device contained within the structure for being coupled to the optical bus for routing the first set of optical signals received from the optical transmitter onto the optical bus in both directions and for permitting optical signals already traveling along the optical bus to pass by in both directions;
an optical receiver contained within the structure for receiving a second set of optical signals traveling along the optical bus from the passive optical interface device and for generating a second set of electrical signals; and
an optical amplifier contained within the structure for performing bi-directional amplification of at least one of the first set and second set of optical signals;
wherein the optical amplifier is for compensating for at least some of the coupling losses associated with the passive optical interface device and for losses associated with the bi-directional optical bus.
0. 19. A bi-directional optical transport system for passing optical signals, comprising:
an optical bus for permitting bi-directional transmission of the optical signals;
an electrical-to-optical converter for converting electrical communication signals received from first terminal equipment into optical communication signals;
a first passive optical interface device coupled to the optical bus for routing the optical communication signals received from the electrical-to-optical converter onto the optical bus in both directions and for permitting the optical signals traveling along the optical bus to pass by in both directions;
a second passive optical interface device coupled to the optical bus for routing the optical communication signals traveling along the bus to an optical-to-electrical converter and for permitting the optical signals traveling along the optical bus to pass by in both directions;
a fiber optical amplifier for performing bi-directional amplification of the optical signals; and
the optical-to-electrical converter for receiving the optical communication signals from the second passive optical interface device and for converting the optical communication signals into the electrical communication signals, the optical-to-electrical converter for providing the electrical communication signals to second terminal equipment.
0. 82. A method for communicating at a first node with a second node over a bi-directional optical bus, comprising:
generating a first set of electrical signals at the first node;
converting the first set of electrical signals into a first set of optical signals;
passively splitting the first set of optical communication signals into two components;
routing the two components of the first set of optical signals along the optical bus and permitting the optical signals already on the optical bus traveling in both directions to be passively routed pass the first node, the routing involving directing the two components of the first set of optical signals in opposite directions along the optical bus and combining the two components with any optical signals already on the optical bus;
passively diverting toward the first node, a second set of optical signals which are generated by the second node and which are on the bus traveling in both directions, wherein the diverting includes permitting at least some of the optical signals traveling in both directions to be passively routed past the first node;
converting the second set of optical signals into a second set of electrical signals; and
amplifying the optical signals traveling in both directions between the first node and the second node, wherein the amplifying is performed passively and is for compensating for at least some of the losses associated with diverting the optical signals toward the first node and for losses associated with routing the optical signals along the optical bus.
0. 72. An optical transport system enabling optical communications between terminal equipment, comprising:
an optical bus for permitting bi-directional transmission of the optical signals;
first terminal equipment for generating electrical communication signals;
an electrical-to-optical converter for converting the electrical communication signals received from the first terminal equipment into optical communication signals;
a first passive optical interface device coupled to the optical bus at a first location for routing the optical communication signals received from the electrical-to-optical converter onto the optical bus in both directions and for permitting the optical signals traveling along the optical bus to pass by in both directions;
a second passive optical interface device coupled to the optical bus at a second location for routing the optical communication signals traveling along the bus to at least one optical-to-electrical converter and for permitting the optical signals traveling along the optical bus to pass by in both directions;
at least one optical-to-electrical converter for receiving the optical communication signals from the second passive optical interface device and for converting the optical communication signals into the electrical communication signals;
a plurality of terminal equipment for receiving the electrical communication signals from the at least one optical-to-electrical converter; and
a fiber optic amplifier for performing bi-directional amplification of the optical signals;
wherein electrical communication signals from first terminal equipment is transmitted over the bi-directional optical bus and can be received by at least one of the plurality of terminal equipment.
0. 58. A method for transporting optical signals over an optical bus between first and second nodes, comprising:
generating electrical communication signals at first node;
converting the electrical communication signals into optical communication signals;
passively splitting the optical communication signals into two components;
routing the two components of the optical communication signals at a first location along the optical bus and permitting the optical signals already on the optical bus traveling in both directions to be passively routed past the first location, the routing involving directing the two components of the optical communication signals in opposite directions along the optical bus and combining the two components with any optical signals already on the optical bus;
at a second location along the optical bus, passively diverting at least some of the optical signals on the bus traveling in both directions toward a second node, wherein the diverting includes permitting the optical signals traveling in both directions to be passively routed past the second location;
converting the optical signals diverted toward the second node into corresponding electrical signals, with the electrical signals including the electrical communication signals generated at the first node;
sending the corresponding electrical communication signals to a translation logic device for performing protocol translation; and
amplifying the optical signals traveling in both directions between the first node and the second node, wherein the amplifying is performed passively and is for compensating for at least some of the losses associated with diverting the optical signals toward the second node and for losses associated the optical bus.
0. 55. A structure equipped with an optical transport system enabling optical communications over an optical bus, comprising:
the structure;
the optical bus for permitting bi-directional transmission of the optical signals, wherein the optical bus is contained at least in part within the structure;
first terminal equipment located within the structure for generating electrical communication signals;
an electrical-to-optical converter located within the structure for converting the electrical communication signals received from the first terminal equipment into optical communication signals;
a first passive optical interface device located within the structure and coupled to the optical bus for routing the optical communication signals received from the electrical-to-optical converter onto the optical bus in both directions and for permitting the optical signals traveling along the optical bus to pass by in both directions;
a fiber optical amplifier located within the structure for performing bi-directional amplification of the optical signals;
a second passive optical interface device located within the structure and coupled to the optical bus for routing the optical communication signals traveling along the bus to an optical-to-electrical converter and for permitting the optical signals traveling along the optical bus to pass by in both directions;
the optical-to-electrical converter for receiving the optical communication signals from the second passive optical interface device and for converting the optical communication signals into the electrical communication signals; and
second terminal equipment located within the structure for receiving electrical communication signals from the optical-to-electrical converter.
0. 67. A method of transporting optical signals between nodes, comprising:
providing a bi-directional optical bus, the bi-directional optical bus permitting bi-directional communication between any of the nodes;
passively diverting at least part of the optical signals traveling along the bus in both directions toward each node;
converting electrical signals generated at any of the nodes into converted optical signals;
separating the converted optical signals into two components and passively combining the two components of the converted optical signals with the optical signals traveling in both directions along the optical bus, wherein the passively combining involves directing the two components of the converted optical signals in opposite directions along the optical bus;
receiving at each node at least part of the optical signals traveling along the optical bus;
at the nodes, converting the received optical signals back into corresponding the electrical signals;
operating at least some of the nodes in full duplex such that each node can simultaneously transmit optical signals and receive optical signals from another node; and
providing passive amplification of the optical signals traveling along the optical bus, the passive amplification being bi-directional and compensating at least for some of the losses associated with passively diverting the optical signals to each node and for losses associated with the optical bus;
wherein by passively diverting optical signals from the optical bus to each node and by passively combining the two components of converted optical signals from each node onto the optical bus, each node can transmit optical signals to any other node and also receive optical signals from any other node.
1. A bi-directional, redundant, optical transport system configured to provide a non-blocking, bi directional, multi-channel, protocol independent optical transport system for the simultaneous transfer of digital, analog, and discrete data between a plurality data terminal equipment, the optical transport system comprising:
light transmission line for transmitting light bi-directionally;
a plurality of nodes, connected in series by the light transmission line for receiving, extracting and passing signal light, each node comprising:
data terminal equipment for issuing and receiving electrical signals;
an electro-optical interface device, associated the data terminal equipment, for converting electrical signals issued by the associated data terminal to it signal light for insertion onto the light transmission light and for converting signal light, extracted from the light transmission line into electrical signals to be received by the associated data terminal;
a translation logic device connected between the electrical optical interface device and the data terminal equipment, for performing required protocol translation for the data terminal equipment
an optical interface device, connected to the electro-optical interface device and the light transmission line, for extracting signal light from the light transmission line to be converted into electrical signals by the electro-optical interface device for receipt by the data terminal equipment, for inserting, onto the light transmission line, signal light received from the electro-optical interface device and for passing signal light bi-directionally on the light transmission line;
a pump source for inserting excitation light onto the light transmission line;
an optical amplifier connector fiber connecting the each of the optical interface devices serially to one another, wherein the optical amplifier connector fiber is doped with a material which is excited by the excitation light and which emits light having a same wavelength as the light signals when radiated with light signals transmitted bi-directionally by the at least one fiber optic line.
2. An optical transport system according to claim 1, wherein the data terminal equipment comprises one of a computer, video or telephone device, having different protocol requirements.
3. An optical transport system according to claim 1, wherein the pump source is a pump laser which emits excitation light.
4. An optical transport system according to claim 3, wherein the excitation light emitted by the pump laser has a wavelength of about 980 nm.
5. An optical transport system according to claim 4, wherein the signal light has a wavelength of about 1550 nm.
6. An optical transport system according to claim 5, wherein the connector fiber is doped with erbium.
7. An optical transport system according to claim 6, wherein the length of the optical amplifier connector fiber is set as a function of the amount of amplification required.
8. An optical transport system according to claim 7, wherein the length of the optical amplifier connector fiber is about two meters.
9. An optical transport system according to claim 1, wherein the optical interface device comprising:
a first optical coupler for receiving signal light to be inserted onto or extracted from the light transmission line; and
a fiber optic-line, optical coupler, coupled to the light transmission line and to the first optical coupler, for passing light on the light transmission line, for receiving light from the first optical coupler to be inserted onto the light transmission line and transmitting said received light in opposite directions on the light transmission line, and for extracting light from opposite directions on the light transmission line and transmitting said extracted light to the first optical coupler.
10. An optical transport system according to claim 9 wherein the first optical coupler is a four port, bi-directional optical coupler.
11. An optical transport system according to claim 10, wherein the first optical coupler has:
first and second ports for receiving light to be inserted onto the light transmission line and for transmitting light extracted from the light transmission line, and
third and fourth ports each respectively connected to the fiber optic-line, optical coupler;
wherein light received by at least one of the first and second ports is split by the first optical coupler and transmitted by both the third and fourth ports to the light transmission line in opposite directions by the fiber optic-line, optical coupler; and
wherein light extracted from the light transmission line by the fiber optic-line, optical coupler and received by at least one of the third and fourth ports is split by the first optical coupler and transmitted by the both the first and second ports.
12. An optical transport system according to claim 11, wherein the fiber optic-line, optical coupler is a pair of fiber optic-line, optical couplers comprising first and second fiber optic-line, optical couplers, the first fiber optic-line, optical coupler comprising:
a first port for receiving light transmitted in a first direction on the light transmission line and for transmitting light received from either the second fiber optic-line, optical couplers or the first optical coupler to the light transmission line in a second direction opposite to said first direction;
a second port for transmitting light received from the light transmission line in said first direction by the first port to the second fiber optic-line, optical coupler and for receiving light in said second direction from the second fiber optic-line, optical coupler; and
a third port for transmitting light received from the light transmission line by the first port in the first direction to the first optical coupler;
wherein light received by the first port of the first fiber optic-line, optical coupler is split by the first fiber optic-line, optical coupler and transmitted by both the second and third ports; and
the second fiber optic-line coupler comprising:
a fourth port for receiving light transmitted in the second direction on the light transmission line and for transmitting light received from first optic line optical coupler or the first optical coupler to the light transmission line in the first direction;
a fifth port for transmitting light received from the light transmission line in second direction by the fourth port to the first fiber optic-line, optical coupler and for receiving light in the first direction from the first fiber optic-line, optical coupler; and
a sixth port for transmitting light received from the light transmission line in the first direction by the fourth port to the first optical coupler;
wherein light received by the fourth port to the second fiberoptic-line, optical coupler is split by the second fiber optic-line, optical coupler and transmitted by both the fifth and sixth ports.
13. An optical transport system according to claim 1, wherein the light transmission line comprises first and second fiber optic lines.
14. An optical transport system according to claim 13, wherein the optical interface device comprises:
a first optical coupler for receiving light to be inserted onto or extracted from the first fiber optic line;
a pair of first fiber optic-line, optical couplers, each coupled to the first fiber optic line and to the first optical coupler, for passing light on the first fiber optic line, for receiving light from the first optical coupler to be inserted onto the first fiber optic line and transmitting said received light in opposite directions on the first fiber optic line, and for extracting light from opposite directions on the first fiber optic line and transmitting said extracted light to the first optical coupler;
a second optical coupler for receiving light to be inserted onto or extracted from the second fiber optic line; and
a pair of second fiber optic-line, optical couplers, each coupled to the second fiber optic line and to the second optical coupler, for passing light on the second fiber optic line, for receiving light from the second optical coupler to be inserted onto the second fiber optic line and transmitting said received signal in opposite directions on the second fiber optic line, and for extracting light from opposite directions on the second fiber optic line and transmitting said extracted light to the second optical coupler.
15. An optical transport system according to claim 14, wherein the first and second optical couplers are each a four port, bidirectional optical coupler.
16. An optical transport system according to claim 15, wherein the first optical coupler has:
first and second ports for receiving light to be inserted onto the first fiber optic line and for transmitting light extracted from the first fiber optic line, and
third and fourth ports each respectively connected to one of the pair of first fiber optic-line, optical couplers;
wherein light received by at least one of the first and second ports is split by the first optical coupler and transmitted by both the third and fourth ports in opposite directions on the first fiber optic line by the pair of first optic line optical couplers; and
wherein light extracted from the first optic line and received by at least one of the third and fourth ports is split by the first optical coupler and transmitted by the both the first and second ports; and
wherein the second optical coupler has:
first and second ports for receiving light to be inserted onto the second fiber optic line and for transmitting light extracted from the second fiber optic line, and
third and fourth ports each respectively connected to one of the pair of second fiber optic-line, optical couplers;
wherein light received by at least one of the first and second ports is split by the second optical coupler and transmitted by both the third and fourth ports to the second fiber optic line in opposite directions by the pair of second fiber optic-line, couplers; and
wherein light extracted from the second fiber optic line and received by at least one of the third and fourth ports is split by the second optical coupler and transmitted by the both the first and second ports.
17. An optical transport system according to claim 16, wherein the pair of first fiber optic-line, optical couplers comprise first and second fiber optic-line, optical couplers, the first fiber optic-line, optical coupler comprising:
a first port for receiving light transmitted in a first direction on the first fiber optic line and for transmitting light received from either the second fiber optic-line, optical coupler or the first optical coupler to the first fiber optic line in a second direction opposite to said first direction;
a second port for transmitting light received from the first fiber optic line in said first direction by the first port to the second fiber optic-line, optical coupler and for receiving light in said second direction from the second fiber optic-line, optical coupler; and
a third port for transmitting light received from the first fiber optic line by the first port in the first direction to the first optical coupler;
wherein light received by the first port of the first fiber optic-line, optical coupler is split by the first fiber optic-line, optical coupler and transmitted by both the second and third ports; and
the second fiber optic-line, optical coupler comprising:
a fourth port for receiving light transmitted in the second direction on the first fiber optic line and for transmitting light received from first optic line optical coupler or the first optical coupler to the first fiber optic line in the first direction;
a fifth port for transmitting light received from the first fiber optic line in second direction by the fourth port to the first fiber optic-line, optical coupler and for receiving light in the first direction from the first fiber optic-line, optical coupler; and
a sixth port for transmitting light received from the first fiber optic line in the first direction by the fourth port to the first optical coupler;
wherein light received by the fourth port of the second fiber optic-line, optical coupler is split by the second fiber optic-line, optical coupler and transmitted by both the fifth and sixth ports; and
wherein the pair of second fiber optic-line, optical couplers comprise third and fourth fiber optic-line, optical couplers, the third fiber optic-line, optical coupler comprising:
a first port for receiving light transmitted in a first direction on the second fiber optic line and for transmitting light received from either the fourth fiber optic-line, optical coupler or the second optical coupler to the second fiber optic line in a second direction opposite to said first direction;
a second port for transmitting light received form the second fiber optic line in said first direction by the first port to the fourth fiber optic-line, optical coupler and for receiving light in said second direction from the fourth fiber optic-line, optical coupler; and
a third port for transmitting light received from the second fiber optic line by the first port in the first direction to the second optical coupler;
wherein light received by the first port of the third fiber optic-line, optical coupler is split by the third fiber optic-line, optical coupler and transmitted by both the second and third ports; and
the fourth fiber optic-line, optical coupler comprising:
a fourth port for receiving light transmitted in the second direction on the second fiber optic line and for transmitting light received from third optic line optical coupler or the second optical coupler to the second fiber optic line in the first direction;
a fifth port for transmitting light received by the fourth port from the second fiber optic line in second direction to the third fiber optic-line, optical coupler and for receiving light in the first direction from the third fiber optic-line, optical coupler; and
a sixth port for transmitting light received from the second fiber optic line in the first direction by the fourth port to the second optical coupler;
wherein light received by the fourth port of the fourth fiber optic-line, optical coupler is split by the fourth fiber optic-line, optical coupler and transmitted by both the fifth and sixth ports.
18. An optical transport device according to claim 1, wherein the light transmission line comprises more than two fiber optical lines.
0. 20. The optical transport system as set forth in claim 19, wherein the optical bus comprises a fiber optic line.
0. 21. The optical transport system as set forth in claim 20, further comprising a second fiber optic line wherein the second fiber optic line is a redundant optical bus.
0. 22. The optical transport system as set forth in claim 19, wherein the optical bus is a broken ring.
0. 23. The optical transport system as set forth in claim 19, further comprising a second optical-to-electrical converter for converting optical signals, received from the first passive optical interface device over the optical bus, into electrical signals.
0. 24. The optical transport system as set forth in claim 23, wherein the second optical-to-electrical converter is for providing the electrical signals to the first terminal equipment.
0. 25. The optical transport system as set forth in claim 23, wherein the second optical-to-electrical converter is for providing the electrical signals to third terminal equipment.
0. 26. The optical transport system as set forth in claim 19, further comprising a second electrical-to-optical converter for converting second electrical communication signals into second optical communication signals and for providing the second optical communication signals to the second passive optical interface device, the second passive optical interface device for routing the second optical communication signals received from the second electrical to-optical converter onto the optical bus in both directions.
0. 27. The optical transport system as set forth in claim 19, wherein the optical amplifier comprises a fiber amplifier.
0. 28. The optical transport system as set forth in claim 27, wherein the fiber amplifier comprise a rare earth doped fiber amplifier.
0. 29. The optical transport system as set forth in claim 27, further comprising a pump source for emitting an excitation light received by the optical amplifier.
0. 30. The optical transport system as set forth in claim 19, wherein the optical amplifier is located along the optical bus.
0. 31. The optical transport system as set forth in claim 19, wherein the optical amplifier is located between the electrical-to-optical converter and the first passive optical interface device.
0. 32. The optical transport system as set forth in claim 19, wherein the optical amplifier is located between the second passive optical interface device and the optical-to-electrical converter.
0. 33. The optical transport system as set forth in claim 19, wherein the optical communication signals and optical signals are wavelength division multiplexed and the second passive optical interface device includes a wavelength division multiplexer.
0. 34. The optical transport system as set forth in claim 19, wherein the first and second passive optical interface devices comprise taps for diverting a fraction of the optical signals and optical communication signals to the optical-to-electrical converter.
0. 35. The optical transport system as set forth in claim 19, wherein the second passive optical interface device comprises a tunable filter for filtering the optical communication signals from the optical signals on the bus.
0. 36. The optical transport system as set forth in claim 19, wherein the second passive optical interface device includes a filter for filtering the optical communication signals from the optical signals on the bus.
0. 37. The optical transport system as set forth in claim 19, wherein the electrical-to-optical converter comprises a directly modulated optical source.
0. 38. The optical transport system as set forth in claim 19, wherein the optical-to-electrical converter generates the electrical signals in Mil—Std 1553 protocol.
0. 39. The optical transport system as set forth in claim 19, wherein the optical-to-electrical converter generates the electrical signals in ARINC 429 protocol.
0. 40. The optical transport system as set forth in claim 19, wherein the electrical communication signals comprise tri-level electrical signals, the optical signals comprise bi-level optical signals, the electrical-to-optical converter converts the tri-level electrical signals into bi-level optical signals, and the optical-to-electrical converter converts the bi-level optical signals into the tri-level electrical signals.
0. 41. The optical transport system as set forth in claim 19, further comprising the first terminal equipment.
0. 42. The optical transport system as set forth in claim 41, wherein the first terminal equipment comprises video equipment and the electrical communication signals comprise video signals.
0. 43. The optical transport system as set forth in claim 41, wherein the first terminal equipment comprises a sensor and the electrical communication signals comprise data signals.
0. 44. The optical transport system as set forth in claim 19, wherein the electrical communication signals comprise radio frequency signals.
0. 45. The optical transport system as set forth in claim 19, wherein the electrical communication signals comprise Ethernet signals.
0. 46. The optical transport system as set forth in claim 19, wherein the electrical communication signals comprise digital signals.
0. 47. The optical transport system as set forth in claim 19, wherein the electrical communication signals comprise analog signals.
0. 48. The optical transport system as set forth in claim 19, wherein the electrical communication signals comprise discrete signals.
0. 49. The optical transport system as set forth in claim 41, wherein the first terminal equipment comprises an input device and the electrical communication signals comprise control signals.
0. 50. The optical transport system as set forth in claim 41, wherein the first terminal equipment comprises a workstation.
0. 51. The optical transport system as set forth in claim 41, further comprising a translation logic device connected between the first terminal equipment and the first passive optical interface device for performing protocol translation.
0. 52. The optical transport system as set forth in claim 19, further comprising the second terminal equipment.
0. 53. The optical transport system as set forth in claim 19, wherein the optical bus forms a ring topology.
0. 54. The optical transport system as set forth in claim 19, wherein the electrical-to-optical converter comprises a tuneable laser.
0. 56. The structure as set forth in claim 55, wherein the structure comprises a vehicle.
0. 57. The structure as set forth in claim 55, wherein the structure comprises avionics.
0. 59. The method as set forth in claim 58, further comprising:
generating second electrical communication signals at the second node;
converting the second electrical communication signals into second optical communication signals;
passively splitting the second optical communication signals into two components of the second optical communication signals;
routing the two components of the second optical communication signals at the second location along the optical bus and permitting the optical signals already on the optical bus traveling in both directions to be passively routed pass the second location, the routing involving directing the two components of the second optical communication signals in opposite directions along the optical bus and combining the two components of the second optical communication signals with any optical signals already on the optical bus; and
at a third location along the optical bus, passively diverting at least some of the optical signals on the bus traveling in both directions toward a third node, wherein the diverting includes permitting the optical signals traveling in both directions to be passively routed past the third location.
0. 60. The method as set forth in claim 59, wherein generating the second electrical communication signals at the second node and converting the optical signals diverted toward the second node into corresponding electrical signals occur simultaneously.
0. 61. The method as set forth in claim 58, further comprising sending the corresponding electrical communication signals to terminal equipment.
0. 62. The method as set forth in claim 61, wherein sending comprises sending the corresponding electrical communication signals to a plurality of terminal equipment.
0. 63. The method as set forth in claim 58, wherein passively diverting at the second location comprises selecting optical signals as a set of wavelengths.
0. 64. The method as set forth in claim 58, wherein passively diverting at the second location comprises diverting a fraction of the optical signals at all wavelengths.
0. 65. The method as set forth in claim 58, wherein passively diverting at the second location comprises selectively tuning a filter to a desired wavelength to select optical signals at that desired wavelength.
0. 66. The method as set forth in claim 58, further comprising providing a back up optical bus.
0. 68. The method as set forth in claim 67, wherein receiving at each node at least part of the optical signals traveling along the optical bus comprises selecting optical signals having only certain wavelengths.
0. 69. The method as set forth in claim 67, wherein receiving at each node at least part of the optical signals traveling along the optical bus comprises filtering out a group of the optical signals.
0. 70. The method as set forth in claim 67, wherein receiving at each node at least part of the optical signals traveling along the optical bus comprises wavelength division multiplexing the optical signals on the bus.
0. 71. The method as set forth in claim 67, further comprising providing a back up bi-directional optical bus.
0. 73. The optical transport system as set forth in claim 72, wherein the sytem includes a plurality of optical-to-electrical converters, each receiving the optical communication signals from the second passive optical interface device.
0. 74. The optical transport system as set forth in claim 73, wherein the plurality of terminal equipment receive the electrical communication signals from a respective one of the plurality of optical-to-electrical converters.
0. 75. The optical transport system as set forth in claim 72, wherein the plurality of terminal equipment receive the electrical communication signals from the one optical-to-electrical converter.
0. 77. The optical communication system as set forth in claim 76, wherein the optical amplifier is placed between the optical transmitter and the passive optical interface device and compensates for coupling losses associated with routing the first set of optical signals in both directions along the optical bus.
0. 78. The optical communication system as set forth in claim 76, wherein the optical amplifier is placed between the optical receiver and the passive optical interface device and amplifies the second set of optical signals.
0. 79. The optical communication system as set forth in claim 76, wherein the optical amplifier is placed on the optical bus and is for amplifying the optical signals traveling along the optical bus.
0. 80. The optical communication system as set forth in claim 76, wherein the passive optical interface device isolates the optical receiver from the optical transmitter such that the optical transmitter and optical receiver can operate in full duplex mode.

Optimum coupling is a function of the number of nodes. Calling the on-line coupling ratio c and the off-line coupling ratio k were c and k corresponding to the cross states and (1−c), (1−k) are the bar states, the bus is assigned arbitrary coupling c and k. Deriving the optimum coupling ratios by calculating the received signals at both extreme nodes as follows:

Received signal at node n from node 1: Bus 1 or Bus 2: k3(1−c)(1−c)(c)n-2=k3(1−c)2(c)n-2 where n=number of nodes.

To ensure same signal strength at both nodes,

Referring to FIG. 6, a plot is shown of the optimum in-line coupling copt vs n, where n is the number of nodes. For the minimum number of two nodes, we find the optimum coupling ratio is 1, indicating all the light from node 1 transmitter is received at node 2 receiver. Since the maximum number of nodes the system 111 can sustain without optical amplifiers is approximately n less than or equal to 10, the best ratio is 80%, or alternatively, 20% is tapped from the bus signal at each node.

As noted above, the OBIM 115 provides the optical interface between the avionics cable plant and the EOIC 117. A small rugged enclosure complete with moisture seals ensures a benign mechanical environment for the couplers, splices, and fiber pigtails and also provides an area for excess fiber storage and restraint to minimize fiber vibration and hence fracture and breakage. The proposed package shown in FIG. 7 is made of 6661T6 aluminum with machined grooves for capturing the couplers and fiber splices and a cross member to provide position stability. An “O” ring groove provides a vapor seal in conjunction with the aluminum cover secured by 10 machining screws. The enclosure body measure 4.5 inches in length by 2.5 inches wide and 1.0 inches high including the 0.10 inch thickness cover. Anodizing of the enclosure increases corrosion resistance.

FIG. 8 illustrates component placement for a Mil_Std 1553 type card. The card size is approximately 6 inches by 4 inches and shows the location of all components identified with respect to the block diagram discussed above. Heat sinks are provided to dissipate heat generated by the thermoelectric devices bonded to the DFB lasers. Ample area for fiber pigtails avoid excess minimum bend radius requirements and tie down areas for the optical components allocated.

Braun, Steve W., Hodara, Henri, Whittaker, G. Allan, Soderberg, John J.

Patent Priority Assignee Title
10284355, Jun 25 2015 Samsung Electronics Co., Ltd. Communication device and electronic device including the same
11044068, Jun 25 2015 Samsung Electronics Co., Ltd. Communication device and electronic device including the same
8654440, Jul 23 2010 Fujitsu Limited Optical amplification module and optical switch device
9674116, Mar 21 2012 HANSON, BROOKE Data distribution packet-flow interconnect fabric modular management optimized system
Patent Priority Assignee Title
3883217,
3887876,
3936141, Nov 29 1974 The United States of America as represented by the Secretary of the Navy Multiple optical connector
3943358, Jul 27 1973 Thomson-CSF Terminal and repeater stations for telecommunication system using optical fibers
4054366, Jul 12 1976 Hughes Aircraft Company Fiber optics access coupler
4166946, Jun 29 1976 STC plc Data transmission system
4234969, Sep 05 1978 NCR Corporation Bidirectional optical coupler for a data processing system
4249266, Nov 06 1979 Perkins Research & Mfg. Co., Inc. Fiber optics communication system
4301543, Feb 20 1980 Hughes Missile Systems Company Fiber optic transceiver and full duplex point-to-point data link
4307933, Feb 20 1980 Hughes Missile Systems Company Optical fiber launch coupler
4317614, Feb 20 1980 Hughes Missile Systems Company Fiber optic bus manifold
4366565, Jul 29 1980 Local area network optical fiber data communication
4367460, Oct 17 1979 Honeywell INC Intrusion sensor using optic fiber
4400054, Jul 21 1976 HONEYWELL INC , A DE CORP Passive optical coupler
4423922, Dec 18 1978 The Boeing Company Directional coupler for optical communications system
4435849, Mar 01 1980 Hartmann & Braun AG Optical transmission system
4446515, Jan 17 1980 Siemens Aktiengesellschaft Passive bus system for decentrally organized multi-computer systems
4457581, Nov 26 1980 HER MAJESTY THE QUEEN AS REPRESENTED BY THE MINISTER OF NATIONAL DEFENCE OF HER MAJESTY S CANADIAN GOVERNMENT, Passive fiber optic data bus configurations
4482980, May 03 1982 METSO AUTOMATION MAX CONTROLS, INC Hybrid optical/electrical data highway
4506153, Apr 29 1981 Mitsubishi Denki Kabushiki Kaisha Process signal collecting apparatus
4543574, Sep 28 1981 Nippon Telegraph & Telephone Corporation System for resolving collision in local network
4545074, Oct 22 1982 International Business Machines Corporation Fiber optic loop system with bypass mode
4554511, Sep 29 1982 SAMSUNG ELECTRONICS CO , LTD Offset voltage correction network for instantaneous floating point amplifier
4577184, May 23 1983 Honeywell INC Security system with randomly modulated probe signal
4595839, Sep 30 1982 Honeywell INC Bidirectional optical electronic converting connector with integral preamplification
4630256, Mar 12 1982 AT&T Bell Laboratories Bidirectional dual network
4654890, Sep 05 1984 Hitachi, Ltd. Multiplex communication system
4671608, Nov 29 1983 Kabushiki Kaisha Toshiba Optical coupling unit
4674830, Nov 25 1983 The Board of Trustees of the Leland Stanford Junior University Fiber optic amplifier
4705350, Sep 19 1985 Telcordia Technologies, Inc Optical transmission network
4715012, Oct 15 1980 Massey-Ferguson Services N.V. Electronic tractor control
4717229, Sep 21 1984 Communications Patents Limited Bi-directional optical fiber coupler
4731784, Feb 28 1985 International Business Machines Corp. Communication system comprising overlayed multiple-access transmission networks
4739183, Jul 29 1985 Nippon Soken, Inc. Local area network for vehicle
4756595, Apr 21 1986 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Optical fiber connector for high pressure environments
4759011, Mar 03 1986 Senshin Capital, LLC Intranetwork and internetwork optical communications system and method
4761833, Nov 01 1985 STC plc Optical fibre network
4786130, May 29 1985 GENERAL ELECTRIC COMPANY, P L C , THE, A BRITISH COMPANY Fibre optic coupler
4810052, Jan 07 1986 Litton Systems, Inc Fiber optic bidirectional data bus tap
4829593, Mar 18 1986 NEC Corporation Automatic gain control apparatus
4845483, Feb 16 1987 Asahi Kogaku Kogyo Kabushiki Kaisha Malfunction communicating device for optical unit of laser printer
4850047, Aug 29 1986 Fujitsu Limited Optical bus communication system utilizing frame format signals
4883335, Jan 06 1986 American Telephone and Telegraph Company; AT&T Bell Laboratories Single-mode optical fiber tap
4885589, Sep 14 1988 Lockheed Martin Corporation Optical distribution of transmitter signals and antenna returns in a phased array radar system
4898565, Sep 29 1982 Honeywell INC Direction sensing apparatus for data transmission cable connections
4932004, Oct 25 1982 Honeywell INC Fiber optic seismic system
4946244, Apr 02 1987 PACIFIC BELL, A CORP OF CALIFORNIA Fiber optic distribution system and method of using same
4947134, Oct 30 1987 American Telephone and Telegraph Company; BELL TELEPHONE LABORATORIES, INCORPORATED, A CORP OF NEW YORK; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORP OF NEW YORK Lightwave systems using optical amplifiers
4948218, Jul 14 1988 Mitsubishi Denki Kabushiki Kaisha Optoelectronic device for an optical communication system
4958354, May 26 1988 Hamamatsu Photonics Kabushiki Kaisha Apparatus for stabilizing the intensity of light
4959837, Nov 10 1988 SOCIETE ANONYME DITE: COMPAGNIE GENERALE D ELECTRICITE Doped optical fiber laser amplifier
5029306, Aug 10 1989 The Boeing Company Optically fed module for phased-array antennas
5046137, Jan 27 1989 Matsushita Electric Industrial Co., Ltd. Optical communication system
5055827, Feb 20 1990 Fiber optic security system
5058101, Dec 15 1988 TTI Inventions B LLC Coherent detection loop distribution system
5058974, Oct 06 1989 AT&T Bell Laboratories; BELL TELEPHONE LABORATORIES, INCORPORATED, A CORP OF NY ; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORP OF NY Distributed amplification for lightwave transmission system
5080505, Jan 23 1990 Nortel Networks Limited Optical transmission system
5083874, Apr 14 1989 Nippon Telegraph and Telephone Corporation Optical repeater and optical network using the same
5117196, Apr 22 1989 Nortel Networks Limited Optical amplifier gain control
5117303, Aug 23 1990 AT&T Bell Laboratories Method of operating concatenated optical amplifiers
5129019, Sep 08 1989 ALCATEL N V Method of manufacturing a fused-fiber optical coupler
5133031, Jul 13 1988 Du Pont Opto Electronics Kabushiki Kaisha; Mitsubishi Denki Kabushiki Kaisha Optical shunt device
5179603, Mar 18 1991 Avanex Corporation Optical fiber amplifier and coupler
5181134, Mar 15 1991 AT&T Bell Laboratories; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A CORP OF NY Photonic cross-connect switch
5185735, Jul 10 1991 Agilent Technologies Inc Lan noise monitor
5187605, Sep 06 1990 Fujitsu Limited Optical transceiver
5189541, Nov 30 1987 Kabushiki Kaisha Toshiba Method and apparatus for connecting branch networks with a trunk network in optical transmission system
5212577, Jan 19 1990 Canon Kabushiki Kaisha Optical communication equipment and optical communication method
5222166, May 19 1992 Rockwell International Corporation Aircraft fiber optic data distribution system
5267071, Sep 03 1991 Cisco Technology, Inc Signal level control circuitry for a fiber communications system
5283687, Feb 15 1991 Raytheon Company Amplifier for optical fiber communication link
5296957, Sep 18 1990 Fujitsu Limited Optical repeater having loop-back function used in transmission system
5307197, Aug 27 1991 NEC Corporation Optical circuit for a polarization diversity receiver
5309564, Mar 19 1992 Sasktel Apparatus for networking computers for multimedia applications
5315424, Jun 30 1992 Lockheed Martin Corporation Computer fiber optic interface
5317580, Jun 11 1991 France Telecom Etablissement Autonome De Droit Public Bidirectional transmission system with identical laser components
5319642, Apr 26 1991 Fuji Xerox Co., Ltd. Method of communication using a two-way bus with contention detection
5345230, Apr 13 1992 Maytag Corporation Method and apparatus for optical transceiver testing
5347384, Jun 30 1992 Lockheed Martin Corporation Fiber optic distribution of image data
5361262, Apr 16 1993 Telcordia Technologies, Inc Estimated-queue, expanded-bus communication network
5363367, Sep 19 1991 Honda Giken Kogyo Kabushiki Kaisha Data transmission system using an optical fiber loop
5369516, Apr 18 1990 Canon Kabushiki Kaisha Optical communication network system and communication method using the same
5392154, Mar 30 1994 Rembrandt Communications, LP Self-regulating multiwavelength optical amplifier module for scalable lightwave communications systems
5412746, Mar 30 1993 ALCATEL N V Optical coupler and amplifier
5414416, Sep 03 1901 Nippondenso Co., Ltd. Temperature dependent control module cluster unit for motor vehicle
5424864, Oct 24 1991 NEC Corporation Microcellular mobile communication system
5432874, Feb 17 1993 Sony Corporation Duplex optical fiber link
5434861, Feb 02 1989 STRATHCLYDE, UNIVERSITY OF Deterministic timed bus access method
5471342, Mar 30 1993 ALCATEL N V Fiber optical amplifier having a detector for measuring scattered light at a splice
5479082, Aug 10 1993 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Device for extraction and re-insertion of an optical carrier in optical communications networks
5481478, Jun 03 1994 Broadcast system for a facility
5483233, Jun 16 1990 Nortel Networks Limited Analogue telemetry system and method for fault detection in optical transmission systems
5500857, Nov 16 1992 Canon Kabushiki Kaisha Inter-nodal communication method and system using multiplexing
5500867, Sep 13 1994 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Laser package having an impedance matching transformer
5502589, Sep 17 1990 Canon Kabushiki Kaisha Optical communication systems and optical nodes for use therein
5506709, Jul 27 1993 Rafael Armament Development Authority Ltd Electro-optical communication station with built-in test means
5508689, Jun 10 1992 FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION Control system and method utilizing generic modules
5517622, Apr 11 1991 GALILEO INTERNATIONAL, L L C Method and apparatus for pacing communications in a distributed heterogeneous network
5528408, Oct 12 1994 Stratos Lightwave LLC Small footprint optoelectronic transceiver with laser
5533153, May 27 1994 Fuji Xerox Co., Ltd. Optical relay amplifier with a bypass waveguide
5539558, May 17 1994 Sumitomo Electric Industries, Ltd.; Sumitomo Wiring Systems, Ltd. System of detecting troubles of an optical communication line
5541957, Jun 15 1994 National Semiconductor Corporation Apparatus for transmitting and/or receiving data at different data transfer rates especially in applications such as dual-rate ethernet local-area networks
5548431, May 14 1994 INTELLECTUAL DISCOVERY CO LTD Bidirectional multi-channel optical ring network using WDM techniques
5552921, Jun 21 1991 SMSC Europe GmbH Method of common transfer of digital, audio and control data on a common bus line; bus system for implementing the method and interface application in the method
5572612, Dec 14 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Bidirectional optical transmission system
5615290, Oct 16 1995 Fujitsu Limited Branch device for optical multiplex system
5623169, Mar 28 1991 Yazaki Corporation; Mazda Motor Corporation Electrical wiring harness structure for vehicle
5664035, Apr 08 1994 FUJI ELECTRIC CO , LTD Bidirectional optically powered signal transmission apparatus
5684899, Mar 05 1992 Fuji Xerox Co., Ltd. Optical communication network
5712932, Aug 08 1995 Ciena Corporation Dynamically reconfigurable WDM optical communication systems with optical routing systems
5712937, Dec 01 1994 Optical waveguide including singlemode waveguide channels coupled to a multimode fiber
5717795, Feb 17 1994 Kabushiki Kaisha Toshiba Optical wavelength division multiplexed network system
5732086, Sep 21 1995 International Business Machines Corporation System and method for determining the topology of a reconfigurable multi-nodal network
5739938, Sep 10 1996 Northrop Grumman Systems Corporation Optically-powered directly-modulated fiber optic link
5745479, Feb 24 1995 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Error detection in a wireless LAN environment
5764821, Feb 06 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Large capacity local access network
5777581, Dec 07 1995 Titan Aerospace Electronics Division Tunable microstrip patch antennas
5778118, Dec 03 1996 Ciena Corporation Optical add-drop multiplexers for WDM optical communication systems
5793908, Aug 24 1995 Mitsubishi Denki Kabushiki Kaisha Wavelength multiplexed light transfer unit and wavelength multiplexed light transfer system
5796890, Apr 10 1995 FUJI ELECTRIC CO , LTD Bidirectional optically powered signal transmission apparatus
5801865, Jan 23 1993 Alcatel N.V. Radio-telecommunication device in vehicles
5809187, Apr 24 1997 REGENTS OF UNIVERSITY OF CALIFORNIA, THE Multi-port network using passive optical couplers
5815294, Aug 02 1994 Fujitsu Limited Optical transmission system with transmission characteristic measuring device
5825515, Sep 03 1991 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Supervisory apparatus for optical transmission system
5825949, Feb 09 1994 International Business Machines Corporation Optical wavelength division multiplexer for coupling to data sources and sinks, wherein at least two data sources and sinks operate with different communication protocols
5838989, Jul 02 1992 Extreme Networks, Inc Common interface for a network having different communication media employing a carrier sense multiple access with collision detection (CSMA/CD) protocol
5854698, Feb 10 1997 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Repeaterless branch powered fiber optic communication system
5866898, Mar 11 1997 The Board of Trustees of the Leland Stanford Junior University Time domain multiplexed amplified sensor array with improved signal to noise ratios
5880863, Feb 13 1996 GTE Laboratories Incorporated Reconfigurable ring system for the transport of RF signals over optical fibers
5894362, Aug 23 1995 Fujitsu Limited Optical communication system which determines the spectrum of a wavelength division multiplexed signal and performs various processes in accordance with the determined spectrum
5896417, Oct 25 1996 National Semiconductor Corporation Apparatus utilizing current-to-voltage conversion for transmitting data at different data transfer rates especially in applications such as dual-rate ethernet local-area networks
5898673, Feb 12 1997 UNIFY, INC System and method for prevention of cell loss due to quality of service contracts in an ATM network
5898801, Jan 29 1998 Lockheed Martin Corporation Optical transport system
5901260, Apr 01 1997 IPITEK, INC Optical interface device
5910851, Feb 04 1997 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Multiple wavelength transceiver
5937032, Nov 29 1995 TELEFONAKTIEBOLAGET L M ERICSSON PUBL Testing method and apparatus for verifying correct connection of curcuit elements
5943148, Feb 23 1996 HANGER SOLUTIONS, LLC Surveillance system of a multi-wavelength ring network
5949560, Feb 05 1997 CIENA LUXEMBOURG S A R L ; Ciena Corporation Optical transmission system
5959412, Feb 07 1997 Inverter circuit for discharge tube having impedance matching circuit
5995258, Jun 27 1996 Robert Bosch GmbH Terminal for an optical network, optical network and terminating switching center for the same
6008915, Feb 16 1996 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Method of identifying faults in WDM optical networks
6014481, Dec 10 1996 Ericsson AB Device for coupling and decoupling optical signals of two transmission channels
6075628, Aug 17 1994 CIENA LUXEMBOURG S A R L ; Ciena Corporation Fault location in optical communication systems
6075648, Jul 25 1997 Fuji Photo Optical Co., Ltd. Projector-type display device
6084233, Jul 12 1996 LELAND STANFORD JUNIOR, UNIVERSITY, BOARD OF TRUSTEES OF, THE Optical sensor array having multiple rungs between distribution and return buses and having amplifiers in the buses to equalize return signals
6111888, May 27 1997 Micro Motion, Inc.; Micro Motion, Inc Deterministic serial bus communication system
6122095, Aug 29 1997 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD Wavelength-selective and loss-less optical add/drop multiplexer
6128111, Dec 19 1996 CIENA LUXEMBOURG S A R L ; Ciena Corporation Monitoring of nonlinear effects
6140920, Aug 06 1996 CIENA LUXEMBOURG S A R L ; Ciena Corporation Optical transmission system element test
6157725, Dec 10 1996 Becker GmbH Sound system for a motor vehicle and method for defining a functional scope of a sound system
6175533, Apr 12 1999 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Multi-port memory cell with preset
6345137, Aug 31 1998 Kokusai Electric Co., Ltd. Wavelength division multiplex optical star coupler, communication station, and optical transmission system
6385366, Aug 31 2000 JEDAI NETWORKS, INC Fiber to the home office (FTTHO) architecture employing multiple wavelength bands as an overlay in an existing hybrid fiber coax (HFC) transmission system
6426815, Jun 19 1998 Ciena Corporation WDM ring transmission system having two hubs
6449072, Jan 31 1997 Alcatel Add/drop multiplexer
6499027, May 26 1998 Rockwell Collins, Inc. System software architecture for a passenger entertainment system, method and article of manufacture
6502131, May 27 1997 EMC IP HOLDING COMPANY LLC Directory enabled policy management tool for intelligent traffic management
6567197, Oct 20 1998 AT&T Corp. Optical ring network architecture
6782422, Apr 24 2000 Microsoft Technology Licensing, LLC Systems and methods for resynchronization and notification in response to network media events
6784837, Apr 07 2000 CHIEF CONTROLLER, RESEARCH AND DEVELOPMENT MINISTRY OF DEFENCE, GOVERNMENT OF INDIA, THE Transmit/receiver module for active phased array antenna
6830221, Dec 19 2003 The Aerospace Corporation Integrated glass ceramic spacecraft
6895185, Aug 24 2000 Korea Advanced Institute of Science and Technology Multi-purpose optical fiber access network
6912339, Sep 27 2002 Lockheed Martin Corporation Optical interface devices having balanced amplification
7133416, Mar 05 2002 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Converting data signals in a multiple communication protocol system area network
20020018260,
20020032780,
20020044565,
20020063169,
20020065962,
20020101836,
20020101874,
20030025967,
20030176198,
20030204789,
20030206134,
20040043795,
20040076429,
20040076434,
20050213973,
DE3007958,
DE3807072,
DE3938856,
DE4226838,
DE4331330,
DE4427187,
EP103873,
EP69356,
EP105753,
EP164652,
EP231635,
EP350720,
EP356090,
EP380341,
EP393293,
EP414333,
EP451426,
EP503212,
EP739103,
EP744797,
EP899161,
EP905936,
EP1246378,
FR8619134030,
GB2073877,
GB2087679,
GB2102232,
GB2189961,
GB2255683,
JP10107773,
JP11331224,
JP1187823,
JP7202921,
JP9321739,
JP951322,
WO57582,
WO9303406,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 13 1998SODERBERG, JOHN J , MR Lockheed Martin CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0226810837 pdf
Mar 13 1998WHITTAKER, G ALLAN, MR Lockheed Martin CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0226810837 pdf
May 17 2000TETRA TECH DATA SYSTEMS, INC Lockheed Martin CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0116670894 pdf
May 17 2000BRAUN, STEVE W TETRA TECH DATA SYSTEMS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0116720717 pdf
May 17 2000HODARA, HENRITETRA TECH DATA SYSTEMS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0116720717 pdf
Mar 29 2001Lockheed Martin Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Oct 27 2010M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Apr 20 20134 years fee payment window open
Oct 20 20136 months grace period start (w surcharge)
Apr 20 2014patent expiry (for year 4)
Apr 20 20162 years to revive unintentionally abandoned end. (for year 4)
Apr 20 20178 years fee payment window open
Oct 20 20176 months grace period start (w surcharge)
Apr 20 2018patent expiry (for year 8)
Apr 20 20202 years to revive unintentionally abandoned end. (for year 8)
Apr 20 202112 years fee payment window open
Oct 20 20216 months grace period start (w surcharge)
Apr 20 2022patent expiry (for year 12)
Apr 20 20242 years to revive unintentionally abandoned end. (for year 12)