A temperature controlled mobile vehicle compartment for providing a convenient article storage having a heat exchanger thermally connected to a thermoelectric device controlling thermal energy flow to and from the compartment. An air duct assembly cooperates with the thermoelectric device to vent the heat from the device outside the compartment and segregates the inflow air from the outflow air which received the thermal energy.

Patent
   RE41295
Priority
Mar 10 2000
Filed
Feb 16 2005
Issued
May 04 2010
Expiry
Mar 10 2020
Assg.orig
Entity
Small
7
15
all paid
0. 14. A mobile vehicle temperature controlled compartment comprising:
a housing enclosing a compartment for storage of articles therein;
a heat exchanger mounted to said compartment;
a thermoelectric system having first and second heat sinks and a thermoelectric device mounted therebetween, said first heat sink being in thermoconductive contact with said heat exchanger;
an electrical power source electrically connected to said thermoelectric system;
and an air duct assembly having an extension member in thermoconductive contact with said second heat sink, an air inflow duct which receives inflow air from an air source and an air outflow duct which segregates and exhausts air separate from said inflow air;
wherein an air exit of the air inflow duct is provided opposite to the extension member.
1. A mobile vehicle temperature controlled compartment comprising:
a housing enclosing a compartment for storage of articles therein;
a beverage container receiving recess for receiving a base portion of a beverage container provided at an upper surface of said housing; a heat exchanger forming at least part of a wall of said compartment and being in thermoconductive communication with said beverage container receiving recess; a thermoelectric system comprising first and second heat sinks and a thermoelectric device mounted therebetween for moving thermal energy to and from said compartment, said first heat sink being in thermoconductive communication with said heat exchanger; an electrical power source electrically connected to said thermoelectric system; and an air duct assembly having an extension member in thermoconductive communication with said second heat sink for moving thermal energy from said thermoelectric device and venting same into an air flow so as to cool or heat said compartment.
0. 2. A mobile vehicle temperature controlled compartment comprising:
a housing enclosing a compartment for storage of articles therein;
a heat exchanger mounted to said compartment;
a thermoelectric system having first and second heat sinks and a thermoelectric device mounted therebetween, said first heat sink being in thermoconductive contact with said heat exchanger;
an electrical power source electrically connected to said thermoelectric system;
and an air duct assembly having an extension member in thermoconductive contact with said second heat sink, an air inflow duct which receives inflow air from an air source and an air outflow duct which segregates and exhausts air separate from said inflow air.
3. The compartment according to claim 1, wherein said air duct assembly has an air inflow duct which receives inflow air from an air source and an air outflow duct which segregates and exhausts air separate from said inflow air.
4. The compartment according to claim 1, wherein said compartment has an open top, said housing has walls recessed therein defining said compartment and has a pivotable top wall covering said open top, one of said walls having an opening therethrough, said heat exchanger comprises at least a part of at least two walls of the compartment and has a thermally conductive extension element extending through an opening in one of the compartment walls, the extension element contacting said first heat sink.
5. The compartment according to claim 1, wherein said air duct assembly has a third heat sink thermally contacting said second heat sink, said third heat sink conducting thermal energy from said second heat sink and transferring the thermal energy to air flowing through said air duct assembly.
0. 6. The compartment according to claim 2, wherein said housing has a beverage container receiving recess therein, and said heat exchanger extends into said recess and is in thermoconductive connection to a beverage container seated in said recess.
7. The compartment according to claim 1, wherein said housing includes a beverage container having a bottom portion adapted to be seated in said recess and a container heat exchanger, said container heat exchanger including a cylindrical base provided at the bottom portion of said container so as to improve the heat flow from the container to the heat exchanger and a spire extending from the base upwardly into the container.
8. The compartment according to claim 1, additionally comprising a fan for forcing convection air currents in the compartment.
9. The compartment according to claim 1, wherein said housing includes a beverage container having a thermoconductive bottom portion adapted to be seated in said recess.
0. 10. The compartment according to claim 6, wherein said housing includes a beverage container having a thermoconductive bottom portion adapted to be seated in said recess.
0. 11. The compartment according to claim 3, wherein an air exit of the air inflow duct is provided opposite to the extension member.
0. 12. The compartment according to claim 11, wherein a fan is provided in the air inflow duct.
0. 13. The compartment according to claim 11, wherein the air inflow is perpendicular to the extension member and the air outflow is parallel to the extension member.

As shown in FIGS. 2-4, the fan 68, 68A can be provided in the air inflow duct 64, the inflow air exits the air inflow duct 64 opposite to the extension member 56, 56A so that the air inflow is perpendicular to the extension member 56, 56A and the air outflow is parallel to the extension member 56, 56A.

Referring to FIG. 4, there is shown a modification of the above described console. The modified console 12A has a forwardly extending, insulated beverage container support member 69 provided at an upper forward position of the console 12A. A beverage container recess 71 is provided in an upper portion of support member 69. The recess 71 is adapted to receive a bottom portion of a beverage container 80 therein.

The modified console 12A further includes an integral beverage container cooler/heater assembly 70 which includes a modified heat exchanger 72 that has upper and lower legs joined to a bight portion with the lower leg 73 forming the compartment bottom wall 22A, the upwardly extending bight portion forming the front wall 28A, and the upper leg 75 extending forwardly from the bight portion 74. A lower portion of the bight portion 74 contacts a plate 46A of the thermoelectric system 42A so that the thermoelectric system 42A can draw or provide heat to the heat exchanger 72.

The upper portion 78 of the upper leg 75 can be formed with a depression in an upper surface thereof for the beverage container 80 to be seated in to aid in the heat transfer between the beverage container and the heat exchanger 72.

The beverage container 80 may also have structure which will assist in transferring the thermal energy to the beverage contained in the container 80 from the heat exchanger 72 and thermoelectric system 42A (FIGS. 5(A) and (B)). The beverage container 80 has an insulated cup portion 82 and a lid 84 which is removably secured to the open top of the cup portion 82 so as to reduce thermal losses or gains through the cup portion open top. The bottom of the cup portion 82 has a reduced diameter bottom portion 86 which is sized to fit within the recess 71. A thermally conductive element 88 is positioned within the cup portion 82 to improve the heat transfer with the heat exchanger upper portion 78 and has a relatively short cylindrical base 91 at the bottom end of the container 80 and a spire 92 integral with and extending upwardly from the base 91 into the beverage containing space defined by the cup portion 82. The spire 92 increases the surface area of the thermally conductive element 88 that is in contact with the beverage to improve the heat exchange with the beverage in the container 80.

In the embodiment shown in FIG. 5(B), the beverage container 80 does not have a spine 92 but instead has the walls of the container integral with and formed of the same material as the base 91. This enables the heating or cooling of not only a beverage contained therein but also a beverage container such as a can, water bottle, etc.

Referring to FIG. 6, there is shown a further modification of the present invention, which is a modification of the FIG. 4 embodiment. While the above embodiments use passive air convection and thermal conduction to distribute the thermal energy within the storage compartment, this modification provides a forced convection heat exchanger system 95. The heat exchanger system 95 has an inverted L-shaped heat exchanger 96 which has its vertical leg 98 contacting a plate 46B of the thermoelectric device and a horizontal leg 100 having an upper surface 78B for the beverage container 80B. Thus, the heat exchanger 96 conducts thermal energy to or from the upper surface 78B. An air duct assembly 102 is mounted within the compartment 18B and radiator fins 104 extending from the vertical leg 98 towards the compartment. The air duct assembly 102 has an inflow air duct 108 and outflow air ducts 110 and allows air to flow from the inflow air duct to the outflow air ducts. A fan 112 is mounted in the air duct assembly 102 to draw air into the inflow air duct 108, force air past the radiator fins 104, and out the outflow air ducts 110, i.e., out and into the compartment.

While it is believed that operation of the present invention is apparent based on the above description, the operation of the present invention is outlined below for convenience. If it is desired to cool the compartment 18, then DC electrical power from the power source 44 is sent to the thermoelectric system 42. The direction of current flow causes the thermoelectric system to transfer thermal energy from one heat sink plate 46 and transfer the thermal energy to the other heat sink plate 48. The heat sink plate 46 will transfer thermal energy from thermally conductive element 40 which in turn transfers thermal energy from the heat exchanger 36. The heat exchanger 36 is bound on its outer facing sides by insulated walls 22, 28 and transfers thermal energy from the enclosed compartment 18. Thermal energy builds up at the heat sink plate 48 and is transferred to the extension member 56 and radiator fins 58 of air duct housing 54. The extension member 56 and radiator fins 58 transfers the thermal energy to air passing through the air duct assembly. The fan 68 pulls air in through the inflow air duct 54 and pushes air out of the outflow air duct 66 past the radiating fins 58 and extension member 56. Thusly, heat is transferred from the compartment 18 and is vented out in air from air duct 66. If it is desired to heat the compartment 18, then the DC power supplied to the thermoelectric system is reversed to force heat to flow toward the compartment 18.

The FIG. 4 embodiment cools the compartment 18A in the same manner as explained above with regard to FIG. 2 and can additionally simultaneously cool the beverage container 80 outside of the compartment 18A. The heat exchanger 72 draws thermal energy from the compartment 18A and from the heat exchanger upper portion 78. The heat exchanger upper surface 78 draws thermal energy from the beverage container 80 seated in the recess 71, and if used with the beverage container 80 shown in FIGS. 5(A) and (B), the container mounted heat exchanger 88 will draw thermal energy from within the container 80 and transfer the same to the heat exchanger upper portion 78.

The FIG. 6 embodiment cools the compartment in the same manner as discussed above with regard to the thermoelectric system 42B and the air duct assembly 52B and it provides a forced air convection assembly 95 which forces convection air currents in the compartment 18B to improve the heat exchange therein. The heat exchanger 96 contacts the heat sink plate 46B which draws thermal energy therefrom. A fan 112 pulls air from within the compartment 18B, forces the air past the radiator fins 104 and heat exchanger 96, and pushes the air back into compartment 18B. The heat exchanger 96 draws heat from the air passing thereby to supply this thermal energy to the thermoelectric system 42B.

While the above description only shows a single compartment, it will be within the scope of this invention to have a plurality of compartments whereby at least one of which has features above described. Further, it will be understood that the above described invention is described mounted within a vehicle console, it will work within any type of vehicle, for example automobiles, trucks, trailers, tractors, boats, aircraft, etc., wherein a temperature controlled compartment is desired, and does not have to be mounted within a console.

Although particular preferred embodiments of the invention have been disclosed in detail for illustrative purposes, it will be recognized that variations or modifications of the disclosed apparatus, including the rearrangement of parts, lie within the scope of the present invention.

Cauchy, Charles J.

Patent Priority Assignee Title
10660821, Feb 18 2014 TOHO PHARMACEUTICAL CO , LTD Temperature-regulated transport box
11946686, Mar 22 2018 Applied Materials, Inc Thermally stable flow meters for precision fluid delivery
7937954, Dec 27 2005 HANON SYSTEMS Cooling and heating cabinet device of rear seat for vehicles using thermoelectric element
8127565, Mar 12 2009 Refrigerating device
8555656, Oct 28 2010 Thermally conductive cup and holder
9358915, Jun 03 2013 Hyundai Motor Company; Kbautotech Co., Ltd. Storage assembly for vehicle
9416994, Jun 03 2013 Hyundai Motor Company; Kbautotech Co., Ltd. Cooling and heating cup holder
Patent Priority Assignee Title
4301658, Dec 11 1979 Koolatron Industries, Ltd. Control circuitry for thermoelectric cooler
4384512, May 11 1981 Beverage heater and cooler
4823554, Apr 22 1987 Vehicle thermoelectric cooling and heating food and drink appliance
5099649, Aug 23 1990 IPV INHEIDENER PRODUKTIONS-UND VERTRIEBSGESELLSCHAFT MBH Apparatus for cooling a glove compartment in a motor vehicle
5701754, Sep 29 1995 Automobile refrigerator
5927091, Jul 10 1998 Dual-purpose refrigerator for use on an automobile
5941077, Dec 21 1998 Chill-hot buffet serving tray
6026646, Aug 24 1998 Prince Corporation Thermal storage system for a vehicle
6092381, Nov 08 1997 Hsinlon A/C Systems Limited Refrigerator for a motor vehicle
6412287, Dec 21 2000 Delphi Technologies, Inc Heated/cooled console storage unit and method
6449958, Aug 18 2000 Contained beverage cooling apparatus
6640551, Aug 26 2002 Whirlpool Corporation Thermal conditioning beverage container holder
6732534, Aug 03 2000 Tellurex Corporation Vehicle temperature-conditioned container with a power control circuit and a defrost circuit
6918257, Aug 26 2002 Whirlpool Corporation Thermal conditioning beverage container holder
20040068992,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 16 2005Tellurex Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 28 2013M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
May 04 20134 years fee payment window open
Nov 04 20136 months grace period start (w surcharge)
May 04 2014patent expiry (for year 4)
May 04 20162 years to revive unintentionally abandoned end. (for year 4)
May 04 20178 years fee payment window open
Nov 04 20176 months grace period start (w surcharge)
May 04 2018patent expiry (for year 8)
May 04 20202 years to revive unintentionally abandoned end. (for year 8)
May 04 202112 years fee payment window open
Nov 04 20216 months grace period start (w surcharge)
May 04 2022patent expiry (for year 12)
May 04 20242 years to revive unintentionally abandoned end. (for year 12)