A system for mapping electrical activity of a patient's heart includes a set of electrodes spaced from the heart wall and a set of electrodes in contact with the heart wall. Voltage measurements from the electrodes are used to generate three-dimensional and two-dimensional maps of the electrical activity of the heart.
|
1. An endocardial mapping catheter assembly comprising:
(a) a plurality of insulated wires braided throughout their length into an interlocking weave;
(b) a distal portion of the interlocking weave being expandable from a first generally cylindrical shape to a second expanded shape; and
(c) a plurality of electrodes on the distal portion of the insulated wires, each electrode in electrical communication with a single wire, and with each wire being in electrical communication with no more than a single electrode.
11. An endocardial mapping catheter assembly comprising:
(a) a plurality of insulated wires surrounded by an insulating material,
(b) a braid comprised of a combination of the insulated wires in an interlocking weave,
(c) a flexible material surrounding a first portion of the braid, forming a flexible lead body, the flexible material not surrounding a second portion of the braid, the second portion of the braid forming an array, the array being deformable into a predictable geometric shape,
(d) at least twenty-four electrodes on the braided wire array, each electrode in electronic communication with a single wire in the array.
10. An endocardial mapping catheter assembly comprising
(a) an elongated flexible lead body having an interior lumen and proximal and distal ends;
(b) at least twenty-four insulated wires in the lumen extending from the proximal to the distal end of the lead body, the wires collectively being braided together to form a wire assembly;
(c) an expandable portion of the wire assembly near the distal end of the flexible lead body, the expandable portion being expandable from a first generally cylindrical shape to a second expanded shape;
(d) the majority of wires in the wire assembly each having a single electrode in the expandable portion of the wire assembly;
(e) an electrical plug on the proximal end of the flexible lead body, the electrical plug having a plurality of connections, each connection being in electrical communication with one of the wires.
2. The endocardial mapping catheter assembly of
d) an electrical plug on the proximal end of the interlocking weave, the electrical plug having a plurality of connections, each in electrical communication through one of the insulated wires to one of the electrodes.
3. The endocardial mapping catheter assembly of
4. The endocardial mapping catheter assembly of
5. The endocardial mapping catheter assembly of
6. The endocardial mapping catheter assembly of
7. The endocardial mapping catheter assembly of
8. The endocardial mapping catheter assembly of
9. The endocardial mapping catheter assembly of
12. The catheter assembly of
14. The catheter assembly of
e) an expandable balloon within the array.
16. The catheter assembly of
17. The catheter assembly of
18. The catheter assembly of
e) an electrical connector adapted for connection to an external monitoring device, the tip electrode of the reference catheter as well as each wire in the braid having an electrode being in electrical communication with a particular location on the electrical connector.
19. The catheter assembly of
e) an electrical connector adapted for connection to an external monitoring device, each wire in the braid having an electrode being in electrical communication with a particular location on the electrical connector.
|
LaPlace's equation can be solved numerically or analytically. Such numerical techniques include boundary element analysis and other interative approaches comprised of estimating sums of nonlinear coefficients.
Specific analytical approaches can be developed based on the shape of the probe (i.e. spherical, prolate spherical or cylindrical). From electrostatic field theory, the general spherical harmonic series solution for potential is:
In spherical harmonics, Ylm(θ, ψ) is the spherical harmonic series made up of Legendre Polynomials. Φlm is the lmth component of potential and is defined as:
φlm=∫V(θ, ψ)Ylm(θ, ψ)dΩ
where V(θ, φ) is the measured potential over the probe radius R and dΩ is the differential solid angle and, in spherical coordinates, is defined as:
dΩ=sin θdθdψ
During the first step in the algorithmic determination of the 3D map of the electrical activity each Φlm component is determined by integrating the potential at a given point with the spherical harmonic at that point with respect to the solid angle element subtended from the origin to that point. This is an important aspect of the 3D map; its accuracy in creating the 3D map is increased with increased numbers of electrodes in the array and with increased size of the spherical array. In practice it is necessary to compute the Φlm components with the subscript set to 4 or greater. These Φlm components are stored in an 1 by m array for later determination of potentials anywhere in the volume within the endocardial walls.
The bracketed expression of equation 1 (in terms of A1, B1, and r) simply contains the extrapolation coefficients that weight the measured probe components to obtain the potential components anywhere in the cavity. Once again, the weighted components are summed to obtain the actual potentials. Given that the potential is known on the probe boundary, and given that the probe boundary is non-conductive, we can determine the coefficients A1 and B1, yielding the following final solution for potential at any point within the boundaries of the cavity, using a spherical probe of radius R:
on exemplary method for evaluating the integral for Φlm is the technique of Filon integration with an estimating sum, discretized by p latitudinal rows and q longitudinal columns of electrodes on the spherical probe.
Note that p times q equals the total number of electrodes on the spherical probe array. The angle θ ranges from zero to π radians and ψ ranges from zero to 2π radians.
At this point the determination of the geometry of the endocardial walls enters into the algorithm. The potential of each point on the endocardial wall can now be computed by defining them as r, θ, and ψ. During the activation sequence the graphical representation of the electrical activity on the endocardial surface can be slowed down by 30 to 40 times to present a picture of the ventricular cavity within a time frame useful for human viewing.
A geometric description of the heart structure is required in order for the algorithm to account for the inherent effect of spatial averaging within the medium (blood). Spatial averaging is a function of both the conductive nature of the medium as well as the physical dimensions of the medium.
Given the above computed three-dimensional endocardial potential map, the intramural activation map of
where, V(x) represents the potential at any desired point defined by the three-dimensional vector x and, Vi represents each of n known potentials at a point defined by the three-dimensional vector i and, k is an exponent that matches the physical behavior of the tissue medium.
From the foregoing description, it will be apparent that the method for determining a continuous map of the electrical activity of the endocardial surface of the present invention has a number of advantages, some of which have been described above and others of which are inherent in the invention. Also modifications can be made to the mapping probe without departing from the teachings of the present invention. Accordingly the scope of the invention is only to be limited as necessitated by the accompanying claims.
Kagan, Jonathan, Beatty, Graydon Ernest, Budd, Jeffrey Robert
Patent | Priority | Assignee | Title |
10149714, | May 09 2008 | NUVAIRA, INC | Systems, assemblies, and methods for treating a bronchial tree |
10244960, | Apr 22 2011 | TOPERA, INC | Basket style cardiac mapping catheter having spline bends for detection of cardiac rhythm disorders |
10260181, | Jan 14 2013 | LAKE REGION MEDICAL, INC | Directional mesh and associated systems |
10356001, | May 09 2018 | BIOSIG TECHNOLOGIES, INC | Systems and methods to visually align signals using delay |
10485485, | May 09 2018 | BIOSIG TECHNOLOGIES, INC | Systems and methods for signal acquisition and visualization |
10610283, | Nov 11 2009 | NUVAIRA, INC | Non-invasive and minimally invasive denervation methods and systems for performing the same |
10612170, | Jan 14 2013 | LAKE REGION MEDICAL, INC | Method for forming a directional mesh |
10645017, | May 09 2018 | BIOSIG TECHNOLOGIES, INC | Systems, apparatus, and methods for conveying biomedical signals between a patient and monitoring and treatment devices |
10686715, | May 09 2018 | BIOSIG TECHNOLOGIES, INC | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
10708191, | May 09 2018 | BIOSIG TECHNOLOGIES, INC.; Mayo Foundation for Medical Education and Research | Systems and methods for performing electrophysiology (EP) signal processing |
10841232, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Apparatus and methods for removing a large- signal voltage offset from a biomedical signal |
10911365, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Apparatus for processing biomedical signals for display |
10924424, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Systems and methods to visually align signals using delay |
10953170, | May 13 2003 | Nuvaira, Inc. | Apparatus for treating asthma using neurotoxin |
10986033, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Systems and methods for signal acquisition and visualization |
11045133, | May 09 2018 | BIOSIG TECHNOLOGIES, INC.; Mayo Foundation for Medical Education and Research | Systems and methods for performing electrophysiology (EP) signal processing |
11058879, | Feb 15 2008 | Nuvaira, Inc. | System and method for bronchial dilation |
11123003, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
11229391, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Apparatus for processing biomedical signals for display |
11324431, | May 09 2018 | BIOSIG TECHNOLOGIES, INC.; Mayo Foundation for Medical Education and Research | Systems and methods for performing electrophysiology (EP) signal processing |
11389233, | Nov 11 2009 | Nuvaira, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
11617529, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
11617530, | May 09 2018 | BIOSIG TECHNOLOGIES, INC. | Apparatus and methods for removing a large-signal voltage offset from a biomedical signal |
11712283, | Nov 11 2009 | Nuvaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
11737699, | May 09 2018 | BIOSIG TECHNOLOGIES, INC.; Mayo Foundation for Medical Education and Research | Systems and methods for performing electrophysiology (EP) signal processing |
11850051, | Apr 30 2019 | BIOSENSE WEBSTER ISRAEL LTD | Mapping grid with high density electrode array |
11878095, | Dec 11 2018 | Biosense Webster (Israel) Ltd. | Balloon catheter with high articulation |
11896379, | May 09 2018 | BIOSIG TECHNOLOGIES, INC ; Mayo Foundation for Medical Education and Research | Systems and methods to display cardiac signals based on a signal pattern |
11918341, | Dec 20 2019 | BIOSENSE WEBSTER ISRAEL LTD | Selective graphical presentation of electrophysiological parameters |
11918383, | Dec 21 2020 | BIOSENSE WEBSTER ISRAEL LTD | Visualizing performance of catheter electrodes |
11937868, | May 09 2008 | Nuvaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
11950840, | Sep 22 2020 | BIOSENSE WEBSTER ISRAEL LTD | Basket catheter having insulated ablation electrodes |
11950841, | Sep 22 2020 | BIOSENSE WEBSTER ISRAEL LTD | Basket catheter having insulated ablation electrodes and diagnostic electrodes |
11950930, | Dec 12 2019 | BIOSENSE WEBSTER ISRAEL LTD | Multi-dimensional acquisition of bipolar signals from a catheter |
11974803, | Oct 12 2020 | BIOSENSE WEBSTER ISRAEL LTD | Basket catheter with balloon |
8489192, | Feb 15 2008 | NUVAIRA, INC | System and method for bronchial dilation |
8731672, | Feb 15 2008 | NUVAIRA, INC | System and method for bronchial dilation |
8740895, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
8777943, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
8821489, | May 09 2008 | NUVAIRA, INC | Systems, assemblies, and methods for treating a bronchial tree |
8886280, | Jan 23 2007 | The Magstim Company Limited | Nerve monitoring device |
8911439, | Nov 11 2009 | NUVAIRA, INC | Non-invasive and minimally invasive denervation methods and systems for performing the same |
8932289, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
8961507, | May 09 2008 | NUVAIRA, INC | Systems, assemblies, and methods for treating a bronchial tree |
8961508, | May 09 2008 | NUVAIRA, INC | Systems, assemblies, and methods for treating a bronchial tree |
8974445, | Jan 09 2009 | OTSUKA MEDICAL DEVICES CO , LTD | Methods and apparatus for treatment of cardiac valve insufficiency |
9005195, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
9017324, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
9125643, | Feb 15 2008 | NUVAIRA, INC | System and method for bronchial dilation |
9149328, | Nov 11 2009 | NUVAIRA, INC | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
9339618, | May 13 2003 | NUVAIRA, INC | Method and apparatus for controlling narrowing of at least one airway |
9398933, | Dec 27 2012 | NUVAIRA, INC | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
9504399, | Apr 22 2011 | TOPERA, INC | Basket style cardiac mapping catheter having a flexible electrode assembly for sensing monophasic action potentials |
9504403, | Sep 09 2011 | The Magstim Company Limited | Nerve sensing/monitoring device |
9560982, | Apr 22 2011 | TOPERA, INC | Methods for detection of cardiac rhythm disorders using basket style cardiac mapping catheter |
9649153, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
9649154, | Nov 11 2009 | NUVAIRA, INC | Non-invasive and minimally invasive denervation methods and systems for performing the same |
9668809, | May 09 2008 | NUVAIRA, INC | Systems, assemblies, and methods for treating a bronchial tree |
9675412, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
9700372, | Jul 01 2002 | OTSUKA MEDICAL DEVICES CO , LTD | Intraluminal methods of ablating nerve tissue |
9707034, | Jul 01 2002 | OTSUKA MEDICAL DEVICES CO , LTD | Intraluminal method and apparatus for ablating nerve tissue |
9895072, | Apr 22 2011 | TOPERA, INC | Basket style cardiac mapping catheter having an atraumatic, metallic two-part distal tip for detection of cardiac rhythm disorders |
9931162, | Oct 27 2009 | NUVAIRA, INC | Delivery devices with coolable energy emitting assemblies |
Patent | Priority | Assignee | Title |
3954098, | Jan 31 1975 | Technicare Corporation | Synchronized multiple image tomographic cardiography |
4173228, | May 16 1977 | Applied Medical Devices | Catheter locating device |
4304239, | Mar 07 1980 | The Kendall Company | Esophageal probe with balloon electrode |
4380237, | Dec 03 1979 | Massachusetts General Hospital | Apparatus for making cardiac output conductivity measurements |
4431005, | May 07 1981 | MBO LABORATORIES, INC , A CORP OF MA | Method of and apparatus for determining very accurately the position of a device inside biological tissue |
4444195, | Nov 02 1981 | Pacesetter, Inc | Cardiac lead having multiple ring electrodes |
4478223, | Dec 06 1982 | Three dimensional electrocardiograph | |
4522212, | Nov 14 1983 | BOSTON SCIENTIFIC CORPORATION, A CORP OF DE | Endocardial electrode |
4559951, | Nov 29 1982 | Cardiac Pacemakers, Inc. | Catheter assembly |
4572186, | Dec 07 1983 | Cordis Corporation | Vessel dilation |
4572206, | Apr 21 1982 | Purdue Research Foundation | Method and apparatus for measuring cardiac output |
4573473, | Apr 13 1984 | CORDIS WEBSTER, INC | Cardiac mapping probe |
4613866, | May 13 1983 | CHITTENDEN BANK | Three dimensional digitizer with electromagnetic coupling |
4628937, | Aug 02 1984 | Cordis Corporation | Mapping electrode assembly |
4641649, | Oct 30 1985 | RCA Corporation | Method and apparatus for high frequency catheter ablation |
4649924, | Aug 14 1984 | Boston Scientific Scimed, Inc | Method for the detection of intracardiac electrical potential fields |
4660571, | Jul 18 1985 | DESAI, JAWAHAR M , M D | Percutaneous lead having radially adjustable electrode |
4674518, | Sep 06 1985 | Cardiac Pacemakers, Inc. | Method and apparatus for measuring ventricular volume |
4697595, | Jul 24 1984 | Pacesetter, Inc | Ultrasonically marked cardiac catheters |
4699147, | Sep 25 1985 | CORDIS WEBSTER, INC | Intraventricular multielectrode cardial mapping probe and method for using same |
4706670, | Nov 26 1985 | MEADOX MEDICALS, INC A CORP OF NEW JERSEY | Dilatation catheter |
4721115, | Feb 27 1986 | Cardiac Pacemakers, Inc. | Diagnostic catheter for monitoring cardiac output |
4777955, | Nov 02 1987 | CORDIS WEBSTER, INC | Left ventricle mapping probe |
4821731, | Apr 25 1986 | SURGICAL NAVIGATION TECHNOLOGIES, INC | Acoustic image system and method |
4840182, | Apr 04 1988 | Rhode Island Hospital | Conductance catheter |
4890623, | Mar 14 1988 | C. R. Bard, Inc. | Biopotential sensing device and method for making |
4898176, | Jun 22 1988 | The Cleveland Clinic Foundation; CLEVELAND CLINIC FOUNDATION, THE, A CORP OF OH | Continuous cardiac output by impedance measurements in the heart |
4898181, | Oct 15 1985 | Method of illustrating electrocardiographic values | |
4899750, | Apr 19 1988 | Pacesetter, Inc | Lead impedance scanning system for pacemakers |
4911174, | Feb 13 1989 | Cardiac Pacemakers, Inc. | Method for matching the sense length of an impedance measuring catheter to a ventricular chamber |
4922912, | Oct 21 1987 | MAP catheter | |
4940064, | Nov 14 1986 | CATHEFFECTS, INC | Catheter for mapping and ablation and method therefor |
4945305, | Oct 09 1986 | BAE SYSTEMS PLC | Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields |
4945342, | Oct 16 1987 | Instit Straumann | Electrical cable for performing stimulations and/or measurements inside a human or animal body and method of manufacturing the cable |
4951682, | Jun 22 1988 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
5000190, | Jun 22 1988 | The Cleveland Clinic Foundation | Continuous cardiac output by impedance measurements in the heart |
5005587, | Nov 13 1989 | Pacesetter, Inc | Braid Electrode leads and catheters and methods for using the same |
5025786, | Jul 21 1988 | Intracardiac catheter and method for detecting and diagnosing myocardial ischemia | |
5029588, | Jun 15 1989 | Boston Scientific Scimed, Inc | Laser catheter with imaging capability |
5042486, | Sep 29 1989 | Siemens Aktiengesellschaft | Catheter locatable with non-ionizing field and method for locating same |
5054492, | Dec 17 1990 | Boston Scientific Scimed, Inc | Ultrasonic imaging catheter having rotational image correlation |
5054496, | Jul 15 1988 | China-Japan Friendship Hospital | Method and apparatus for recording and analyzing body surface electrocardiographic peak maps |
5056517, | Jul 24 1989 | Consiglio Nazionale delle Ricerche | Biomagnetically localizable multipurpose catheter and method for magnetocardiographic guided intracardiac mapping, biopsy and ablation of cardiac arrhythmias |
5058583, | Jul 13 1990 | Purdue Research Foundation | Multiple monopolar system and method of measuring stroke volume of the heart |
5081993, | Nov 11 1987 | Volcano Corporation | Methods and apparatus for the examination and treatment of internal organs |
5090411, | Jan 31 1990 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus |
5156151, | Feb 15 1991 | Boston Scientific Scimed, Inc | Endocardial mapping and ablation system and catheter probe |
5158092, | Oct 27 1987 | Method and azimuthal probe for localizing the emergence point of ventricular tachycardias | |
5161536, | Mar 22 1991 | ECHO CATH, INC ; ECHO CATH, LTD | Ultrasonic position indicating apparatus and methods |
5211165, | Sep 03 1991 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency field gradients |
5220924, | Mar 14 1991 | Doppler-guided retrograde catheterization using transducer equipped guide wire | |
5228442, | Feb 15 1991 | Boston Scientific Scimed, Inc | Method for mapping, ablation, and stimulation using an endocardial catheter |
5237996, | Feb 11 1992 | Cardiac Pathways Corporation | Endocardial electrical mapping catheter |
5255678, | Jun 21 1991 | Ecole Polytechnique | Mapping electrode balloon |
5273038, | Jul 09 1990 | Computer simulation of live organ | |
5282471, | Jul 31 1991 | Kabushiki Kaisha Toshiba | Ultrasonic imaging system capable of displaying 3-dimensional angiogram in real time mode |
5295484, | May 19 1992 | Arizona Board of Regents for and on Behalf of the University of Arizona | Apparatus and method for intra-cardiac ablation of arrhythmias |
5297549, | Sep 23 1992 | ST JUDE MEDICAL, DAIG DIVISION, INC ; ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Endocardial mapping system |
5305745, | Jun 13 1988 | Device for protection against blood-related disorders, notably thromboses, embolisms, vascular spasms, hemorrhages, hemopathies and the presence of abnormal elements in the blood | |
5311866, | Sep 23 1992 | ST JUDE MEDICAL, DAIG DIVISION, INC ; ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Heart mapping catheter |
5323781, | Jan 31 1992 | Duke University | Methods for the diagnosis and ablation treatment of ventricular tachycardia |
5324284, | Jun 05 1992 | Boston Scientific Scimed, Inc | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
5325860, | Nov 08 1991 | MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, A CORP OF MN | Ultrasonic and interventional catheter and method |
5341807, | Jun 30 1992 | American Cardiac Ablation Co., Inc.; AMERICAN CARDIAC ABLATION, CO , INC , A CORP OF MA | Ablation catheter positioning system |
5345936, | Feb 15 1991 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
5360006, | Jun 12 1990 | University of Florida Research Foundation, Inc. | Automated method for digital image quantitation |
5372138, | Aug 21 1990 | Boston Scientific Scimed, Inc | Acousting imaging catheters and the like |
5377678, | Sep 03 1991 | General Electric Company | Tracking system to follow the position and orientation of a device with radiofrequency fields |
5385146, | Jan 08 1993 | NEW CHESTER INSURANCE COMPANY LIMITED | Orthogonal sensing for use in clinical electrophysiology |
5391199, | Jul 20 1993 | Biosense, Inc | Apparatus and method for treating cardiac arrhythmias |
5409000, | Sep 14 1993 | Boston Scientific Scimed, Inc | Endocardial mapping and ablation system utilizing separately controlled steerable ablation catheter with ultrasonic imaging capabilities and method |
5411025, | Jun 30 1992 | CORDIS WEBSTER, INC | Cardiovascular catheter with laterally stable basket-shaped electrode array |
5433198, | Mar 11 1993 | CATHEFFECTS, INC | Apparatus and method for cardiac ablation |
5458126, | Feb 24 1994 | General Electric Company | Cardiac functional analysis system employing gradient image segmentation |
5551426, | Jul 14 1993 | Intracardiac ablation and mapping catheter | |
5553611, | Jan 06 1994 | ST JUDE MEDICAL, DAIG DIVISION, INC ; ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Endocardial measurement method |
5558091, | Oct 06 1993 | Biosense, Inc | Magnetic determination of position and orientation |
5588432, | Mar 21 1988 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
5601084, | Jun 23 1993 | University of Washington | Determining cardiac wall thickness and motion by imaging and three-dimensional modeling |
5622174, | Oct 02 1992 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus and image displaying system |
5662108, | Sep 23 1992 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Electrophysiology mapping system |
5669382, | Nov 19 1996 | General Electric Company | System for measuring myocardium in cardiac images |
5687737, | Oct 09 1992 | Washington University | Computerized three-dimensional cardiac mapping with interactive visual displays |
5697377, | Nov 22 1995 | Medtronic, Inc | Catheter mapping system and method |
5701897, | Oct 02 1992 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus and image displaying system |
5713363, | Nov 08 1991 | Mayo Foundation for Medical Education and Research | Ultrasound catheter and method for imaging and hemodynamic monitoring |
5722402, | Oct 11 1994 | EP Technologies, Inc. | Systems and methods for guiding movable electrode elements within multiple-electrode structures |
5738096, | Jul 20 1993 | Biosense, Inc | Cardiac electromechanics |
5797396, | Jun 07 1995 | University of Florida Research Foundation | Automated method for digital image quantitation |
5824005, | Aug 22 1995 | Board of Regents, The University of Texas System | Maneuverable electrophysiology catheter for percutaneous or intraoperative ablation of cardiac arrhythmias |
5840031, | Jul 01 1993 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials and ablating tissue |
5846198, | May 31 1996 | Siemens Aktiengesellschaft | Apparatus for localizing action currents in the heart |
5848972, | Sep 13 1996 | CHILDREN S MEDICAL CENTER CORPORATION | Method for endocardial activation mapping using a multi-electrode catheter |
5871019, | Sep 22 1997 | Mayo Foundation for Medical Education and Research | Fast cardiac boundary imaging |
5908446, | Jul 07 1994 | Boston Scientific Scimed, Inc | Catheter assembly, catheter and multi-port introducer for use therewith |
6004269, | Jul 01 1993 | Boston Scientific Scimed, Inc | Catheters for imaging, sensing electrical potentials, and ablating tissue |
6095976, | Jun 19 1997 | MEDINOL LTD | Method for enhancing an image derived from reflected ultrasound signals produced by an ultrasound transmitter and detector inserted in a bodily lumen |
6603996, | Sep 23 1993 | ST JUDE MEDICAL, DAIG DIVISION, INC ; ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Software for mapping potential distribution of a heart chamber |
NL8302742, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 23 1993 | St. Jude Medical, Atrial Fibrillation Division, Inc. | (assignment on the face of the patent) | / | |||
Jun 02 1995 | BEATTY, GRAYDON ERNEST | ENDOCARDIAL SOLUTIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016581 | /0092 | |
Jun 02 1995 | BUDD, JEFFREY ROBERT | ENDOCARDIAL SOLUTIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016581 | /0092 | |
Jun 09 1995 | KAGAN, JONATHAN | ENDOCARDIAL SOLUTIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016581 | /0092 | |
Jan 01 2006 | EPICOR MEDICAL, INC | ST JUDE MEDICAL, DAIG DIVISION, INC | MERGER SEE DOCUMENT FOR DETAILS | 019400 | /0105 | |
Jan 01 2006 | ENDOCARDIAL SOLUTIONS, INC | ST JUDE MEDICAL, DAIG DIVISION, INC | MERGER SEE DOCUMENT FOR DETAILS | 019400 | /0105 | |
Jan 01 2006 | ST JUDE MEDICAL, DAIG DIVISION, INC | ST JUDE MEDICAL, DAIG DIVISION, INC | MERGER SEE DOCUMENT FOR DETAILS | 019400 | /0105 | |
Jan 11 2006 | ST JUDE MEDICAL, DAIG DIVISION, INC | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 019396 | /0909 |
Date | Maintenance Fee Events |
Jan 07 2013 | REM: Maintenance Fee Reminder Mailed. |
May 24 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
May 24 2013 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
May 11 2013 | 4 years fee payment window open |
Nov 11 2013 | 6 months grace period start (w surcharge) |
May 11 2014 | patent expiry (for year 4) |
May 11 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 11 2017 | 8 years fee payment window open |
Nov 11 2017 | 6 months grace period start (w surcharge) |
May 11 2018 | patent expiry (for year 8) |
May 11 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 11 2021 | 12 years fee payment window open |
Nov 11 2021 | 6 months grace period start (w surcharge) |
May 11 2022 | patent expiry (for year 12) |
May 11 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |