An outer cannula has a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer, a first passageway coupling the first port to the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, and a third port between the first and second ports. An inner cannula is configured for insertion into the first passageway via the first port when the wearer desires to be able to exhale through his or her pharynx. The inner cannula includes a fourth port for orienting adjacent the first port, a fifth port for orienting adjacent the second port and a second passageway coupling the fourth port to the fifth port to permit the flow of gases from the fourth port to through the fifth during inhalation by the wearer and prevent the flow of gases from the fifth fourth port during exhalation by the wearer. A valve controls flow through the third port. The valve assumes a first orientation to permit flow from the first fourth port to the second fifth port when the first fourth port is at a higher pressure than the second fifth port, and a second orientation to permit prevent flow from the second fourth port through the third port when the second fifth port is at a higher pressure than the first fourth port.

Patent
   RE41345
Priority
Dec 22 1997
Filed
Mar 09 2006
Issued
May 25 2010
Expiry
Dec 22 2017
Assg.orig
Entity
Small
4
64
all paid
22. A tracheotomy cannula having a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer and a first passageway between the first port and the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, the cannula including a portion formed from a thermoplastic material having a first, generally curved orientation configuration when said portion is maintained substantially below body temperature and a second, somewhat inverted l-shaped configuration when said portion is warmed substantially to body temperature.
23. A tracheotomy cannula having a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer and a first passageway between the first port and the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, the cannula including a portion formed from a first material, and a stylet formed from a second material, the first material being more flexible than the second, the stylet having a generally curved orientation configuration, the tracheotomy cannula having a somewhat inverted l-shaped configuration when the stylet is not inserted into the first passageway and a generally curved orientation configuration when the stylet is inserted into the first passageway.
1. In combination , an outer cannula having a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer and a first passageway coupling the first port to the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, a third port between the first and second ports, and an inner wearer for insertion into the first passageway via the first port when the wearer desires to be able to exhale through the wearer's pharynx, the inner cannula including a fourth port for orienting adjacent the first port, a fifth port for orienting adjacent the second port and a second passageway coupling the fourth port to the fifth port to permit the flow of gases from the fourth port to through the fifth during inhalation by the wearer and preventing the flow of gases from the fifth fourth port during exhalation by the wearer, a valve controlling flow through the third port, the valve assuming a first orientation to permit flow from the first fourth port to the second fifth port when the first fourth port is at a higher pressure than the second fifth port, and a second orientation to permit prevent flow from the second fourth port through the third port when the second fifth port is at a higher pressure than the first fourth port.
2. The apparatus of claim 1 wherein the valve includes a movable member and a seat, the movable member moving away from the seat to permit flow from the fourth port to the fifth port when the fourth port is at a higher pressure than the fifth port, and seating against the seat to impede flow from the fifth port through the fourth port and promote flow from the fifth port through the third port when the fourth port is at a lower pressure than the fifth port.
3. The apparatus of claim 2 wherein the seat is provided in the second passageway.
4. The apparatus of claim 3 including a second seat, the movable member moving toward the second seat to impede flow from the fourth port through the third port when the fourth port is at a higher pressure than the fifth port, and moving away from the second seat to permit flow from the fifth port through the third port when the fourth port is at a lower pressure than the fifth port.
5. The apparatus of claim 4 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
6. The apparatus of claim 3 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
7. The apparatus of claim 2 wherein the seat is provided in the first passageway.
8. The apparatus of claim 4 7 including a second seat, the movable member moving toward the second seat to impede flow from the fourth port through the third port when the fourth port is at a higher pressure that than the fifth port, and moving away from the second seat to permit flow from the fifth second port through the third port when the fourth port is at a lower pressure than the fifth port.
9. The apparatus of claim 8 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
10. The apparatus of claim 7 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
11. The apparatus of claim 2 including a second seat, the movable member moving toward the second seat to impede flow from the fourth port through the third port when the fourth port is at a higher pressure than the fifth port, and moving away from the second seat to permit flow from the fifth second port through the third port when the fourth port is at a lower pressure than the fifth port.
12. The apparatus of claim 11 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
13. The apparatus of claim 2 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
14. The apparatus of claim 1 wherein the valve includes a movable member and a seat, the movable member moving toward the seat to impede flow from the fourth port through the third port when the fourth port is at a higher pressure than the fifth port, and moving away from the seat to permit flow from the fifth port through the third port when the fourth port is at a lower pressure than the fifth port.
15. The apparatus of claim 14 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
16. The apparatus of claim 1 wherein the outer cannula includes an inflatable cuff between the second and third ports and a third passageway for introducing an inflating fluid into the cuff in situ in the trachea of the wearer to impede the flow of fluids between the cuff and the trachea when the cuff is inflated.
17. The apparatus of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 wherein the outer cannula includes a flexible member for covering the third port.
18. The apparatus of claim 17 wherein the flexible member and the outer cannula including include complementary first and second attachment members, respectively, for attaching the flexible member to the outer cannula, the second attachment member providing an attachment point located within the third port for attachment of the first attachment member to the second attachment member at the attachment point.
19. The apparatus of claim 17 wherein the flexible member comprises a flexible membrane having a slit in it.
20. The apparatus of claim 17 wherein the flexible member comprises a flap for covering the third port.
21. The apparatus of claim 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 further including a member selectively movable into interfering relationship to the valve, the member preventing the valve from moving to the second orientation.

This is a continuation-in-part of U.S Ser. No. 09/398,110 filed Sep. 16, 1999 now abandoned and titled Valved Fenestrated Tracheotomy Tube Having Outer and Inner Cannulae. U.S. Ser. No. 09/398,110 is a continuation-in-part of U.S. Ser. No. 09/360,274 filed Jul. 26, 1999 now abandoned and titled Valved Fenestrated Tracheotomy Tube. U.S. Ser. No. 09/360,274 is a continuation of U.S. Ser. No. 08/996,282 filed Dec. 22, 1997 and titled Valved Fenestrated Tracheotomy Tube, now U.S. Pat. No. 5,957,978. U.S. Ser. No. 09/398,110 and U.S. Ser. No. 09/360,274 are both now abandoned. The disclosures of these prior applications are hereby incorporated herein by reference.

This invention relates to improvements in tracheotomy tubes.

This invention is directed toward the problem of being unable to produce audible laryngeal voice, and thus, the inability to speak, that confronts individuals whose breathing is provided mechanically by a respirator which is connected to a cuffed tracheotomy tube inserted into the trachea of a wearer below the level of the vocal cords. The cuff on the tracheotomy tube is inflated, for example, with air, so that the cuff seals substantially fluid tight against the wall of the trachea. The purposes of the inflated cuff include: to protect against leakage of saliva and other secretions around the tracheotomy tube and into the lungs; and, to prevent the air being delivered under pressure from the respirator through the tracheotomy tube to the lungs and exhalation from the lungs from escaping around the tracheotomy tube and out through the mouth and nose of the wearer. In other words, the inflated cuff provides a closed mechanical respiratory system that completely bypasses the upper airway above the level of the tracheotomy tube, including the vocal cords. The side effects of this include the elimination of exhaled airflow upward through the vocal cords. Of course, this eliminates voice production and audible speech.

Currently, there are only two available options for individuals being mechanically ventilated via a cuffed tracheotomy tube to produce audible voice and speech with their own vocal cords. The first of these options is described in O. Hessler, M. D., K. Rehder, M. D., and S. W. Karveth, MC, U. S. A., “Tracheostomy Cannula for Speaking During Artificial Respiration,” Anesthesiology, vol. 25, no. 5, pp.719-721 (1964). There is no known commercially available device constructed as described in Hessler, et al.

The second option is a so-called “talking tracheotomy tube,” which is a conventional cuffed tracheotomy tube manufactured with an 8-10 French conduit extending along its length. The distal end of this conduit terminates above the level of the inflated cuff. The proximal end of this conduit is connected to a source of, for example, compressed air. Examples of such a device are manufactured by Sims Portex, Inc., and Bivona Surgical Inc. The wearer of such a device is able to stop and start the flow of compressed air to the distal end of this conduit, thereby enabling the stopping and starting of the flow of air upward through his or her vocal cords, enabling the wearer to produce speech. This speech airflow is completely independent of the respiratory airflow through the tracheotomy tube. Such talking tracheotomy tubes have been available for several years, but are not in widespread use, perhaps owing to numerous mechanical limitations.

A ventilator-dependent patient breathing through cuffed tracheotomy tube is unable to produce audible voice with his or her vocal cords because the cuff of the tracheotomy tube he or she wears prevents exhalations from going around the lower end of the tube and upward through the vocal cords. This situation continues until the wearer's condition improves sufficiently that the cuff on the tracheotomy tube can be deflated so that exhaled air can pass around the tracheotomy tube and up through the wearer's vocal cords, mouth and nose, permitting audible vocal cord vibrations for speech.

The invention alleviates this situation. When coupled to a respirator with its cuff inflated, a valved, cuffed tracheotomy tube system according to the invention directs air on the inhalation cycle of the respirator to the lungs. Exhalations are directed by the valved, cuffed tracheotomy tube system according to the invention to the upper airway, permitting vocal cord vibration and audible laryngeal speech.

According to one aspect of the invention, an outer cannula has a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer, a first passageway coupling the first port to the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, and a third port between the first and second ports. An inner cannula is configured for insertion into the first passageway via the first port when the wearer desires to be able to exhale through his or her pharynx. The inner cannula includes a fourth port for orienting adjacent the first port, a fifth port for orienting adjacent the second port and a second passageway coupling the fourth port to the fifth port to permit the flow of gases from the fourth port to the fifth during inhalation by the wearer exhalation5-6 6-7 illustrate two different configurations of outer cannulae. While the configuration illustrated in FIGS. 1-5 is easier to insert into, and remove from, the trachea of a wearer, the configuration illustrated in FIGS. 6-7 has a more natural shape. That is, the configuration of the trachea and tracheostoma of a wearer is configured rather more like the inverted L configuration of outer cannula 112 and inner cannula 140 and rather less like the curved configuration of outer cannula 12 and inner cannula 40 . According to another aspect of the invention, an outer cannula 212 is provided which is constructed from a thermoplastic resin which has the somewhat more curved configuration of outer cannula 12 when outer cannula 212 is at temperatures somewhat lower than body temperature, illustrated in FIG. 8, but which reverts to the somewhat more inverted L configuration of outer cannula 112 when it is inserted into the trachea of a wearer. See FIG. 9. This characteristic facilitates insertion of the outer cannula 212 into the trachea 218 of a wearer 220, while providing the somewhat more natural inverted L configuration once the outer cannula 212 is inserted. Of course, removal is rendered somewhat more difficult, but such outer cannulae 212 typically reside for extended times in their wearers 220.

In another embodiment constructed according to the invention and illustrated in FIGS. 10-11, a relatively pliable, for example, relatively low-durometer silicone, tracheotomy tube 250 of a somewhat L-shaped configuration is provided with a stylet 252 having a somewhat bullet-shaped remote end 254 for ease of insertion through a tracheostoma 256 into the trachea 258 of a wearer 260. The proximal end 266 of the tracheotomy tube 250 is provided with some means such as, for example, a flange 268, to permit the healthcare worker to hold the proximal end 266 of the tracheotomy tube 250 so that the stylet 252 can be inserted into the open proximal end 266 of the tube 250 and pushed the full length into the tracheotomy tube 250 to cause deflection of the relatively pliable tracheotomy tube 250 from its somewhat L-shaped configuration illustrated in FIG. 10 into a somewhat more curved configuration illustrated in FIG. 11. This configuration facilitates insertion of the tracheotomy tube 250 through the tracheostoma 256 and into the trachea 258 of the wearer 260. Once the tracheotomy tube 250 is in place in the trachea 258 of the wearer 260, the stylet 252 is removed, at which time the tracheotomy tube 250 returns from its somewhat more curved configuration illustrated in FIG. 11 to its somewhat more L-shaped configuration illustrated in FIG. 10.

To remove the tracheotomy tube 250 from the trachea 258 of the wearer 260, the stylet 252 can be reinserted into the tracheotomy tube 250 to return it to its somewhat more curved configuration illustrated in FIG. 11 prior to removing it from the trachea 258 of the wearer 260. If this is done, the tracheotomy tube 250 comes out relatively easily. Alternatively, the tracheotomy tube 250 can be removed while still in its somewhat more L-shaped configuration. Although this requires somewhat more force than if the stylet 252 were used to render the tracheotomy tube 250 somewhat more curved in configuration, the tracheotomy tube 250 still can be removed without excessive effort or damage to the trachea 258 or tracheostoma 256 of the wearer 260. The tracheotomy tube 250 is otherwise configured similarly to tracheotomy tube 112, 140 illustrated in FIGS. 6-7.

While many details of the embodiments illustrated in FIGS. 1-7 are eliminated from the illustrations of FIGS. 8-11 for the purpose of clarity, it is to be understood that practical embodiments of the invention illustrated in FIGS. 8-11 can be provided with, for example, secretion evacuation tubes like tubes 29, 129 illustrated in FIGS. 1-7.

Blom, Eric D.

Patent Priority Assignee Title
10413399, Jan 15 2015 HANSA MEDICAL PRODUCTS, INC Medical device insertion method and apparatus
7997272, Sep 11 2006 PHILIPS RS NORTH AMERICA LLC Ventilating apparatus and method enabling a patient to talk with or without a trachostomy tube check valve
8161972, Sep 11 2006 PHILIPS RS NORTH AMERICA LLC Detecting ventilator system anomalies while in a speaking mode
9463297, Nov 06 2009 Gesundheitsmanager GmbH Apparatus for aspirating the sputum in tracheotomy patients and inner cannula for a tracheal cannula
Patent Priority Assignee Title
1598283,
2892458,
3688774,
3996939, Jul 22 1975 National Catheter Corporation Intubation stylets
4211234, Aug 24 1978 Endotracheal tube introducer
4223411, Aug 07 1978 Massachusetts Institute of Technology Internal laryngeal prosthesis
4280492, Oct 05 1979 UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION THE, A CORP OF KY Tracheostomy tube
4304228, Jul 14 1980 NBD BANK, N A Outside locking tracheal tube
4305392, Sep 29 1978 Endotracheal tube with suction device
4327721, Jul 07 1978 George, Hanover Endotracheal tube with topical agent delivery system and method of using the same
4449523, Sep 13 1982 APDYNE MEDICAL CO Talking tracheostomy tube
4459984, Sep 15 1982 Speaking tracheostomy tube
4573460, Sep 13 1982 APDYNE MEDICAL CO Talking tracheostomy tube
4584998, Sep 11 1981 MALLINCKRODT MEDICAL, INC , A DE CORP Multi-purpose tracheal tube
4589410, Jul 15 1985 Endotracheal tube
4596248, Nov 23 1984 Tracheostomy device
4607635, Sep 27 1984 Apparatus for intubation
4632108, Feb 21 1985 Sherwood Services AG; TYCO GROUP S A R L Tube and material for use in laser surgery
4637389, Apr 08 1985 Tubular device for intubation
4762125, Mar 07 1986 The University of Texas System Balloon-tipped suction catheter
4834087, Feb 02 1987 MALLINCKRODT MEDICAL, INC , A DE CORP Laser resistant ventilating device
4840173, Feb 22 1988 Endotracheal tube combination
4852565, Mar 22 1988 MALLINCKRODT MEDICAL, INC Fenestrated tracheostomy tube
5056515, Jan 04 1991 Tracheostomy tube assembly
5067497, Mar 16 1990 PROGRESSIVE MEDICAL DESIGN INC Intubation device with adjustable suction means above the cuff
5107828, May 11 1987 Walter, Koss Tracheostoma closure device
5201310, Dec 05 1990 Smiths Group PLC Medico-surgical tube with sealing cuff and a suction lumen at the top of the cuff
5217008, Dec 10 1990 Medical Products Octagon AB Cricothyroidostomy tube
5255676, Nov 08 1991 Kimberly-Clark Worldwide, Inc Safety sealed tracheal suction system
5297546, Nov 21 1984 Bryan T., Spofford; Kent L., Christopher Transtracheal catheter system and method
5329921, Mar 01 1993 Endotracheal tube
5339808, Apr 02 1991 MICHAEL, T ANTHONY DON, M D Endotracheal-esophageal intubation devices
5343857, Apr 24 1992 Sherwood Services AG; TYCO GROUP S A R L Respiratory accessory access port and adaptor therefore
5349950, Oct 28 1992 SMITHS MEDICAL ASD, INC Suction catheter assemblies
5391205, Dec 17 1991 Tracheoesophageal voice prosthesis
5392775, Mar 22 1994 Duckbill valve for a tracheostomy tube that permits speech
5458139, Aug 30 1993 PEARL, SUSAN O Low profile tracheostomy tube assembly
5497768, Jan 12 1990 Respiration catheter with sealing cuff and gas inflation cut-off valve for cuff
5507279, Nov 30 1993 Retrograde endotracheal intubation kit
5515844, Nov 02 1989 CS MEDICAL, INC Method and apparatus for weaning ventilator-dependent patients
5584288, Feb 03 1994 Multi-stage mouth-to-mouth resuscitator valve
5599333, Dec 29 1994 ZIMMER ORTHOPAEDIC SURGICAL PRODUCTS, INC Suction adapter
5687767, Jul 26 1996 Minnesota Mining and Manufacturing Company Uni-directional fluid valve
5688256, Mar 03 1994 Lap-Cap Associates Evacuation unit and method for controlling the release of gas from a body cavity following surgery
5746199, Aug 21 1996 Respiratory valve
5771888, Nov 22 1993 BLOM, ERIC D Tracheal cannula for the mechanical respiration of tracheotomised patients
5957978, Dec 22 1997 HANSA MEDICAL PRODUCTS, INC. Valved fenestrated tracheotomy tube
6053167, Apr 24 1995 Tracoe Gesellschaft fu medizinische Tracheostomy cannula
6089225, Oct 29 1998 System and method to prevent the transmission of pathogenic entities between the multiple users of second stage regulators
6102038, May 15 1998 VYAIRE MEDICAL 203, INC Exhalation valve for mechanical ventilator
6105577, Oct 28 1998 Advanced tracheostomy tube and oral endotracheal tube holder
6135111, Aug 31 1998 General Electric Company Tracheostomy tube with removable inner cannula
6463927, Mar 27 1997 Smiths Group PLC Medical tube assemblies
6722367, Dec 22 1997 HANSA MEDICAL PRODUCTS, INC. Valved fenestrated tracheotomy tube having outer and inner cannulae
DE10109935,
DE19513831,
DE2505123,
DE3406294,
DE3720482,
DE3813705,
RE35595, Oct 21 1993 Flexible tip stylet for use with an endotracheal intubation device
WO32262,
WO9907428,
WO9912599,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 09 2006HANSA MEDICAL PRODUCTS, INC.(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 15 2011M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Oct 05 2015M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
May 25 20134 years fee payment window open
Nov 25 20136 months grace period start (w surcharge)
May 25 2014patent expiry (for year 4)
May 25 20162 years to revive unintentionally abandoned end. (for year 4)
May 25 20178 years fee payment window open
Nov 25 20176 months grace period start (w surcharge)
May 25 2018patent expiry (for year 8)
May 25 20202 years to revive unintentionally abandoned end. (for year 8)
May 25 202112 years fee payment window open
Nov 25 20216 months grace period start (w surcharge)
May 25 2022patent expiry (for year 12)
May 25 20242 years to revive unintentionally abandoned end. (for year 12)