An outer cannula has a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer, a first passageway coupling the first port to the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, and a third port between the first and second ports. An inner cannula is configured for insertion into the first passageway via the first port when the wearer desires to be able to exhale through his or her pharynx. The inner cannula includes a fourth port for orienting adjacent the first port, a fifth port for orienting adjacent the second port and a second passageway coupling the fourth port to the fifth port to permit the flow of gases from the fourth port to through the fifth during inhalation by the wearer and prevent the flow of gases from the fifth fourth port during exhalation by the wearer. A valve controls flow through the third port. The valve assumes a first orientation to permit flow from the first fourth port to the second fifth port when the first fourth port is at a higher pressure than the second fifth port, and a second orientation to permit prevent flow from the second fourth port through the third port when the second fifth port is at a higher pressure than the first fourth port.
|
22. A tracheotomy cannula having a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer and a first passageway between the first port and the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, the cannula including a portion formed from a thermoplastic material having a first, generally curved orientation configuration when said portion is maintained substantially below body temperature and a second, somewhat inverted l-shaped configuration when said portion is warmed substantially to body temperature.
23. A tracheotomy cannula having a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer and a first passageway between the first port and the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, the cannula including a portion formed from a first material, and a stylet formed from a second material, the first material being more flexible than the second, the stylet having a generally curved orientation configuration, the tracheotomy cannula having a somewhat inverted l-shaped configuration when the stylet is not inserted into the first passageway and a generally curved orientation configuration when the stylet is inserted into the first passageway.
1. In combination , an outer cannula having a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer and a first passageway coupling the first port to the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, a third port between the first and second ports, and an inner wearer for insertion into the first passageway via the first port when the wearer desires to be able to exhale through the wearer's pharynx, the inner cannula including a fourth port for orienting adjacent the first port, a fifth port for orienting adjacent the second port and a second passageway coupling the fourth port to the fifth port to permit the flow of gases from the fourth port to through the fifth during inhalation by the wearer and preventing the flow of gases from the fifth fourth port during exhalation by the wearer, a valve controlling flow through the third port, the valve assuming a first orientation to permit flow from the first fourth port to the second fifth port when the first fourth port is at a higher pressure than the second fifth port, and a second orientation to permit prevent flow from the second fourth port through the third port when the second fifth port is at a higher pressure than the first fourth port.
2. The apparatus of
4. The apparatus of
5. The apparatus of
6. The apparatus of
8. The apparatus of claim 4 7 including a second seat, the movable member moving toward the second seat to impede flow from the fourth port through the third port when the fourth port is at a higher pressure that than the fifth port, and moving away from the second seat to permit flow from the fifth second port through the third port when the fourth port is at a lower pressure than the fifth port.
9. The apparatus of
10. The apparatus of
11. The apparatus of
12. The apparatus of
13. The apparatus of
14. The apparatus of
15. The apparatus of
16. The apparatus of
17. The apparatus of
18. The apparatus of
19. The apparatus of
20. The apparatus of
21. The apparatus of
|
This is a continuation-in-part of U.S Ser. No. 09/398,110 filed Sep. 16, 1999 now abandoned and titled Valved Fenestrated Tracheotomy Tube Having Outer and Inner Cannulae. U.S. Ser. No. 09/398,110 is a continuation-in-part of U.S. Ser. No. 09/360,274 filed Jul. 26, 1999 now abandoned and titled Valved Fenestrated Tracheotomy Tube. U.S. Ser. No. 09/360,274 is a continuation of U.S. Ser. No. 08/996,282 filed Dec. 22, 1997 and titled Valved Fenestrated Tracheotomy Tube, now U.S. Pat. No. 5,957,978. U.S. Ser. No. 09/398,110 and U.S. Ser. No. 09/360,274 are both now abandoned. The disclosures of these prior applications are hereby incorporated herein by reference.
This invention relates to improvements in tracheotomy tubes.
This invention is directed toward the problem of being unable to produce audible laryngeal voice, and thus, the inability to speak, that confronts individuals whose breathing is provided mechanically by a respirator which is connected to a cuffed tracheotomy tube inserted into the trachea of a wearer below the level of the vocal cords. The cuff on the tracheotomy tube is inflated, for example, with air, so that the cuff seals substantially fluid tight against the wall of the trachea. The purposes of the inflated cuff include: to protect against leakage of saliva and other secretions around the tracheotomy tube and into the lungs; and, to prevent the air being delivered under pressure from the respirator through the tracheotomy tube to the lungs and exhalation from the lungs from escaping around the tracheotomy tube and out through the mouth and nose of the wearer. In other words, the inflated cuff provides a closed mechanical respiratory system that completely bypasses the upper airway above the level of the tracheotomy tube, including the vocal cords. The side effects of this include the elimination of exhaled airflow upward through the vocal cords. Of course, this eliminates voice production and audible speech.
Currently, there are only two available options for individuals being mechanically ventilated via a cuffed tracheotomy tube to produce audible voice and speech with their own vocal cords. The first of these options is described in O. Hessler, M. D., K. Rehder, M. D., and S. W. Karveth, MC, U. S. A., “Tracheostomy Cannula for Speaking During Artificial Respiration,” Anesthesiology, vol. 25, no. 5, pp.719-721 (1964). There is no known commercially available device constructed as described in Hessler, et al.
The second option is a so-called “talking tracheotomy tube,” which is a conventional cuffed tracheotomy tube manufactured with an 8-10 French conduit extending along its length. The distal end of this conduit terminates above the level of the inflated cuff. The proximal end of this conduit is connected to a source of, for example, compressed air. Examples of such a device are manufactured by Sims Portex, Inc., and Bivona Surgical Inc. The wearer of such a device is able to stop and start the flow of compressed air to the distal end of this conduit, thereby enabling the stopping and starting of the flow of air upward through his or her vocal cords, enabling the wearer to produce speech. This speech airflow is completely independent of the respiratory airflow through the tracheotomy tube. Such talking tracheotomy tubes have been available for several years, but are not in widespread use, perhaps owing to numerous mechanical limitations.
A ventilator-dependent patient breathing through cuffed tracheotomy tube is unable to produce audible voice with his or her vocal cords because the cuff of the tracheotomy tube he or she wears prevents exhalations from going around the lower end of the tube and upward through the vocal cords. This situation continues until the wearer's condition improves sufficiently that the cuff on the tracheotomy tube can be deflated so that exhaled air can pass around the tracheotomy tube and up through the wearer's vocal cords, mouth and nose, permitting audible vocal cord vibrations for speech.
The invention alleviates this situation. When coupled to a respirator with its cuff inflated, a valved, cuffed tracheotomy tube system according to the invention directs air on the inhalation cycle of the respirator to the lungs. Exhalations are directed by the valved, cuffed tracheotomy tube system according to the invention to the upper airway, permitting vocal cord vibration and audible laryngeal speech.
According to one aspect of the invention, an outer cannula has a first port for orienting outside the neck of a wearer, a second port for orienting within the trachea of the wearer, a first passageway coupling the first port to the second port to permit the flow of gases from the first port to the second during inhalation by the wearer and from the second port during exhalation by the wearer, and a third port between the first and second ports. An inner cannula is configured for insertion into the first passageway via the first port when the wearer desires to be able to exhale through his or her pharynx. The inner cannula includes a fourth port for orienting adjacent the first port, a fifth port for orienting adjacent the second port and a second passageway coupling the fourth port to the fifth port to permit the flow of gases from the fourth port to the fifth during inhalation by the wearer exhalation5-6 6-7 illustrate two different configurations of outer cannulae. While the configuration illustrated in
In another embodiment constructed according to the invention and illustrated in
To remove the tracheotomy tube 250 from the trachea 258 of the wearer 260, the stylet 252 can be reinserted into the tracheotomy tube 250 to return it to its somewhat more curved configuration illustrated in
While many details of the embodiments illustrated in
Patent | Priority | Assignee | Title |
10413399, | Jan 15 2015 | HANSA MEDICAL PRODUCTS, INC | Medical device insertion method and apparatus |
7997272, | Sep 11 2006 | PHILIPS RS NORTH AMERICA LLC | Ventilating apparatus and method enabling a patient to talk with or without a trachostomy tube check valve |
8161972, | Sep 11 2006 | PHILIPS RS NORTH AMERICA LLC | Detecting ventilator system anomalies while in a speaking mode |
9463297, | Nov 06 2009 | Gesundheitsmanager GmbH | Apparatus for aspirating the sputum in tracheotomy patients and inner cannula for a tracheal cannula |
Patent | Priority | Assignee | Title |
1598283, | |||
2892458, | |||
3688774, | |||
3996939, | Jul 22 1975 | National Catheter Corporation | Intubation stylets |
4211234, | Aug 24 1978 | Endotracheal tube introducer | |
4223411, | Aug 07 1978 | Massachusetts Institute of Technology | Internal laryngeal prosthesis |
4280492, | Oct 05 1979 | UNIVERSITY OF KENTUCKY RESEARCH FOUNDATION THE, A CORP OF KY | Tracheostomy tube |
4304228, | Jul 14 1980 | NBD BANK, N A | Outside locking tracheal tube |
4305392, | Sep 29 1978 | Endotracheal tube with suction device | |
4327721, | Jul 07 1978 | George, Hanover | Endotracheal tube with topical agent delivery system and method of using the same |
4449523, | Sep 13 1982 | APDYNE MEDICAL CO | Talking tracheostomy tube |
4459984, | Sep 15 1982 | Speaking tracheostomy tube | |
4573460, | Sep 13 1982 | APDYNE MEDICAL CO | Talking tracheostomy tube |
4584998, | Sep 11 1981 | MALLINCKRODT MEDICAL, INC , A DE CORP | Multi-purpose tracheal tube |
4589410, | Jul 15 1985 | Endotracheal tube | |
4596248, | Nov 23 1984 | Tracheostomy device | |
4607635, | Sep 27 1984 | Apparatus for intubation | |
4632108, | Feb 21 1985 | Sherwood Services AG; TYCO GROUP S A R L | Tube and material for use in laser surgery |
4637389, | Apr 08 1985 | Tubular device for intubation | |
4762125, | Mar 07 1986 | The University of Texas System | Balloon-tipped suction catheter |
4834087, | Feb 02 1987 | MALLINCKRODT MEDICAL, INC , A DE CORP | Laser resistant ventilating device |
4840173, | Feb 22 1988 | Endotracheal tube combination | |
4852565, | Mar 22 1988 | MALLINCKRODT MEDICAL, INC | Fenestrated tracheostomy tube |
5056515, | Jan 04 1991 | Tracheostomy tube assembly | |
5067497, | Mar 16 1990 | PROGRESSIVE MEDICAL DESIGN INC | Intubation device with adjustable suction means above the cuff |
5107828, | May 11 1987 | Walter, Koss | Tracheostoma closure device |
5201310, | Dec 05 1990 | Smiths Group PLC | Medico-surgical tube with sealing cuff and a suction lumen at the top of the cuff |
5217008, | Dec 10 1990 | Medical Products Octagon AB | Cricothyroidostomy tube |
5255676, | Nov 08 1991 | Kimberly-Clark Worldwide, Inc | Safety sealed tracheal suction system |
5297546, | Nov 21 1984 | Bryan T., Spofford; Kent L., Christopher | Transtracheal catheter system and method |
5329921, | Mar 01 1993 | Endotracheal tube | |
5339808, | Apr 02 1991 | MICHAEL, T ANTHONY DON, M D | Endotracheal-esophageal intubation devices |
5343857, | Apr 24 1992 | Sherwood Services AG; TYCO GROUP S A R L | Respiratory accessory access port and adaptor therefore |
5349950, | Oct 28 1992 | SMITHS MEDICAL ASD, INC | Suction catheter assemblies |
5391205, | Dec 17 1991 | Tracheoesophageal voice prosthesis | |
5392775, | Mar 22 1994 | Duckbill valve for a tracheostomy tube that permits speech | |
5458139, | Aug 30 1993 | PEARL, SUSAN O | Low profile tracheostomy tube assembly |
5497768, | Jan 12 1990 | Respiration catheter with sealing cuff and gas inflation cut-off valve for cuff | |
5507279, | Nov 30 1993 | Retrograde endotracheal intubation kit | |
5515844, | Nov 02 1989 | CS MEDICAL, INC | Method and apparatus for weaning ventilator-dependent patients |
5584288, | Feb 03 1994 | Multi-stage mouth-to-mouth resuscitator valve | |
5599333, | Dec 29 1994 | ZIMMER ORTHOPAEDIC SURGICAL PRODUCTS, INC | Suction adapter |
5687767, | Jul 26 1996 | Minnesota Mining and Manufacturing Company | Uni-directional fluid valve |
5688256, | Mar 03 1994 | Lap-Cap Associates | Evacuation unit and method for controlling the release of gas from a body cavity following surgery |
5746199, | Aug 21 1996 | Respiratory valve | |
5771888, | Nov 22 1993 | BLOM, ERIC D | Tracheal cannula for the mechanical respiration of tracheotomised patients |
5957978, | Dec 22 1997 | HANSA MEDICAL PRODUCTS, INC. | Valved fenestrated tracheotomy tube |
6053167, | Apr 24 1995 | Tracoe Gesellschaft fu medizinische | Tracheostomy cannula |
6089225, | Oct 29 1998 | System and method to prevent the transmission of pathogenic entities between the multiple users of second stage regulators | |
6102038, | May 15 1998 | VYAIRE MEDICAL 203, INC | Exhalation valve for mechanical ventilator |
6105577, | Oct 28 1998 | Advanced tracheostomy tube and oral endotracheal tube holder | |
6135111, | Aug 31 1998 | General Electric Company | Tracheostomy tube with removable inner cannula |
6463927, | Mar 27 1997 | Smiths Group PLC | Medical tube assemblies |
6722367, | Dec 22 1997 | HANSA MEDICAL PRODUCTS, INC. | Valved fenestrated tracheotomy tube having outer and inner cannulae |
DE10109935, | |||
DE19513831, | |||
DE2505123, | |||
DE3406294, | |||
DE3720482, | |||
DE3813705, | |||
RE35595, | Oct 21 1993 | Flexible tip stylet for use with an endotracheal intubation device | |
WO32262, | |||
WO9907428, | |||
WO9912599, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 09 2006 | HANSA MEDICAL PRODUCTS, INC. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 15 2011 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 05 2015 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
May 25 2013 | 4 years fee payment window open |
Nov 25 2013 | 6 months grace period start (w surcharge) |
May 25 2014 | patent expiry (for year 4) |
May 25 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 25 2017 | 8 years fee payment window open |
Nov 25 2017 | 6 months grace period start (w surcharge) |
May 25 2018 | patent expiry (for year 8) |
May 25 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 25 2021 | 12 years fee payment window open |
Nov 25 2021 | 6 months grace period start (w surcharge) |
May 25 2022 | patent expiry (for year 12) |
May 25 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |