A system and method are provided for the efficient entry and display of ground taxi routes on an electronic airport map display. The system may include a touchscreen entry device, a display device, a computer, a map database, a vehicle position sensor and a transmitter/receiver. The system may be configured to check the ground taxi entries to ensure that each successive segment is contiguous with the last or next segment, and any gaps or discontinuities in the displayed taxi instructions may be annunciated. An intelligent display of next possible segments may be incorporated into the system.
|
1. A system for entry and display of at least one ground movement route for a vehicle, comprising:
an electronic entry device for entry of a series of ground movement segments, the electronic entry device including a graphical interface that allows a user to select the ground movement segments from an electronically displayed map, wherein said entry device is operatively connected to an output device;
a computer operatively connected to said electronic entry device and said output device, wherein said computer contains a software program which analyzes each instructions programming the computer to analyze individual ground movement segment segments in said series of a ground movement segments and ensures ensure that each said the individual ground movement segment joins segments join at least one of the following, : a previous segment, a subsequent segment, an initial vehicle position and a vehicle destination, and which automatically pans said electronically displayed map to center on at least one of a currently selected ground movement segment, said initial vehicle position and said vehicle destination;
an electronic database including map data that can be accessed by said computer and used to generate the electronically displayed map; and
a position determining device coupled to said computer.
2. A system according to
4. A system according to
6. A system according to
7. A system according to
8. A system according to
9. A system according to
10. A system according to
11. A system according to
12. A system according to
13. A system according to
15. A system according to
16. A system according to
17. A system according to
18. A system according to
19. A system according to
0. 20. A system according to
|
This patent application is a reissue application for commonly assigned U.S. Pat. No. 7,222,017, issued from U.S. patent application Ser. No. 10/870,630, filed on Jun. 17, 2004.
The invention is generally related to systems and methods for tracking and planning vehicle movement, and specifically to airport map displays and to the entry and display of ground taxi routes.
As the air travel system becomes saturated, airports are becoming more and more congested. At the busiest airports, it is not uncommon to have 50 or more aircraft taxiing to and from multiple active runways using complex routes involving many different taxiways. System capacity is at or near saturation even during good weather conditions. Ground taxi can add over one hour to travel time for any particular flight. Efficient, flexible and adaptive ground operations are essential to enhancing air travel performance. This is especially true during poor weather conditions. As visibility drops, the number of aircraft that can operate at a given airport decreases rapidly and those aircraft still operating must slow down so as not to miss a turn or a hold short point, or taxi across an active runway without clearance.
A variety of methods are currently in use for aircrews to navigate on the ground. Most of these methods involve receiving verbal instructions from air traffic control, writing them down and interpreting those instructions by looking at a paper map of the airport. To effectively use such methods, the pilot must direct attention from outside the aircraft to inside the aircraft, and simultaneously transition from verbal instructions to a visual interpretation of those instructions while looking at a paper airport diagram. During low visibility, the aircrew loses their ability to use forward and peripheral vision because ground references and other airport traffic become harder to see, forcing the aircrew to concentrate their attention outside the aircraft to ensure safe operations. Recently, some devices have enabled aircrews to electronically display and orient the airport map and even show the aircraft position on the map; however, entry and display of taxi route information could be enhanced. The invention is directed to overcoming one or more of the problems or disadvantages associated with the prior art.
According to one aspect of the invention, a method of entering and displaying ground movement instructions for a vehicle may include loading an electronic database of map data into an onboard computer. Entry of ground movement instructions into the onboard computer may be made by entering a series of ground movement segments. Each ground movement segment may be automatically checked for continuity with a previous segment, a subsequent segment, an initial vehicle position or a vehicle destination. An electronic map showing an area of operation for the vehicle may be displayed. Vehicle position data may be acquired and displayed on the electronic map and updated according to vehicle movement. Ground movement segments may be graphically and/or alphanumerically displayed on the electronic map and updated according to vehicle movement.
According to another aspect of the invention, a system for the entry, recall and/or display of ground movement instructions for a vehicle may include an electronic entry device, an electronic output device, a computer, an electronic database and a position determining device. The computer may contain a software program which analyzes ground movement segments for continuity and ensures that each ground movement segment connects with adjacent segments, an initial vehicle position and/or a destination. The invention may facilitate the speed and accuracy of the entry of ground movement instructions. Alternatively, the system may store preloaded taxi routes for recall. These preloaded taxi routes may be constructed manually by the aircrew, or downloaded from air traffic control through a data link. This system may be simulated on a desktop computer for training purposes.
The system and method according to one aspect of the invention facilitate aircraft ground movement route entry through a user entered series of ground movement segments, and check each segment by ensuring each segment is continuous with the currently selected segment, an adjoining initial position and/or an adjoining destination. The system may separately display the segments that are continuous or otherwise join with the currently selected segment (the currently selected segment may be either the last entered segment or the last selected segment). Speed and accuracy of ground movement segment entry may be enhanced by allowing the pilot to quickly locate the next possible segments. An embodiment of the invention automatically pans and zooms the display as ground movement segments are entered to center on and fully show the last entered segment and its intersection with all possible next segments, thereby reducing the amount of manual panning and zooming that might otherwise be required.
The features, functions, and advantages can be achieved independently in various embodiments of the present invention or may be combined in yet other embodiments.
An embodiment of the invention may have at least two different entry interface options; menu and graphical. As will be discussed in further detail when referring to the figures, the menu interface option allows the user to make an entry by selecting a predisplayed softkey. Softkeys are selectable areas on the input/output display screen 124 (
The graphical interface allows the user to make an entry by directly touching the segment on the map, or by placing a cursor on the segment, and confirming the selection by selecting the corresponding softkey generated by the computer with the cursor. As the user makes a selection, the system 20 automatically pans and zooms the display so as to fully display the last selected segment and its intersection(s) with any segment(s) that join the last selected segment. This prevents the user from having to pan and zoom the display manually to find the next segment. In addition, when the user makes a selection, the system 20 may automatically position the cursor in the menu or graphical interface in such a way as to facilitate the next selection by minimizing cursor movement to the next selection.
In the menu interface, the user selects segments from a set of softkeys, each of which represent an individual ground movement segment. The user may select the softkeys by either touching them, or placing the cursor over them and selecting the softkey with the cursor control device. The user has the option of selecting segments from a menu which may only display ground movement segments which join with the currently selected ground movement segment, an initial vehicle position and/or a vehicle destination. Alternatively, either the graphical or menu interface may be configured so as to allow creation and storage of taxi routes for recall. For example, Air Traffic Control may predefine a taxi route at an airport; the predefined taxi route may be stored in the system memory and recalled by the user, thereby accelerating the entry process.
Referring to
An electronic map database 24 may be resident in a memory 25 of the computer 26 and may be updatable. The electronic map database 24 may contain multiple airport layouts including, but not limited to, runways, taxiways, terminal and other permanent structures, parking locations, and run-up locations. An example of one such a database is Jeppesen's Electronic Flight Bag Airport Map.
A vehicle position sensor 28 may be used to supply the computer 26 with vehicle position information. The vehicle position sensor may include one or more of, a Global Positioning System (GPS), an inertial navigation system (INS), a terrestrial based navigation system (such as VOR or TACAN), and/or a manually input starting or current position. The computer 26 may be configured to receive position data from any other aircraft system (i.e., the flight management computer, the autopilot, etc.).
A transmitter/receiver 30 for the wireless transmittal and receipt of data may be connected to the computer 26 for data transfer between the aircraft and external sources. This data may include taxi instructions from Air Traffic Control (ATC), position data, Notices to Airmen (NOTAMs), runway/taxiway information, weather information, delay information, information from a dispatcher and/or any other type of data suitable for wireless transmittal/receipt. A cursor control device 32, such as a keyboard, a mouse, a touchpad, a joystick, or any other device suitable for controlling a cursor may be connected to the computer 26.
The aircraft starting location may be determined at 64. This may be accomplished many different ways. For example, one or more of a Global Positioning System (GPS), an inertial navigation system (INS), a terrestrial based navigation system, retrieval from another aircraft system, such as a Flight Management Computer (FMC) and a manually input starting position may be used to determine the aircraft starting location.
The computer 26 generates the map display, as shown at 66, using the map database 24 and displays the map and the starting position, as shown at 68, on the input/output device 22. The system 20 determines the current gate or runway, and/or nearby gates and/or runways at 69 by analyzing the map database 24 for all gates and/or runways within a predefined distance of the aircraft starting location. Those gates and/or runways may be displayed for selection. At 70, the system 20 determines all segments that join the starting position. Alternatively, if the user selects a gate or runway as a starting point, the system 20 determines all segments that join the selected gate or runway as shown at 70. Segments that join the starting position may be determined by analyzing all segments for points in common with the starting position. The joining segments may be displayed separately, as shown at 72, on the input/output device 22 for user selection.
The user may select the next segment, as shown at 74, for example by touching the selection on the screen, or by positioning a cursor over the selection and activating it. The selected segment may be checked at 76 to ensure that it joins the previous segment and may be annunciated if the selected segment does not join the previous segment. The annunciation may be visual, tactile and/or aural cue. The process may be repeated for the next segment, as shown at 78. If a selection is entered between two previously entered segments, the selected segment may be checked at 76 to ensure that it joins the previous and subsequent segments and may be annunciated if the selected segment does not join both adjacent segments. The system 20 monitors aircraft movement, as shown at 80, and may update the map display and taxi instructions to account for movement of the vehicle as indicated at 82.
Working counterclockwise around
When the Route softkey 220a is selected in the graphical mode, the segments that do not join the currently selected segment may be disabled for selection, allowing only the graphical selection of segments that join the currently selected segment. An alternative embodiment of intelligent entry in the graphical mode comprises highlighting all segments and/or displaying all associated softkeys for segments which join the currently selected segment. Another alternate embodiment comprises displaying a list of all segments that join the currently selected segment, similar to the menu interface, and selecting a segment for entry directly from the list. This may also be accomplished by graphically highlighting the map segment selected from the list and displaying the associated segment softkey in the map area near the segment.
Sub-menus 222 and sub-sub-menus 223 (FIG. 6), may be displayed when more information is needed. A small square on the taxiway sub-menu 222 softkey “H” 222a indicates that there is a sub-sub-menu available. Alternatively, an asterisk indicates a sub-sub-menu, containing a partial taxiway set, is available which displays only those ground movement segments which join the current segment. One instance in which sub-sub-menus may be employed is in the case of taxiway identifiers with subsets (H, H1, H2, etc.) 223a, 223b, 223c, or numerically identical runway identifiers With right, left, center, or any other alphanumerical designations. A Runways softkey 22c may display sub-menus for all runways for a given airport. A Taxiways softkey 22b may display sub-menus for all taxiways for a given airport. A Concourses softkey 220d may display sub-menus for all the gates and/or parking locations at a given airport.
Selecting the Hold softkey 220e allows the user to input at least one hold short instruction. Aircraft crossing of a hold short point may be annunciated. The annunciation may be a visual, tactile and/or aural cue.
A Route sub-menu 222 may show runways and taxiways available (222a, b, c, d, e) that connect with the currently selected ground movement segment. A Route display in the lower left-hand corner of the input/output display device 124 of
In the lower right-hand corner of the input/output display device 124 is a View menu 227. A Center softkey 234 toggles a display center between ownship position and a center of the last selected segment or manual pan. A Zoom softkey 230 allows the user to change the scale of the displayed map. The system 20 may automatically declutter the symbology on the display by using an impingement algorithm. Each symbol may be assigned a location and an area on the screen, and as the scale decreases and symbol areas begin to overlap, the software program may selectively remove certain symbols based on a preprogrammed priority. This removes excess clutter and makes the display easier to read. The system 20 incorporates a manually activated simultaneous pan and zoom feature called local area zoom. When the user “double taps” the input/output display device, similar to double clicking the mouse on a desktop computer, the system 20 may automatically increase the magnification by a preset amount and center the magnified display on the point the user double tapped. The same local area zoom feature can be selected by placing the cursor at a point and tapping or otherwise activating the cursor control device twice rapidly in succession. In both touch and cursor implementations, a subsequent “double tap” restores the display center and scale to that which existed before the local area zoom was activated. A Pan softkey 228 allows the user to pan the display in the selected direction in order to see some map feature and/or more of the taxi route without zooming the map scale out to a larger scale.
As shown in
In an alternate embodiment of the graphical interface entry, the route may be entered as a series of discrete sub-segments (i.e. short dashed lines or dots) collocated with the map segment. These sub-segments may appear/display when the route sub-segment is touched or the cursor is moved/passes over the sub-segment in the approximate direction of the overall segment. In this alternate embodiment, which may differ for touch or cursor interface, the segment identifier may be displayed in the alphanumeric route line once some predetermined number of sub-segments are graphically displayed or selected. Sub-segments may be removed from the display by deleting the segment identifier from the alphanumeric route line, or by touching or passing the cursor over the displayed sub-segment.
Logical filtering and sub-segment display thresholds may be implemented to prevent unwanted nuisance display of, or deletion of sub-segments the cursor may pass over or which may be inadvertently touched. Selection of the displayed sub-segment and/or entry of the associated identifier in the alphanumeric route line may require positive confirmation such as, for example, cursor select switch activation. This alternate embodiment of graphical interface route entry may be facilitated by logic which automatically connects displayed sub-segments of joined segments. Thus a least one sub-segment per segment may be entered. Automatic connection of sub-segments eliminates the need for the user to connect sub-segments in adjacent segments which join one another, thus speeding up route entry.
Although the preferred embodiments of the invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed herein and in the accompanying claims. For example, other embodiments may include systems and methods according to the invention for use in connection with vehicles other than aircraft, such as automobiles, ships, mining vehicles, agricultural equipment, construction equipment, or any other vehicle capable of movement on, above, or below the surface of the earth.
Clark, Samuel T., Snow, Michael P., Jones, Wayne R., Trujillo, Eddie J.
Patent | Priority | Assignee | Title |
10839715, | Jan 06 2012 | Borealis Technical Limited | Training system and simulation method for ground travel in aircraft equipped with non-engine drive means |
11269957, | Mar 28 2019 | TETRA TECH, INC | Method for creating a data input file for increasing the efficiency of the aviation environmental design tool (AEDT) |
7986249, | Nov 24 2008 | Honeywell International Inc. | System and method for displaying graphical departure procedures |
8180562, | Jun 04 2008 | The Boeing Company | System and method for taxi route entry parsing |
8386167, | Nov 14 2008 | The Boeing Company | Display of taxi route control point information |
8494691, | Sep 20 2002 | The Boeing Company | Apparatuses and methods for displaying autoflight information |
8736633, | Nov 09 2011 | Honeywell International Inc. | Traffic symbology on airport moving map |
Patent | Priority | Assignee | Title |
3696671, | |||
4147056, | Sep 23 1977 | AlliedSignal Inc | Multi-segment head-up display for aircraft |
4196474, | Feb 11 1974 | The Johns Hopkins University | Information display method and apparatus for air traffic control |
4631678, | May 27 1983 | VDO Adolf Schindling AG | Information input |
4642775, | May 25 1984 | AlliedSignal Inc | Airborne flight planning and information system |
4792906, | Aug 29 1986 | BOWING COMPANY, THE, SEATTLE, WA A CORP OF DE | Navigational apparatus and methods for displaying aircraft position with respect to a selected vertical flight path profile |
4939661, | Sep 09 1988 | WORLD RESEARCH INSTITUTE FOR SCIENCE AND TECHNOLOGY, A CORP OF NY | Apparatus for a video marine navigation plotter with electronic charting and methods for use therein |
5243339, | Jun 07 1988 | The Boeing Company; BOEING COMPANY, THE, A CORP OF DELAWARE | Flight crew response monitor |
5289185, | Sep 05 1990 | Aerospatiale Societe Nationale Industrielle | Process for displaying flying aid symbols on a screen on board an aircraft |
5329277, | Dec 05 1990 | Smiths Group PLC | Displays and display systems |
5343395, | Aug 26 1992 | SAFEFLIGHT, INC | Aircraft landing guidance system and method |
5475594, | Jul 24 1992 | Sextant Avionique | Method and device for assisting the piloting of an aircraft from a voluminous set of memory-stored documents |
5519392, | Jul 31 1992 | Sextant Avionique | Method and device for assisting navigation |
5519618, | Aug 02 1993 | Massachusetts Institute of Technology | Airport surface safety logic |
5592198, | Mar 12 1993 | Sextant Avionique | Terminal for man-machine dialogue with a computer system using plural viewing elements |
5593114, | Apr 19 1994 | McDonnell Douglas Corporation | Synthetic vision automatic landing system |
5629691, | May 26 1995 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Airport surface monitoring and runway incursion warning system |
5715163, | Aug 22 1995 | The Boeing Company | Cursor controlled navigation system for aircraft |
5736955, | Apr 10 1996 | Aircraft landing/taxiing system using lack of reflected radar signals to determine landing/taxiing area | |
5802492, | Jun 24 1994 | Garmin Switzerland GmbH | Computer aided routing and positioning system |
5825306, | Aug 25 1995 | AISIN AW CO , LTD | Navigation system for vehicles |
5884219, | Oct 10 1996 | Ames Maps L.L.C.; AMES MAPS L L C | Moving map navigation system |
5941930, | Sep 22 1994 | Aisin AW Co., Ltd. | Navigation system |
5978715, | Oct 15 1997 | DASSAULT AVIATION | Apparatus and method for aircraft display and control |
5983158, | Sep 08 1995 | AISIN AW CO , LTD | Navigation system for vehicles |
5995901, | Sep 30 1996 | Rockwell International Corporation | Automatic view adjusting flight plan display |
6067502, | Aug 21 1996 | AISIN AW CO , LTD | Device for displaying map |
6075467, | Aug 21 1997 | Toyota Jidosha Kabushiki Kaisha | Map data selection supporting device, and map data processing system and map data processing device including the same |
6112141, | Oct 15 1997 | DASSAULT AVIATION | Apparatus and method for graphically oriented aircraft display and control |
6163309, | Jan 16 1998 | THRESHOLDS UNLIMITED, INC | Head up display and vision system |
6181987, | Aug 30 1996 | Sextant Avionique | Method of assistance in the piloting of an aerodyne |
6199015, | Oct 10 1996 | Ames Maps, L.L.C. | Map-based navigation system with overlays |
6246342, | Sep 03 1996 | ADB SAFEGATE BVBA | Man-machine interface for airport traffic control purposes |
6289277, | Oct 07 1999 | Honeywell INC | Interfaces for planning vehicle routes |
6313759, | Mar 16 2000 | Rockwell Collins; Rockwell Collins, Inc | System and method of communication between an aircraft and a ground control station |
6314363, | Sep 07 1993 | HONEYWELL INTELLECTUAL PROPERTIES, INC NOW BRH LLC | Computer human method and system for the control and management of an airport |
6314370, | Oct 10 1996 | Ames Maps, LLC | Map-based navigation system with overlays |
6362750, | Oct 06 1997 | Siemens AG | Process and device for automatically supported guidance of aircraft to a parking position |
6381538, | May 26 2000 | DTN, LLC | Vehicle specific hazard estimation, presentation, and route planning based on meteorological and other environmental data |
6405975, | Dec 19 1995 | The Boeing Company | Airplane ground maneuvering camera system |
6424909, | Mar 17 2000 | Alpine Electronics, Inc | Method and system for retrieving information for a navigation system |
6449556, | Apr 19 2000 | Rockwell Collins, Inc.; Rockwell Collins, Inc | Method and apparatus for designating waypoints on a navigational display |
6462697, | Jan 09 1998 | ORINCON TECHNOLOGIES, INC | System and method for classifying and tracking aircraft vehicles on the grounds of an airport |
6512527, | Sep 08 1999 | Rockwell Collins, Inc.; Rockwell Collins, Inc | Method and apparatus for interactively selecting display parameters for an avionices flight display |
6542796, | Nov 18 2000 | HONEYWELL INTERNATIONAL INC , A DELAWARE CORPORATION | Methods and apparatus for integrating, organizing, and accessing flight planning and other data on multifunction cockpit displays |
6545601, | |||
6553307, | Feb 07 2001 | Airport ground-control system and method | |
6571166, | Jun 23 2000 | Rockwell Collins, Inc | Airport surface operation advisory system |
6606563, | Mar 06 2001 | CORCORAN GROUP, INC | Incursion alerting system |
6633810, | Sep 19 2000 | Honeywell International Inc | Graphical system and method for defining pilot tasks, patterns and constraints |
6690299, | Jan 12 1998 | Rockwell Collins, Inc.; Rockwell Collins, Inc | Primary flight display with tactical 3-D display including three view slices |
6694249, | Jan 11 2002 | Rockwell Collins, Inc | Integrated surface moving map advisory system |
6707475, | Sep 19 2000 | HONEYWELL INTERNATIONAL INC , A CORPORATION OF DELAWARE | System for selecting and displaying flight management system procedures |
6711475, | Mar 16 2000 | The Johns Hopkins University | Light detection and ranging (LIDAR) mapping system |
6721640, | Feb 03 2000 | Honeywell International Inc. | Event based aircraft image and data recording system |
6745113, | Jun 07 2002 | The Boeing Company | Method and system for autoflight information display |
6751545, | Dec 04 2001 | Smiths Aerospace, Inc. | Aircraft taxi planning system and method |
6753891, | Oct 25 2000 | Honeywell International Inc | Aircraft electronic checklist system with hyperlinks |
6789010, | Dec 04 2001 | Smiths Aerospace, Inc. | Airport map display system and data interchange method |
6812858, | Aug 20 2001 | The Boeing Company | Integrated display for aircrafts |
6816780, | Oct 16 1998 | ESL ACQUISITION SUBSIDIARY CORPORATION; Universal Avionics Systems Corporation | Flight plan intent alert system and method |
6856864, | Nov 17 2000 | Honeywell International Inc | Method and system for entering data within a flight plan entry field |
6862519, | Dec 04 2001 | Smiths Aerospace, Inc. | Airport map system with compact feature data storage |
6871124, | Jun 06 2003 | Rockwell Collins; Rockwell Collins, Inc | Method and system for guiding an aircraft along a preferred flight path having a random origin |
6898492, | Mar 15 2000 | MICROLOGIC SYSTEMS INC | Self-contained flight data recorder with wireless data retrieval |
6909967, | Jan 11 2001 | CLARION CO , LTD | Navigation device and route retrieving device |
6957130, | Oct 21 2003 | Garmin AT, Inc. | Navigational instrument, method and computer program product for displaying ground traffic information |
6980198, | Sep 19 2000 | Honeywell International Inc | Multifunction keyboard for advanced cursor driven avionic flight decks |
6992596, | Apr 04 2002 | Megadata Corporation | Simplified flight track display system |
6992597, | Mar 22 2003 | Symbology for representing aircraft position | |
7030892, | Sep 19 2000 | Honeywell International Inc | Methods and apparatus for displaying information |
7039505, | Jul 19 2002 | Avidyne Corporation | Method for digital transmission and display of weather imagery |
7049953, | Feb 25 1999 | TELESIS GROUP, INC, THE; E-WATCH, INC | Ground based security surveillance system for aircraft and other commercial vehicles |
7142131, | Jul 03 2002 | The Boeing Company; Boeing Company, the | Method and apparatus for displaying aircraft engine characteristics |
7148814, | Jun 06 2003 | The Boeing Company | Methods and systems for displaying aircraft engine characteristics |
7177731, | Mar 10 2004 | The Boeing Company | Systems and methods for handling aircraft information received from an off-board source |
7188007, | Dec 24 2003 | Boeing Company, the | Apparatuses and methods for displaying and receiving tactical and strategic flight guidance information |
7203577, | Jun 30 2004 | The Boeing Company | Methods and systems for displaying the source of aircraft control instructions |
7230632, | Mar 20 2002 | Airbus Operations SAS | Airport display method including changing zoom scales |
7256710, | Jun 30 2004 | The Boeing Company | Methods and systems for graphically displaying sources for and natures of aircraft flight control instructions |
7345693, | Mar 20 2002 | Airbus Operations SAS | Airport display device |
20020099528, | |||
20020120392, | |||
20030009278, | |||
20030045994, | |||
20040006412, | |||
20040059474, | |||
20040059497, | |||
20050090969, | |||
20050143871, | |||
20050178903, | |||
20050192717, | |||
20050203675, | |||
20050222721, | |||
20050228674, | |||
20050231390, | |||
DE4140406, | |||
WO224530, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 13 2008 | The Boeing Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 04 2010 | ASPN: Payor Number Assigned. |
Nov 19 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 24 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 21 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 22 2013 | 4 years fee payment window open |
Dec 22 2013 | 6 months grace period start (w surcharge) |
Jun 22 2014 | patent expiry (for year 4) |
Jun 22 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 22 2017 | 8 years fee payment window open |
Dec 22 2017 | 6 months grace period start (w surcharge) |
Jun 22 2018 | patent expiry (for year 8) |
Jun 22 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 22 2021 | 12 years fee payment window open |
Dec 22 2021 | 6 months grace period start (w surcharge) |
Jun 22 2022 | patent expiry (for year 12) |
Jun 22 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |