Disclosed is a fiber amplifier system including a gain fiber having a single-mode core containing dopant ions capable of producing stimulated emission of light at wavelength λs when pumped with light of wavelength λp. Absorbing ion filtering means is operatively associated with the gain fiber to alter the gain curve. If the absorbing ions are the same as the gain ions of the gain fiber, the system further includes means for preventing pump light from exciting the gain ions of the filtering means. The excitation prevention means may take the form of means for attenuating pump light. If the absorbing ions are different from the dopant ions of the gain fiber, such absorbing ions can be subjected to light at wavelength αp, but they will remain unexcited. Such absorbing ions can be used to co-dope the gain fiber, or they can be incorporated into the core of a fiber that is in series with the gain fiber.
|
0. 21. A fiber amplifier comprising
a gain optical fiber having only one single-mode core, said core containing dopant ions capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp, said gain fiber having input and output ends, said dopant ions being selected from the group consisting of erbium, neodymium and praseodymium,
filtering means for attenuating light at at least some of the wavelengths within said predetermined band of wavelengths, said filtering means containing a dopant selected from the group consisting of erbium, dysprosium, neodymium, ytterbium, samarium, praseodymium, thulium, vanadium and cadmium selenide,
means for introducing a signal of wavelength λs into said gain fiber input end,
means for introducing pump light of wavelength λp into said gain fiber, and
means for preventing the excitation of said filtering means by light of wavelength λp, wherein means for preventing the excitation is disposed between the gain optical fiber and the filtering means, wherein the means for preventing the excitation includes an optical fiber having a dopant that substantially attenuates light at wavelength λp.
0. 24. A fiber amplifier comprising
a gain optical fiber having only one single-mode core, said core containing dopant ions capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp, said gain fiber having input and output ends, said dopant ions being selected from the group consisting of erbium, neodymium and praseodymium, and wherein the gain spectrum of said gain optical fiber, over said band of wavelengths and pumped with light from wavelength λp has a first portion which is relatively flat and a second portion which is not flat and exhibits gain greater than the gain exhibited over said relatively flat portion;
filtering means for attenuating light at at least some of the wavelengths within said predetermined band of wavelengths, said filtering means containing a dopant selected from the group consisting of erbium, dysprosium, neodymium, ytterbium, samarium, praseodymium, thulium, vanadium and cadmium selenide, said filtering means having a transmission curve over said predetermined band of wavelengths and in the absence of excitation by said gain fiber over said predetermined band of wavelengths when said gain fiber is excited by light at wavelength λp so that when light in the range of said predetermined range of wavelengths is amplified and filtered by said filtering means, the resulting gain spectrum for said amplifier over said predetermined range of wavelengths is substantially flat;
means for introducing a signal of wavelength λs into said gain fiber input end;
means introducing pump of wavelength λp into said gain fiber, and
means for preventing the excitation of said pumped gain ions by light of wavelength λp wherein means for preventing the excitation is disposed between the gain optical fiber and the filtering means, wherein the means for preventing the excitation includes an optical fiber having a dopant that substantially attenuates light at wavelength λp.
0. 23. A fiber amplifier having a flattened gain spectrum comprising
a gain optical fiber having only one single-mode core, said core containing dopant ions capable of producing a gain spectrum due to stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp, said gain fiber having input and output ends, and wherein the gain spectrum of said gain optical fiber over said band of wavelengths has a first portion having a relatively small gain variation over a region of said band wavelengths and a second portion having a relatively large gain variation over a different region of said band wavelengths, wherein said first portion of the gain spectrum is relatively flat and wherein said second portion is not flat and exhibits a greater gain than the gain exhibited over said relatively flat portion;
ion filtering means for absorbing light within said predetermined band of wavelengths, said ion filtering means having an absorption spectrum having a first portion exhibiting relatively small absorption over said region of said band of wavelengths and a second portion having a relatively large absorption of said different region of said band of wavelengths where the gain spectrum is not flat, said ion filtering means comprising a concentration and distribution of unpumped gain ions within said ion filtering means wherein amplified light having wavelengths within said predetermined band of wavelengths where the gain spectrum is not flat is attenuated to an extent such that the gain spectrum over the entire predetermined band of wavelengths is flattened and exhibits relatively small gain variation over said entire band of wavelengths;
means for introducing a signal of wavelength λs into said gain fiber input end,
means introducing pump of wavelength λp into said gain fiber, and
means for preventing the excitation of said pumped gain ions by light of wavelength λp wherein means for preventing the excitation is disposed between the gain optical fiber and the ion filtering means, wherein the means for preventing the excitation includes an optical fiber having a dopant that substantially attenuates light at wavelength λp.
0. 1. A fiber amplifier comprising
a gain optical fiber having a single-mode core containing dopant ions capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp, said gain fiber having input and output ends,
absorbing ion filtering means for attenuating light at at least some of the wavelengths within said predetermined band of wavelengths, said absorbing ion filtering means comprising umpumped gain ions,
means for introducing a signal of wavelength λs into said gain fiber input end,
means introducing pump light of wavelength λp into said gain fiber, and
means for preventing the excitation of said pumped gain ions by light of wavelength λp.
0. 2. A fiber amplifier in accordance with
0. 3. A fiber amplifier in accordance with
0. 4. A fiber amplifier in accordance with
0. 5. A fiber amplifier in accordance with
0. 6. A fiber amplifier in accordance with
0. 7. A fiber amplifier in accordance with
0. 8. A fiber amplifier in accordance with
0. 9. A fiber amplifier in accordance with
0. 10. A fiber amplifier in accordance with
0. 11. A fiber amplifier in accordance with
0. 12. A fiber amplifier in accordance with
0. 13. A fiber amplifier in accordance with
0. 14. A fiber amplifier in accordance with
0. 15. A fiber amplifier comprising
a gain optical fiber having a single-mode core containing gain ions capable of producing stimulated emission of signal light within a predetermined band of wavelengths including a wavelength λs when pumped with pump light of wavelength λp, said gain fiber having first and second ends,
a filtering fiber containing gain ions for filtering signal light,
a pump light-attenuating fiber having a core containing a dopant that attenuates said pump light while signal light remains substantially unattenuated, said pump light-attenuating fiber connecting the second end of said gain fiber to an end of said filtering fiber,
means for introducing pump light of wavelength λp into the first end of said said gain fiber, and
means for introducing a signal of wavelength λs into one of the ends of the series combination of said gain fiber, said pump light-attenuating fiber and said filtering fiber, the gain ions of said filtering fiber remaining unexcited during operation because of the pump light filtering action of said pump light-attenuating fiber, whereby said filtering fiber alters the spectral gain of said amplifier.
0. 16. A fiber amplifier comprising
first and second gain optical fiber sections, each having a single-mode core containing dopant ions capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp, each gain fiber section having first and second ends,
first and second pump light-attenuating fiber sections, each having a core containing a dopant that attenuates optical power in at least one wavelength band including said wavelength λp, while optical power at said wavelength λs remains substantially unattenuated thereby, each pump light-attenuating fiber section having first and second ends, the first end of each of said pump light-attenuating fiber sections being spliced to a respective one of the second ends of said gain fiber sections,
a filtering fiber, the ends of which are respectively connected to the second ends of said pump light attenuating fiber sections, said filtering fiber being doped with gain ions,
means for introducing pump light of wavelength λp into the first end of each of said gain fiber sections, and
means for introducing a signal of wavelength λs into the first end of one of said gain fiber sections, the gain ions of said filtering fiber remaining unexcited during operation because of the pump light filtering action of said pump light-attenuating fiber.
0. 17. A fiber amplifier comprising
a gain optical fiber having a single-mode core containing dopant ions capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp, said gain fiber having input and output ends,
filtering means for attenuating light at at least some of the wavelengths within said predetermined band of wavelengths, said filtering means containing ions that can be excited by light of wavelength λp.
means for introducing a signal of wavelength λs into said gain fiber input end,
means introducing pump light of wavelength λp into said gain fiber, and
means for preventing the excitation of said filtering means by light of wavelength λp.
0. 18. A fiber amplifier in accordance with
0. 19. A fiber amplifier comprising
a gain optical fiber having a single-mode core containing dopant ions capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp, said gain fiber having input and output ends, said dopant ions being selected from the group consisting of erbium, neodymium and praseodymium,
filtering means for attenuating light at at least some of the wavelengths within said predetermined band of wavelengths, said filtering means containing a dopant selected from the group consisting of erbium, dysprosium, neodymium, ytterbium, samarium, praseodymium, thulium, vanadium and cadmium selenide,
means for introducing a signal of wavelength λs into said gain fiber input end, and
means introducing pump light of wavelength λp into said gain fiber.
0. 20. A gain amplifier in accordance with
0. 22. A gain amplifier in accordance with
0. 25. The fiber amplifier in accordance with
0. 26. The fiber amplifier in accordance with
0. 27. The fiber amplifier in accordance with
0. 28. The fiber amplifier in accordance with
0. 29. The fiber amplifier in accordance with
|
The present invention relates to fiber amplifiers having means for selectively attenuating or removing unwanted wavelengths to modify or control the amplifier gain spectrum.
Doped optical fiber amplifiers consist of an optical fiber the core of which contains a dopant such as rare earth ions. Such an amplifier receives an optical signal of wavelength λs and a pump signal of wavelength λp which are combined by means such as one or more couplers located at one or both ends of the amplifier. The spectral gain of a fiber amplifier is not uniform through the entire emission band.
The ability to modify the gain spectrum of a fiber amplifier is useful. Three modifications are of interest: (1) gain flattening, (2) changing the gain slope, and (3) gain narrowing. Gain flattening is of interest for such applications as wavelength division multiplexing. A change in the gain slope can be used to reduce harmonic distortion in AM modulated optical systems (see A. Lidgard et al. “Generation and Cancellation of Second-Order Harmonic Distortion in Analog Optical Systems by Interferometric FM-AM Conversion” IEEE Phot. Tech. Lett., vol. 2, 1990, pp. 519-521) Gain narrowing is of interest because although the amplifier can be operated at wavelengths away from the peak gain without gain narrowing, disadvantages occur due to: increased spontaneous-spontaneous beat noise, a reduction in gain at the signal wavelength because of amplified spontaneous emission at a second wavelength (such as at 1050 nm in a Nd fiber amplifier designed to amplify at 1300 nm), and possible laser action at the peak gain wavelength.
Various techniques have been used for flattening the gain spectrum. An optical notch filter having a Lorentzian spectrum can be placed at the output of the erbium doped gain fiber to attenuate the narrow peak. A smooth gain spectrum can be obtained, but with no increase in gain at longer wavelengths.
Another filter arrangement is disclosed in the publication, M. Tachibana et al. “Gain-Shaped Erbium-Doped Fibre Amplifier (EDFA) with Broad Spectral Bandwidth”, Topical Meeting on Amplifiers and Their Applications, Optical Society of America, 1990 Technical Digest Series, Vol. 13, Aug. 6-8, 1990, pp. 44-47. An optical notch filter is incorporated in the middle of the amplifier by sandwiching a short length of amplifier fiber between a mechanical grating and a flat plate. This induces a resonant coupling at a particular wavelength between core mode and cladding leaky modes which are subsequently lost. Both the center wavelength and the strength of the filter can be tuned. The overall gain spectrum and saturation characteristics are modified to be nearly uniform over the entire 1530-1560 nm band. By incorporating the optical filter in the middle of the erbium doped fiber amplifier, the amplifier efficiency is improved for longer signal wavelengths.
An object of the present invention is to further improve the efficiency of a fiber amplifier and/or tailor the spectral output of a fiber amplifier.
The present invention relates to a fiber amplifier having spectral gain altering means. Fiber amplifiers conventionally comprise a gain optical fiber having a single-mode core containing gain ions capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp. Means are provided for introducing a signal of wavelength λs and pump light of wavelength λp into the gain fiber. In accordance with this invention, the fiber amplifier is provided with absorbing ion filtering means for attenuating light at at least some of the wavelengths within the predetermined band of wavelengths including the wavelength λs.
In accordance with a first aspect of the invention, the absorbing ion filtering means comprises unpumped gain ions; this embodiment requires means for preventing the excitation of the unpumped gain ions by light of wavelength λp. In accordance with a further aspect of the invention, the absorbing ions are different from the rare earth gain ions of gain fiber.
Fiber amplifiers typically include a gain fiber 10 (FIG. 1), the core of which is doped with gain ions that are capable of producing stimulated emission of light within a predetermined band of wavelengths including a wavelength λs when pumped with light of wavelength λp that is outside the predetermined band. A wavelength division multiplexer (WDM) fiber optic coupler 11 can be used for coupling pump energy of wavelength λp from laser diode 15 and the signal of wavelength λs from input telecommunication fiber 14 to gain fiber 10. Such devices are disclosed in U.S. Pat. Nos. 4,938,556, 4,941,726, 4,955,025 and 4,959,837. Fusion spheres are represented by large dots in the drawings. Input fiber 14 is spliced to coupler fiber 13, and gain fiber 10 is spliced to coupler fiber 12. Splice losses are minimized when coupler 11 is formed in accordance with the teachings of copending U.S. Patent Application Ser. No. 671,075 filed Mar. 18, 1991.
Various fiber fabrication techniques have been employed in the formation of rare earth-doped amplifying and absorbing optical fibers. A preferred process, which is described in copending U.S. Patent Application Ser. No. 07/715,348 filed June 14, 1991, is a modification of a process for forming standard telecommunication fiber preforms. In accordance with the teachings of that patent application, a porous core preform is immersed in a solution of a salt of the dopant dissolved in an organic solvent having no OH groups. The solvent is removed, and the porous glass preform is heat treated to consolidate it into a non-porous glassy body containing the dopant. The glassy body is provided with cladding glass to form a draw preform or blank that is drawn into an optical fiber. The process can be tailored so that it results in the formation of a fiber having the desired MFD. The porous core preform could consist soley of core glass, or it could consist of core glass to which some cladding glass has been added. By core glass is meant a relatively high refractive index glass, e.g. germania silicate glass, that will form the core of the resultant optical fiber.
If the rare earth ions are to extend to a region of the resultant fiber beyond the core, then the porous core preform that is immersed in dopant containing solvent must contain a central core glass region and a sufficiently thick layer of cladding glass. After the resultant doped, cladding-covered core preform has been consolidated, it is provided with additional cladding glass and drawn into a fiber.
If too much rare earth dopant is added to a GeO2-doped silica core, the core can crystallize. Such higher rare earth dopant levels can be achieved without crystallization of the core glass by adding Al2O3 to the core.
As indicated above, it is sometimes desirable to modify the gain spectrum of a fiber amplifier. Since the erbium-doped fiber amplifier has utility in communication systems operating at 1550 nm, that fiber amplifier is specifically discussed herein by way of example. The invention also applies to fiber amplifiers containing gain ions other than erbium, since the gain spectrum of such other fiber amplifiers can also be advantageously modified. As shown by curve 23 of
In accordance with the present invention, the amplifier spectral gain curve is altered by providing the fiber amplifier with filtering means 17 which includes absorbing ions that modify the gain spectrum by attenuating the amplified signal at various wavelengths in the gain spectrum. In accordance with a first aspect of the invention the absorbing ions are the same rare earth “gain ions” as the active gains ions in gain fiber 10; however, these absorbing gain ions must remain unpumped by light at wavelength [p. Such unpumped “gain ions” can be located in a fiber that is in series with gain fiber 10, or they can be distributed along the pumped gain fiber ions of gain fiber 10 but be located at a radius that is sufficiently greater than that of the pumped gain ions that they are substantially unpumped and yet influence the propagation of light of wavelength λs. This first aspect is further discussed in conjunction with
In accordance with a further aspect of the invention, the absorbing ions are different from the rare earth gain ions of gain fiber 10; such absorbing ions remain unexcited when subjected to light at wavelength λp. The absorbing ions can be positioned as follows: (a) they can be used to co-dope the gain fiber such that they are distributed along with the gain ions (optionally at the same radius as the gain ions), or (b) they can be incorporated into the core of a fiber that is connected in series with gain fiber 10. This further aspect is further discussed in conjunction with
In the figures discussed below, elements similar to those of
If fiber 10′ of
If gain ion-doped fiber 32 of
The performance of the gain-ion doped filtering fiber may be improved by quenching the Er fluorescence to minimize signal induced bleaching of the absorption. The Er fluorescence can be quenched by adding dopants such as B or OH to the fiber or by increasing the doping density of Er in the absorbing fiber, for example, to levels above 500 ppm in SiO2-GeO2 fibers.
Attenuating means 31 of
In the embodiment of
TABLE 1
Gain
Wavelength
Absorbing Ion
Ion
Signal
Pump
or Center
Er
1.52-1.6 μm
980 nm
Yb, Dy, Pr, V, CdSe
Er
1.52-1.6 μm
1480 nm
Pr, Sm
Er
1.52-1.6 μm
800 nm
Nd, Dy, Tm, V, CdSe
Nd
1.25-1.35 μm
800 nm
Dy, Er, Tm, V, CdSe
Pr
1.25-1.35 μm
1000 nm
Dy, Er, Yb, V,
Curves of absorptivity v. wavelength were used in selecting the rare earth ions and the transition metal (vanadium) ion. The CdSe should be present in the absorbing fiber in the form of micro crystallites.
The light attenuating fiber means of this invention is also useful in fiber amplifiers employing alternate pumping schemes. In the counter-pumping device of
In the dual-ended device of
The signal is first introduced into section 46a where it gradually increases in amplitude due to amplification in that section. The amplitude of the original that is introduced into section 46b is therefore much greater that that which was introduced into section 46a. The pump power is therefore absorbed at a greater rate per unit length in section 46b, and section 46b can be shorter than section 46a.
In the embodiment of
Gain fiber 62 of
In the embodiment of
The embodiment of
That aspect of the invention wherein the signal absorbing ions are different from the rare earth gain ions of the gain fiber is illustrated in
TABLE 2
Gain
Ion
Gain Wavelength Range
Absorbing Ion
Er
1.52-1.61
μm
Pr, Sm
Nd
1.25-1.35
μm (undesired
Sm, Dy, Pr
gain at 1050 nm)
Pr
1.25-1.35
μm
Sm, Dy, Nd
Curves of absorptivity v. wavelength were used in selecting the absorbing ions of Table 2.
During the fabrication of a preform for drawing a gain fiber that is co-doped with absorbing ions as well as active gain ions, the central region of the fiber is provided with a sufficient concentration of active gain ions to provide the desired amplification; it is also provided with a sufficient concentration of absorbing ions to attenuate the undesired portion or modify the gain spectrum. Such a fiber could be formed in accordance with the aforementioned U.S. Pat. Application Ser. No. 07/715,348 by immersing the porous core preform in a dopant solution containing salts of both the active dopant ion and the absorbing ion.
That embodiment wherein the absorbing ions are incorporated into the core of a fiber that is connected in series with gain fiber is shown in
Newhouse, Mark A., Hall, Douglas W.
Patent | Priority | Assignee | Title |
9166679, | Apr 04 2011 | Fujitsu Limited | Optical amplification apparatus, method for controlling same, optical receiver station, and optical transmission system |
Patent | Priority | Assignee | Title |
4778237, | Jun 07 1984 | The Board of Trustees of the Leland Stanford Junior University | Single-mode fiber optic saturable absorber |
5050949, | Jun 22 1990 | AT&T Bell Laboratories | Multi-stage optical fiber amplifier |
5245467, | Oct 30 1989 | OPTICAL TECHNOLOGIES ITALIA S P A | Amplifier with a samarium-erbium doped active fiber |
5257273, | Mar 27 1991 | GEC-Marconi Limited | Amplifier/filter combination |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 26 1998 | Oclaro Technology, plc | (assignment on the face of the patent) | / | |||
May 19 2005 | Avanex Corporation | HBK INVESTMENTS L P | SECURITY AGREEMENT | 016079 | /0174 | |
Mar 12 2007 | HBK INVESTMENTS, L P | Avanex Corporation | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 019035 | /0342 | |
Jul 26 2011 | OCLARO TECHNOLOGY LIMITED | WELLS FARGO CAPITAL FINANCE, INC , AS AGENT | PATENT SECURITY AGREEMENT | 028325 | /0001 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jul 13 2013 | 4 years fee payment window open |
Jan 13 2014 | 6 months grace period start (w surcharge) |
Jul 13 2014 | patent expiry (for year 4) |
Jul 13 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 13 2017 | 8 years fee payment window open |
Jan 13 2018 | 6 months grace period start (w surcharge) |
Jul 13 2018 | patent expiry (for year 8) |
Jul 13 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 13 2021 | 12 years fee payment window open |
Jan 13 2022 | 6 months grace period start (w surcharge) |
Jul 13 2022 | patent expiry (for year 12) |
Jul 13 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |