A compound objective lens is composed of a hologram lens or transmitting a part of incident light without any diffraction to form a beam of transmitted light and diffracting a remaining part of the incident light to form a beam of first-order diffracted light, and an objective lens for converging the transmitted light to form a first converging spot on a front surface of a thin type of first information medium and converging the diffracted light to form a second converging spot on a front surface of a thick type of second information medium. Because the hologram selectively functions as a concave lens for the diffracted light, a curvature of the transmitted light differs from that of the diffracted light. Therefore, even though the first and second information mediums have different thicknesses, the transmitted light incident on rear surface of the first information medium is converged on the its front surface, and the diffracted light incident on a rear surface of the second information medium is converged on the its front surface. That is, the compound objective lens has two focal points.
|
0. 24. An objective lens operable to lead a light beam to at least two kinds of information media having a substrate of different thicknesses T1 and T2,
wherein the objective lens has a first region and a second region,
the first region is located at a position farther from an optical axis than a position of the second region;
the second region is provided with a diffractive element;
the second region has a numerical aperture NA2 to produce a focal point through the substrate of thickness T2;
the first and the second regions of the objective lens have a numerical aperture NA1 to produce a focal point through the substrate of thickness T1; and
wherein NA1>NA2 and T1<T2.
0. 19. An objective lens operable to lead a light beam to at least two kinds of information media having a substrate of different thicknesses T1 and T2, comprising:
a refractive lens which has a first convex surface, and a diffractive element which has a second convex surface located opposite to the first convex surface of the refractive lens;
wherein the objective lens has a numerical aperture of NA1 corresponding to a substrate thickness T1,
the diffractive element receives an approximately parallel beam not yet refracted by the refractive lens and diffracts the beam to divide the beam into divided beams in order to converge one of the divided beams corresponding to a substrate thickness of T2 with a numerical aperture of NA2(NA1>NA2, T1<T2); and
wherein focal points are placed on an optical axis on a side facing the first convex surface of the refractive lens.
0. 1. A compound objective lens, comprising:
lens means, having a first convex surface and a second convex surface opposite to each other, for receiving a beam of incident light of one particular wavelength passing through an optical axis at the first convex surface, refracting the beam of incident light and emitting a beam of refracted light from the second convex surface; and
plural focal point generating means for receiving the beam of incident light not yet refracted by the lens means, generating from the beam of incident light a plurality of beams of divided light including a first beam of divided light and a second beam of divided light, converging the beams of divided light at a plurality of focal points which are placed on the optical axis on a side facing the second convex surface of the lens means on condition that the first beam of divided light transmits through a first substrate and is converged on an information recording plane placed at a first distance T1 from a surface of the first substrate at a diffraction limit and that the second beam of divided light transmits through a second substrate and is converged on an information recording plane placed at a second distance T2 (T1≠T2) from a surface of the second substrate at a diffraction limit.
0. 2. A compound objective lens according to
0. 3. A compound objective lens according to
0. 4. A compound objective lens according to
the hologram is a phase modulation relief type of diffraction device,
a grating pattern of the hologram has a step-wise cross section and is formed in a concentric circle shape,
the grating pattern of the hologram is concentrically partitioned into a plurality of blocks,
a phase modulation degree of the incident light passing through the grating pattern of the hologram varies in a step-wise shape of four stairs for each of the blocks, and
a ratio of an etching width of a top stair to a length of the corresponding block and another ratio of an etching width of a bottom stair to the length of the corresponding block are respectively lowered toward an outer direction of the grating pattern of the hologram.
0. 5. A compound objective lens according to
a grating pattern of the hologram is formed in a concentric circle shape and is concentrically partitioned into a plurality of blocks,
a phase modulation degree of the incident light passing through an inner portion of the grating pattern of the hologram varies in a step-wise shape of four inside stairs for each of the blocks,
the four inside stairs are composed of a top stair, a second stair, a third stair and a bottom stair in that order,
a ratio of an etching width of the top stair to a length of the corresponding block and another ratio of an etching width of the bottom stair to the length of the corresponding block are respectively lowered toward an outer direction of the grating pattern in the inner portion of the hologram,
another phase modulation degree of the incident light passing through an outer portion of the grating pattern of the hologram varies in a step-wise shape of two outside stairs for each of the blocks, and
a difference in width between the outside stairs is increased toward the outer direction of the grating pattern in the outer portion of the hologram.
0. 6. A compound objective lens according to
the hologram is a phase modulation relief type of diffraction device,
a grating pattern of the hologram has a step-wise cross section and is formed in a concentric circle shape,
the grating pattern of the hologram is concentrically partitioned into a plurality of blocks,
a phase modulation degree of the incident light passing through the grating pattern of the hologram varies in a step-wise shape of four stairs for each of the blocks, and
a ratio of an etching width of a top stair to a length of the corresponding block and another ratio of an etching width of a bottom stair to the length of the corresponding block are respectively lowered toward an inner direction of the grating pattern of the hologram.
0. 7. A compound objective lens according to
the hologram is a phase modulation relief type of diffraction device,
a grating pattern of the hologram is formed in a concentric circle shape and is concentrically partitioned into a plurality of blocks,
a phase modulation degree of the incident light passing through an outer portion of the grating pattern of the hologram varies in a step-wise shape of four inside stairs for each of the blocks,
the four inside stairs are composed of a top stair, a second stair, a third stair and a bottom stair in that order,
a ratio of an etching width of the top stair to a length of the corresponding block and another ratio of an etching width of the bottom stair to the length of the corresponding block are respectively lowered toward an inner direction of the grating pattern in the outer portion of the hologram,
another phase modulation degree of the incident light passing through an inner portion of the grating pattern of the hologram varies in a step-wise shape of two inside stairs for each of the blocks, and
a difference in width between the inside stairs is increased toward the inner direction of the grating pattern in the inner portion of the hologram.
0. 8. A compound objective lens according to
0. 9. A compound objective lens according to
0. 10. A compound objective lens according to
0. 11. A compound objective lens according to
0. 12. A compound objective lens according to
0. 13. A compound objective lens according to
0. 14. A compound objective lens according to
0. 15. A compound objective lens according to
0. 16. A compound objective lens according to
0. 17. A compound objective lens according to
a surface height of the second portion of the light-passing area of the hologram in an optical direction is the same as a height of a stair selected from the stairs except a top stair and a bottom stair.
0. 18. A compound objective lens according to
0. 20. An objective lens according to
0. 21. An objective lens according to
0. 22. An optical head apparatus operable to perform at least one of recording and reproduction of pieces of information on and from an optical disk placed to face the optical head apparatus, the optical disk composing the information media, comprising:
(i) an optical source operable to radiate a light beam; and
(ii) the objective lens according to
0. 23. An optical disk apparatus comprising:
an optical head apparatus according to
a rotating device operable to rotate the at least two kinds of information media; and
a moving device operable to move the optical head apparatus.
0. 25. A focus control method to perform focus control on at least two kinds of information media having a substrate of different thicknesses T1 and T2 using an optical lens according to
a step to detect a signal from the information media;
a step to decide the thickness of the substrate based on the signal; and
a step to perform the focus control corresponding to the decided thickness.
0. 26. An optical disk apparatus to perform focus control on at least two kinds of information media having a substrate of different thicknesses T1 and T2 using an optical lens according to
an information detector to detect a signal from the information medium; and
a controller to decide the thickness of the substrate based on the signal and to perform the focus control corresponding to the thickness T1 or T2 based on the decided thickness.
0. 27. An objective lens according to
0. 28. An objective lens according to
0. 29. An objective lens according to
0. 30. An optical head apparatus operable to perform at least one of recording and reproduction of pieces of information on and from an optical disk placed to face the optical head apparatus, the optical disk composing the information media, comprising:
(i) an optical source operable to radiate a light beam; and
(ii) the objective lens according to
0. 31. An optical head apparatus according to
0. 32. An optical disk apparatus comprising:
an optical head apparatus according to
a rotating device operable to rotate the at least two kinds of information media; and
a moving device operable to move the optical head apparatus.
0. 33. An optical disk apparatus comprising:
an optical head apparatus according to
a rotating device operable to rotate the at least two kinds of information media; and
a moving device operable to move the optical head apparatus.
0. 34. An image reproducing apparatus comprising:
an optical disk apparatus according to
a displaying unit.
0. 35. A voice reproducing apparatus comprising:
an optical disk apparatus according to
a voice reproducing unit.
0. 36. An information processing apparatus comprising:
an optical disk apparatus according to
an input apparatus; and
a central processing unit.
|
where the symbol λdenotes a wavelength of the incident light L3 and the symbol n(λ) denotes a refractive index of the transparent substrate 28 for the incident light L3. In this case, a difference in phase modulation degree between the incident light L3 transmitting through a bottom portion of the grating pattern P1 and the incident light L3 transmitting through a top portion of the grating pattern P1 is lower than 2π radians. Therefore, a diffraction efficiency of the hologram lens 26 for the incident light L3 transmitting through the grating pattern P1 is less than 100% to generate the light L4 transmitting through the grating pattern P1. Also, the incident light L3 transmitting through the no-pattern region 26B is not diffracted. As a result, the intensity of the transmitted light L4 can be sufficient to record or reproduce pieces of information on or from the first information medium 23.
Also, because the intensity of the transmitted light L4 is sufficient over the entire surface of the hologram lens 26, secondary maxima (side lobes) of the transmitted light L4 undesirably occurring in the converging spot S1 can be suppressed. In detail, as an intensity distribution of the transmitted light L4 converged on the converging spot S1 is shown in
The grating pattern P1 of hologram lens 26 formed in relief is blazed as shown in
The numerical aperture NA of the objective lens 27 is equal to or more than 0.6. Also, when the transmitted light L4 is converged by the objective lens 27, the diffraction-limited converging spot S1 is formed on the first information medium 23 having a thickness T1.
A diameter of the hologram lens 26 is almost the same as an aperture of the objective lens 27, so that a diameter of the pattern region 26A is smaller than the aperture of the objective lens 27. Because the incident light L3 transmitting through the no-pattern region 26B is not diffracted, not only the light L4 transmitting through the pattern region 26A but also the light L4 transmitting through the no-pattern region 26B are converged on the first information medium 23 by the objective lens 27 having a high numerical aperture. Therefore, the intensity of the transmitted light L4 converged at the converging point S1 can be increased. In contrast to the transmitted light L4, only the incident light L3 transmitting through the pattern region 26A of the hologram lens 26 is changed to the first-order diffracted light L5, and the first-order diffracted light L5 is converged on the second information medium 25 by the objective lens 27 having substantially a low numerical aperture.
The phase of the light L4 transmitting through the grating pattern P1 of the pattern region 26A is determined by an average value of the phase modulation degrees in the light L4 transmitting through the bottom and top portions of the grating pattern P1. In contrast, because the height of the no-pattern region 26B is constant, the phase of the light L4 transmitting through the no-pattern region 26B is modulated at a phase modulation degree. Therefore, as shown in
For example, as shown in
In addition, as shown in
The grating pattern P1 of the hologram lens 26 is designed to correct any aberration occurring in the objective lens 27 and the second information medium 25, so that the first-order diffracted light L5 transmits through the second information medium 25 having a thickness T2 and is converged on the medium 25 to form the diffraction-limited converging spot S2 without any aberration. A method for designing the hologram lens 26 having an aberration correcting function is described.
After the first-order diffracted light L5 is converged on the second information medium 25, spherical waves diverge from the converging spot S2 and transmit through the second substrate 24 and the objective lens 27. Thereafter, the spherical waves transmit through the transparent substrate 28 and optically interfere with the incident light L3. Therefore, an interference pattern is formed by the interference between the spherical waves and the incident light L3. The interference pattern can be calculated by subtracting the phase of the spherical waves from an inverted phase obtained by inverting the phase of the incident light L3. Accordingly the grating pattern P1 of the hologram lens 26 which agrees with the interference pattern calculated can be easily formed according to a computer generated hologram technique.
Accordingly, because the compound objective lens 29 is composed of the objective lens 27 and the hologram lens 26 in which a part of the incident light L3 is diffracted and refracted, a diffraction-limited converging spot can be reliably formed on an information medium regardless of whether the information medium has a thickness T1 or a thickness T2. Also, two diffraction-limited converging spots can be simultaneously formed on an information medium at difference depths. In other words, the compound objective lens has substantially two focal points.
Also, because the diffraction efficiency of the hologram lens 26 is less than 100% and the intensity of the light L4 transmitting through the hologram lens 26 is sufficient to record or reproduce information on or from the first information medium 23, the secondary maxima of the transmitted light L4 converged on the converging spot S1 can be suppressed.
Also, because the hologram lens 26 is blazed, the occurrence of minus first-order diffracted light can be considerably suppressed. Therefore, the intensity sum of the transmitted light L4 and the first-order diffracted light L5 can be maximized, and a utilization efficiency of the incident light L3 can be enhanced.
Also, because the hologram lens 26 functions as a lens only for the first-order diffracted light, the position of the converging point S1 formed by the transmitted light L4 differs from that of the converging point S2 formed by the first-order diffracted light L5 in an optical axis direction. Therefore, when the transmitted light L4 is converged in focus on an information recording plane of the information medium 23 to record or read a piece of information, the first-order diffracted light L5 converged on the information medium 23 is out of focus at the information recording plane. In the same manner, when the first-order diffracted light L5 is converged in focus on an information recording plane of the information medium 25, the transmitted light L4 converged on the information medium 25 is out of focus at the information recording plane. Accordingly, when the light L4 (or L5) is converged on the converging spot S1 (or S2) in focus to record or read the information, the light L5 (or L4) not converged on the converging spot S1 (or S2) in focus does not adversely influence on the recording or reading of the information. To reliably prevent the adverse influence on the recording or reading of the information, a difference in the optical axis direction between the converging spots S1, S2 is required to be equal to or more than 50 μm. That is, when the difference is equal to or more than 50 μm, the light L5 (or L4) largely diverges to reduce the intensity of the light L5 (or L4) at an information recording plane when the light L4 (or L5) is converged on the converging spot S1 (or S2) of the information recording plane at a high intensity.
Also, because the thickness T2 of the second information medium 25 representing the compact disk or the laser disk is about 1.2 mm and because the thickness T1 of the first information medium 23 representing a prospective optical disk ranges from 0.4 mm to 0.8 mm, the difference in the optical axis direction between the converging points S1, S2 is required to be equal to or less than 1.0 mm by considering a moving range of an actuator with which the position of the compound objective lens 29 composed of the objective lens 27 and the hologram lens 26 is adjusted according to a focus servo signal. Because the hologram lens 26 functions as a concave lens for the first-order diffracted light, the difference between the converging points S1, S2 can be increased to about 1 mm.
Accordingly, even though the transmitted light L4 and the first-order diffracted light L5 are simultaneously converged by the objective lens 27, no adverse influence is exerted on the recording or reproduction of the information on condition that the difference between the converging points S1, S2 ranges from 50 μm to 1 mm.
Examples of the utilization of the imaging optical system 21 for various types of optical disks are described.
In cases where the image optical system 21 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk and a thick type of compact disk are exclusively reproduced, the diffraction efficiency of the hologram lens 26 for changing the incident light L3 to the diffracted light L5 is set in a range from about 20% to 70%. In this case, the intensity of the transmitted light L4 converged on the high density optical disk is almost the same as that of the first-order diffracted light L5 converged on the compact disk. Therefore, the output power of the incident light L3 can be minimized.
Also, in cases where the image optical system 21 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk are recorded or reproduced and pieces of information recorded in a thick type of optical disk are exclusively reproduced, the diffraction efficiency of the hologram lens 26 for changing the incident light L3 to the first-order diffracted light L5 is set to a value equal to or lower than 30%. In this case, even though a high intensity of transmitted light L4 is required to record a piece of information on the high density optical disk, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because a transmission efficiency of the hologram lens 26 for the incident light L3 is high. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information is recorded on the high density optical disk, so that the output power of the incident light L3 can be minimized.
In the first embodiment, the hologram lens 26 functions as a concave lens for the first-order diffracted light L5. However, it is applicable that a hologram lens 26M functioning as a convex lens for the first-order diffracted light L5 be utilized in place of the hologram lens 26. That is, as shown in
When a focal length of the hologram lens 26M for the incident light L3 having a wavelength λo is represented by fHo and another focal length of the hologram lens 26M for the incident light L3 having a wavelength λl is represented by fHl, an equation (2) is satisfied.
fH1=fHo×λo/λl (2)
The focal length fH of the hologram lens 22 is shortened as the wavelength λ of the incident light L3 becomes longer. Also, when a refractive index of the objective lens 27 for the incident light L3 having a wavelength λo is represented by n(λo) and another refractive index of the objective lens 27 for the incident light L3 having a wavelength λl is represented by n(λl), a focal length fD(λ) of the objective lens 27 for the incident light L3 having a wavelength λ is formulated by an equation (3).
fD(λl)=fD(λo)×(n(λo)−1)/(n(λl)−1) (3)
The focal length fD(λ) of the objective lens 27 is lengthened as the wavelength λ of the incident light L3 becomes longer. That is, the dependence of the focal length fD(λ) on the wavelength λ in the objective lens 27 is opposite to that of the focal length fH on the wavelength λ in the hologram lens 26M. Therefore, a condition that the compound objective lens 29M composed of the objective lens 27 and the hologram lens 26M functions as an achromatic lens is formulated by an equation (4).
1/fHo+1/fD(λo)=1/fHl+1/fD(λl)=1/(fHo×λo/λl)+(n(λl)−1)/{fD(λo)×(n(λo)−1)} (4)
Accordingly, because the dependence of the focal length fD(λ) on the wavelength λ in the objective lens 27 is opposite to that in the hologram lens 22, the compound objective lens 29M having an achromatic function can be formed by the combination of the lenses 26M, 27, and the occurrence of the chromatic aberration can be prevented. Also, even though the equation (4) is not strictly satisfied, the occurrence of the chromatic aberration can be largely suppressed.
Also, a curvature of the objective lens 27 can be small because the hologram lens 26M functions as a convex lens for the first-order diffracted light L5. Also, because the hologram lens 26M is a plane type of element, a lightweight type of compound objective lens having an achromatic function can be made in large scale manufacture. A principal of the achromatization has been proposed in a first literature (D. Faklis and M. Morris, Photonics Spectra(1991), November p.205 & December p.131), a second literature (M. A. Gan et al., S.P.I.E.(1991), Vol.1507, p.116), and a third literature (P. Twardowski and P. Meirueis, S.P.I.E.(1991), Vol.1507, p.55).
(Second Embodiment)
As shown in
The hologram lens 32 is formed by drawing a grating pattern P2 in a pattern region 32A of the transparent substrate 28 in a concentric circle shape. The pattern region 32A is positioned in a center portion of the transparent substrate 28. An diameter of the grating pattern P2 is equal to or larger than an aperture of the objective lens 27. Also, a diffraction efficiency of the hologram lens 32 for the incident light L3 transmitting through the grating pattern P2 is less than 100% in the same manner as in the first embodiment, so that the intensity of the transmitted light L4 is sufficient to record or reproduce a piece of information on or from the first information medium 23.
In addition, as shown in
In the above configuration of the imaging optical system 31, a part of the incident light L3 transmits through the hologram lens 32 without any diffraction to form a beam of transmitted light L4, and the transmitted light L4 is converged by the objective lens 27. Also, a remaining part of the incident light L3 is diffracted and refracted by the hologram lens 32. In this case, the hologram lens 32 functions as a concave lens for the incident light L3, so that a first-order diffracted light L5 diverges from the hologram lens 32. Thereafter, the first-order diffracted light L5 is converged by the objective lens 27.
In cases where the thin type of first information medium 23 is utilized to record or reproduce pieces of information on or from a front surface of the medium 23, as shown in
In contrast, in cases where the thick type of second information medium 25 is utilized to record or reproduce pieces of information on or from a front surface of the medium 25, the diffracted light L5 is incident on a rear surface of the second information medium 25 and is focused on its front surface to form a diffraction-limited converging spot S5 on the second information medium 25. In this case, because the hologram lens 32 functions as a concave lens to diverge the first-order diffracted light L5, the diffraction-limited converging spots S3, S4 are formed even though the thickness T1 of the first information medium 23 differs from the thickness T2 of the second information medium 25. Therefore, a compound objective lens 34 composed of the hologram lens 32 and the objective lens 27 has substantially two focal points.
Accordingly, because the light L4 transmits through the objective lens 27 on condition that the numerical aperture NA of the objective lens 27 is high, the intensity of the transmitted light L4 converged on the first information medium 23 can be high.
Also, in cases where the incident light L3 is radiated from a semiconductor laser, a far field pattern of the incident light L3 is distributed in a Gaussian distribution as shown in FIG. 13A. Therefore, because the diffraction efficiency is gradually decreased toward the outer direction of the grating pattern P2, a far field pattern of the transmitted light L4 is distributed in a gently-sloping shape as shown in FIG. 13B. In contrast to the second embodiment, because the incident light L3 is not diffracted in the no-pattern region 26b of the hologram lens 26 in the first embodiment, the intensity of the transmitted light L4 is suddenly increased at the peripheral portion of the hologram lens 26.
Accordingly, secondary maxima of the transmitted light L4 converged on the converging spot S3 can be moreover suppressed in the second embodiment as compared with in the first embodiment. That is, the recording and reproducing of the information can be performed without any deterioration of the information by utilizing the imaging optical system 31.
In addition, in cases where the first-order diffracted light L5 is converged on the second information medium 25 to form the diffraction-limited converging spot S4, a numerical aperture of the objective lens 27 for the first-order diffracted light L5 is low because the diffraction efficiency of the hologram lens 32 is decreased toward an outer direction of the pattern region 32A. As a result, the intensity of the first-order diffracted light L5 becomes lowered. In cases where the diffraction efficiency of the hologram lens 32 is heightened to increase the intensity of the first-order diffracted light L5, the intensity of the transmitted light L4 at its inner beam portion is largely decreased, and secondary maxima (or side lobes) of the transmitted light L4 at the converging spot S3 is undesirably increased. Therefore, the incident light L3 of which the far field pattern is distributed in the Gaussian distribution is radiated to the hologram lens 32 to increase the intensity of the first-order diffracted light L5 without any increase of the second maxima. In detail, as shown in
Examples of the utilization of the imaging optical system 31 for various types of optical disks are described.
In cases where the image optical system 31 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk and a thick type of compact disk are exclusively reproduced, the diffraction efficiency of the hologram lens 32 for the incident light L3 is set in a range from about 20% to 70%. In this case, the intensity of the transmitted light L4 converged on the high density optical disk is almost the same as that of the first-order diffracted light L5 converged on the compact disk. Therefore, the output power of the incident light L3 can be minimized.
Also, in cases where the image optical system 31 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk are recorded or reproduced and pieces of information recorded in a thick type of optical disk are exclusively reproduced, the diffraction efficiency of the hologram lens 32 for the incident light L3 is set to a value equal to or lower than 30%. In this case, even though a high intensity of transmitted light L4 is required to record a piece of information on the high density optical disk, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because a transmission efficiency of the hologram lens 32 for the incident light L3 is high. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information is recorded on the high density optical disk, so that the output power of the incident light L3 can be minimized.
In the second embodiment, the grating pattern P2 positioned in the central portion of the transparent substrate 28 is gradually changed toward the outer direction of the pattern region 32A from the step-wise shape shown in
Also, because the first etching width W1 of the grating pattern P2 is gradually decreased toward the outer direction of the pattern region 32A, it is applicable that the grating pattern P2 formed in the step-wise shape shown in
In addition, as shown in
Also, as shown in
(Third Embodiment)
As shown in
The hologram lens 42 is formed by drawing a grating pattern P3 in a pattern region 42A of the transparent substrate 28 in a concentric circle shape. The pattern region 42A is positioned in a center portion of the transparent substrate 28. An diameter of the grating pattern P3 is equal to or larger than an aperture of the objective lens 27. Also, a diffraction efficiency of the hologram lens 42 for the incident light L3 transmitting through the grating pattern P3 is less than 100% in the same manner as in the first embodiment, so that the intensity of the transmitted light L4 is sufficient to record or reproduce a piece of information on or from the second information medium 25.
In addition, as shown in
In the above configuration of the imaging optical system 41, as shown in
In cases where the thin type of first information medium 23 is utilized to record or reproduce pieces of information on or from a front surface of the medium 23, as shown in
In this case, because the hologram lens 42 functions as a convex lens to converge the diffracted light L6, the diffraction-limited converging spots S5, S6 are formed even though the thickness T1 of the first information medium 23 differs from the thickness T2 of the second information medium 25. Therefore, a compound objective lens 43 composed of the hologram lens 42 and the objective lens 27 has substantially two focal points.
Also, because the hologram lens 42 functions as a convex lens for the diffracted light L6, the diffracted light L6 transmits through the objective lens 27 on condition that the numerical aperture NA of the objective lens 27 is substantially high.
In addition, because the diffraction efficiency in the peripheral portion of the grating pattern P3 is high and because the diffraction efficiency is gradually decreased toward the inner direction of the grating pattern P3, a diffraction probability of the incident light L3 is higher in the peripheral portion of the grating pattern P3.
The grating pattern P3 of the hologram lens 42 is designed to correct any aberration occurring in the objective lens 27 and the first information medium 23, so that the diffracted light L6 transmits through the first information medium 23 having the thickness T1 and is converged on the medium 23 to form the diffraction-limited converging spot S5 without any aberration. A method for designing the hologram lens 42 having an aberration correcting function is described.
After the diffracted light L6 is converged on the first information medium 23, spherical waves diverge from the converging spot S5 and transmit through the first substrate 22 and the objective lens 27. Thereafter, the spherical waves transmit through the transparent substrate 28 and optically interfere with the incident light L3. Therefore, an interference pattern is formed by the interference between the spherical waves and the incident light L3. The interference pattern can be calculated by adding the phase of the spherical waves to an inverted phase obtained by inverting the phase of the incident light L3. Accordingly, the grating pattern P3 of the hologram lens 42 which agrees with the interference pattern calculated can be easily formed according to a computer generated hologram technique.
Accordingly, because the hologram lens 42 functions as a convex lens for the first-order diffracted light L6, a curvature of the objective lens 27 can be lowered. Also, a glass material having a high refractive index is not required to produce the objective lens 27.
Also, because the first-order diffracted light L6 formed in the hologram lens 42 converges before the diffracted light L6 is incident on the objective lens 27, the distance in an optical axis direction between the converging spots S5, S6 can be lengthened to about 1 mm. Therefore, even though the transmitted light L4 (or the first-order diffracted light L6) is converged on the converging spot S6 (or S5) in focus to record or read a piece of information, the light L6 (or L4) is not converged on the converging spot S6 (or S5) in focus to reduce the intensity of the light L6 (or L4) at the converging spot S6 (or S5). Accordingly, no adverse influence is exerted on the recording or reproduction of the information
Also, because the hologram lens 42 functions as a convex lens for the first-order diffracted light L6, the occurrence of a chromatic aberration can be prevented in the imaging optical system 41. In detail, the focal length of the hologram lens 42 is shortened as the wavelength of the incident light L3 becomes longer. In contrast, the focal length of the objective lens 27 is lengthened as the wavelength of the incident light L3 becomes longer. That is, the dependence of the focal length on the wavelength in the objective lens 27 is opposite to that of the focal length on the wavelength in the hologram lens 42. Therefore, the compound objective lens 43 having an achromatic function can be formed by the combination of the lenses 27, 42, and the occurrence of the chromatic aberration can be prevented.
Also, because the hologram lens 42 is a plane type of element, a lightweight type of compound objective lens can be made in large scale manufacture.
Also, because the diffraction efficiency of the hologram lens 42 is gradually decreased toward an inner direction of the pattern region 42A, the numerical aperture of the objective lens 27 for the first-order diffracted light L6 becomes substantially enlarged. Therefore, the intensity of the first-order diffracted light L6 can be enlarged to record or reproduce a piece of information on or from the first information medium 23.
Also, in cases where the incident light L3 is radiated from a semiconductor laser, a far field pattern of the incident light L3 is distributed in a Gaussian distribution as shown in FIG. 13A. Therefore, because the diffraction efficiency of the hologram lens 42 is gradually decreased toward the inner direction of the grating pattern P2, a far field pattern of the first-order diffracted light L6 is distributed in a gently-sloping shape. Accordingly, secondary maxima of the first-order diffracted light L6 converged on the converging spot S5 can be moreover suppressed in the third embodiment as compared with in the first embodiment. That is, the recording and reproducing of the information can be performed without any deterioration of the information by utilizing the imaging optical system 41.
In addition, in cases where the transmitted light L4 is converged on the second information medium 25 to form the diffraction-limited converging spot S6, a numerical aperture of the objective lens 27 for the transmitted light L4 is low because the diffraction efficiency of the hologram lens 42 is increased toward an outer direction of the grating pattern 42A. As a result, the intensity of the transmitted light L4 becomes lowered. In cases where a transmission efficiency of the hologram lens 42 is heightened to increase the intensity of the transmitted light L4, the intensity of the first-order diffracted light L6 at its inner beam portion is largely decreased, and secondary maxima (or side lobes) of the first-order diffracted light L6 at the converging spot S6 is undesirably increased. Therefore, the incident light L3 of which the far field pattern is distributed in the Gaussian distribution is radiated to the hologram lens 42 to increase the intensity of the transmitted light L4 without any increase of the second maxima. In detail, as shown in
Examples of the utilization of the imaging optical system 41 for various types of optical disks are described.
In cases where the image optical system 41 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk and a thick type of compact disk are exclusively reproduced. the diffraction efficiency of the hologram lens 42 for the incident light L3 is set in a range from about 20% to 70%. In this case, the intensity of the transmitted light L4 converged on the compact disk is almost the same as that of the first-order diffracted light L6 converged on the high density optical disk. Therefore, the output power of the incident light L3 can be minimized.
Also, in cases where the image optical system 41 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk are recorded or reproduced and pieces of information recorded in a thick type of optical disk are exclusively reproduced, the diffraction efficiency of the hologram lens 42 for the incident light L3 is set to a value equal to or higher than 55%. In this case, even though a high intensity of the first-order diffracted light L6 is required to record a piece of information on the high density optical disk, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because the diffraction efficiency of the hologram lens 42 for changing the incident light L3 to the first-order diffracted light L6 is high. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information is recorded on the high density optical disk, so that the output power of the incident light L3 can be minimized. Also, because the diffraction efficiency of the hologram lens 42 is gradually decreased toward an inner direction of the pattern region 42A, the numerical aperture of the objective lens 27 for the first-order diffracted light L6 becomes substantially enlarged. Therefore, the intensity of the first-order diffracted light L6 can be enlarged to record or reproduce a piece of information on or from the high density optical disk.
In the third embodiment, the grating pattern P3 positioned in the pattern region 42A of the transparent substrate 28 is gradually changed toward the outer direction of the pattern region 42A from the step-wise shape shown in
Also, because the first etching width W1 of the grating pattern P3 is gradually decreased toward the inner direction of the pattern region 42A, it is applicable that the grating pattern P3 formed in the step-wise shape shown in
In the first to third embodiments of the image optical systems 21, 31 and 41, the grating patterns P1, P2 and P3 of the hologram lenses 26, 32 and 42 are respectively formed on a front side of the transparent substrate 28 not facing the objective lens 27. Therefore, a beam of light reflected at the front side of the transparent substrate 28 does not adversely influence as stray light on the recording or reproduction of the information. In detail, because the reflected light is diffracted by the hologram lens, the reflected light is scattered. Also, even though the first-order diffracted light L5 or L6 is reflected at a reverse side of the transparent substrate 28, the diffracted light reflected is again diffracted by the hologram lens and is scattered. Therefore, the light reflected at the front or reverse side of the hologram lens does not adversely influence on the recording or reproduction of the information.
However, in cases where an anti-reflection film is coated on a front side of the hologram lens 28 at which the grating pattern is not formed, it is applicable that the grating patterns P1, P2 and P3 of the hologram lenses 26, 32 and 42 be respectively formed on a reverse side of the transparent substrate 28 facing the objective lens 27. In this case, because the first-order diffraction light L5, L6 is not refracted at the front side of the hologram lens 28, the design of the image optical systems 21, 31 and 41 can be simplified.
Also, in the first to third embodiments, the grating patterns P1, P2 and P3 of the hologram lenses 26, 32 and 42 are respectively formed in relief to produce a phase modulation type of hologram lens. However, as is described in Provisional Publication No. 189504/86 (S61-189504) and Provisional Publication No. 241735/88 (S63-241735), the phase modulation type of hologram lens can be produced by utilizing a liquid crystal cell. Also, the phase modulation type of hologram lens can be produced by utilizing a birefringece material such as lithium niobate. For example, the phase modulation type of hologram lens can be produced by proton-exchanging a surface part of a lithium niobate substrate.
(Fourth Embodiment)
Also, in the first to third embodiments, the compound objective lens 29, 34 or 43 having two focal points is composed of the objective lens 27 and the hologram lens 26, 32 or 42. However, as a compound objective lens according to a fourth embodiment is shown in
Accordingly, the central axis of the objective lens 27 can always agree with that of each of the hologram lenses 26, 32 and 42, so that abaxial aberrations of each of the hologram lenses 26, 32 and 42 such as a coma aberration and an astigmatic aberration occurring in the first-order diffracted light can be prevented in the fourth embodiment. Also, because the hologram lens 26, 32 or 42 is placed on a lens surface of the objective lens 27 of which a curvature is higher than those of other lens surfaces of the objective lens 27, a sine condition for the hologram lens treated as a lens can be easily satisfied. Therefore, the degree of aberrations resulting from a constitutional error of an optical head apparatus can be sufficiently reduced.
(Fifth Embodiment)
Also, as a compound objective lens according to a fifth embodiment is shown in
(Sixth Embodiment)
An optical head apparatus with one of the compound objective lenses 29, 29M, 34, 43, 45, 46 and 47 shown in the first to fifth embodiments is described with reference to
As shown in
In the above configuration, a beam of incident light L3 radiated from the light source 52 is collimated in the collimator lens 53 and transmits through the beam splitter 54. Thereafter, a part of the incident light L3 transmits through the compound objective lens 29 without any diffraction, and a remaining part of the incident light L3 is diffracted.
Thereafter, in cases where a piece of information is recorded or reproduced on or from the first information medium 23, the transmitted light L4 is converged on the first information medium 23 to form the first converging spot S1. That is, the transmitted light L4 is incident on a rear surface of the first information medium 23, and the first converging spot S1 is formed on a front surface of the first information medium 23. Thereafter, a beam of transmitted light L4R reflected at the front surface of the first information medium 23 passes through the same optical path in the reverse direction. That is, a part of the transmitted light L4R again transmits through the compound objective lens 29 without any diffraction and is reflected by the beam splitter 54. In this case, the transmitted light L4R is collimated. Thereafter, the transmitted light L4R is converged by the converging lens 55, and the wavefront of a large part of the transmitted light L4R is changed to form a plurality of converging spots on the photo detector 57. Thereafter, the intensities of the converging spots of the transmitted light L4R are detected in the photo detector 57. Therefore, an information signal and servo signals such as a focus error signal and a tracking error signal are obtained. The actuating unit 58 are operated according to the servo signals to move the compound objective lens 29 at high speed, so that the transmitted light L4 is converged on the first information medium 23 in focus.
Also, in cases where a piece of information is recorded or reproduced on or from the second information medium 25, the diffracted light L5 is converged on the second information medium 25 to form the second converging spot S2. That is, the diffracted light L5 is incident on a rear surface of the second information medium 25, and the second converging spot S2 is formed on a front surface of the second information medium 25. Thereafter, a beam of diffracted light L5R reflected at the front surface of the second information medium 25 passes through the same optical path in the reverse direction. That is, a part of the diffracted light L5R is again diffracted by the hologram lens 26 and is reflected by the beam splitter 54. In this case, the diffracted light L5R is collimated. Thereafter, the diffracted light L5R is converged by the converging lens 55, and the wavefront of a large part of the diffracted light L5R is changed to form a plurality of converging spots on the photo detector 57. In this case, the diffracted light L5R incident on the converging lens 55 is collimated in the same manner as the transmitted light L4R incident on the converging lens 55, the converging spots of the diffracted light L5R are formed at the same positions as those of the transmitted light L4R. Thereafter, the intensities of the converging spots of the diffracted light L5R are detected in the photo detector 57. Therefore, an information signal and servo signals such as a focus error signal and a tracking error signal are obtained. The actuating unit 58 are operated according to the servo signals to move the compound objective lens 29 at high speed, so that the diffracted light L5 is converged on the second information medium 25 in focus.
In this case, because the transmitted light L4R again transmits through the compound objective lens without any diffraction and the diffracted light L5R is again diffracted by the hologram lens 26, the outgoing optical path agrees with the incoming optical path in a range between the information medium 23 or 25 and the beam splitter 54 even though the converging spot S1 differs from the converging spot S2. Therefore, a converging spot S7 on the photo detector 57 at which the light L4R or L5R not diffracted by the wavefront changing device 56 is converged relates to a radiation point of the light source 52 in a mirror image, so that the light L4R and L5R not diffracted by the wavefront changing device 56 are converged at the same converging point S7. In the same manner, the light L4R and L5R diffracted by the wavefront changing device 56 are converged at the same other converging points.
Accordingly, even though the compound objective lens has two focal points, the wavefront changing unit 56 and the photo detector 57 required to detect the intensity of the transmitted light L4R can be utilized to detect the intensity of the diffracted light L5R. Therefore, the number of parts required to manufacture the optical head apparatus 51 can be reduced, and a small sized optical head apparatus can be manufactured at a low cost and in light weight even though pieces of information are recorded or reproduced on or from an information medium by utilizing the optical head apparatus 51 regardless of whether the information medium is thick or thin.
In cases where the hologram lens 26 (or 32, 33, 42) is integrally formed with the objective lens 27 as shown in
Next, a detecting method of the servo signals is described.
Initially, a spot size detection method utilized to detect a focus error signal is described as an example of a detecting method of a focus error signal. The method is proposed in Japanese Patent Application No. 185722 of 1990. In short, in cases where the method is adopted, an allowable assembly error in an optical head apparatus can be remarkably enlarged, and the servo signal such as a focus error signal can be stably obtained to adjust the position of the compound objective lens even though the wavelength of the incident light L3 varies.
In detail, as shown in
As shown in
As shown in
Sfθ=(SC1+SC3−SC2)−(SC4+SC6−SC5) (5)
Thereafter, the position of the compound objective lens is moved in a direction along an optical axis at high speed so as to minimize the absolute value of the focus error signal Sfθ.
In the spot size detection method, the diffracted light L7, L8 are expressed by two types of spherical waves having different curvatures to detect the focus error signal Sfθ. However, two beams of diffracted light L7, L8 radiated to the photo detector 57 are not limited to the spherical waves. That is, because the change of the diffracted light L7, L8 in a Y-direction is detected by the photo detector 57 according to the spot size detection method, it is required that a one-dimensional focal point of the diffracted light L7 is positioned in the front of the photo detector 57 and a one-dimensional focal point of the diffracted light L8 is positioned in the rear of the photo detector 57. Therefore, it is applicable that diffracted light including astigmatic aberration be radiated to the photo detector 57.
In addition, an information signal Sin is obtained by adding all of the electric current signals according to an equation (6).
Sin=SC1+SC2+SC3+SC4+SC5+SC6 (6)
Because the information medium 23 or 25 is rotated at high speed, a patterned track pit radiated by the converging spots S8, S9 of the diffracted light L7,L8 is rapidly changed one after another, so that the intensity of the information signal Sin is changed. Therefore, the information stored in the information medium 23 or 25 can be reproduced according to the information signal Sin.
Next, the detection of a tracking error signal depending on a relative position between a converging spot and a patterned track pit on the information medium 23 or 25 is described.
The grating pattern P5 drawn in the diffracted light generating region 56b shown in
As shown in
Stθ=SC7−SC8−SC9+SC10 (10)
Therefore, the asymmetry of the intensity distribution of the transmitted light L4R (or the diffracted light L5R) incident on the wavefront changing unit 56, which changes in dependence on the positional relation between the converging spot S1 (or S2) and a patterned track pit radiated by the light L4 or L5, is expressed by the tracking error signal Stθ.
Thereafter, the objective lens 27 is moved in a radial direction so as to reduce a tracking error indicated by the tracking error signal Stθ. The radial direction is defined as a direction perpendicular to both the optical axis and a series of patterned track pits. Therefore, the converging spot S1 (or S2) of the transmitted light L4 (or the diffracted light L5) on the information medium 23 (or 25) can be formed in the middle of the patterned track pit, so that the tracking error becomes zero.
Accordingly, focus and tracking servo characteristics can be stably obtained in the optical head apparatus 51. That is, because the wavefront changing unit 56 has a wavefront changing function, a focus error signal can be easily obtained. Also, because the diffracted light generating regions 56b, 56c are provided in the wavefront changing unit 56, a tracking error signal can be easily obtained. Therefore, the number of parts required to manufacture the optical head apparatus 51 can be reduced, and the number of manufacturing steps can be reduced. In addition, the optical head apparatus can be manufactured at a low cost and in light weight.
Also, because the compound objective lens having two focal points is utilized in the optical head apparatus 51, pieces of information can be reliably recorded or reproduced from an information medium by utilizing the optical head apparatus 51 regardless of whether the information medium is thick or thin.
(Seventh Embodiment)
Next, an optical head apparatus in which servo signals such as a focus error signal and a tracking error signal are detected according to an astigmatic aberration method is described according to a seventh embodiment of the present invention.
As shown in
The astigmatic aberration generating unit 62 is classified into one of the wavefront changing unit 56 because a wavefront of the transmitted light L4R or the diffracted light L5R is changed by the generating unit 62 to generate the astigmatic aberration in the light L4R or L5R. Also, a normal line of the unit 62 is tilted from an optical axis.
As shown in
In the above configuration, the transmitted light L4R (or the diffracted light L5R) reflected by the information medium 23 (or 25) is converged by the converging lens 55 in the same manner as in the sixth embodiment. Thereafter, the transmitted light L4R (or the diffracted light L5R) transmits through the astigmatic aberration generating unit 62 and is converged on the photo detector 57 to form a converging spot S10 on the detecting sections SE7, SE8, SE9 and SE10 of the quadrant photo-detector 64. In this case, because the transmitted light L4R (or the diffracted light L5R) converged by the converging lens 55 is a spherical wave, an astigmatic aberration is generated in the transmitted light L4R (or the diffracted light L5R) by the astigmatic aberration generating unit 62. Therefore, as shown in
For example, in cases where the transmitted light L4 (or the diffracted light L5) is converged on the information medium 23 (or 25) on condition that the objective lens 27 is defocused on the information medium 23 (or 25), the converging spot S10 of the transmitted light L4R (or the diffracted light L5R) is formed on the quadrant photo-detector 64 as shown in
The intensity of the transmitted light L4R (or the diffracted light L5R) is detected in the detecting sections SE7, SE8, SE9 and SE10 of the quadrant photo-detector 64 and is changed to electric current signals SC11, SC12, SC13 and SC14. Thereafter, a focus error signal Sfθ is obtained according to an astigmatic aberration method by calculating an equation (8).
Sfθ=(SC11+SC14)−(SC12+SC13) (8)
Thereafter, the position of the compound objective lens 29 is moved in a direction parallel to an optical axis at high speed so as to minimize the absolute value of the focus error signal Sfθ.
Also, a tangential direction Dt agreeing with an extending direction of patterned recording pits and a radial direction Dr perpendicular to both the optical axis and the patterned recording pits are defined as shown in FIG. 29D. In this case, when the quadrant photo-detector 64 is directed as shown in
Stθ=SC11+SC13−(SC12+SC14) (9)
Thereafter, the objective lens 27 is moved in the radial direction so as to reduce a tracking error indicated by the tracking error signal Stθ. Therefore, the converging spot S1, (or S2) of the transmitted light L4 (or the diffracted light L5) on the information medium 23 (or 25) can be formed in the middle of the recording pit, so that the tracking error becomes zero.
In other case, the tracking error signal Stθ is obtained according to a phase difference method by utilizing the result calculated in the equation (8).
In addition, an information signal Sin is obtained by adding all of the electric current signals according to an equation (10).
Sin=SC11+SC12+SC13+SC14 (10)
Accordingly, focus and tracking servo characteristics can be stably obtained in the optical head apparatus 61. That is, because an astigmatic aberration is generated in the transmitted light L4R (or the diffracted light L5R) by the astigmatic aberration generating unit 62 made of a plane parallel plate, the servo signals such as a focus error signal and a tracking error signal can be easily obtained. Therefore, the number of parts required to manufacture the optical head apparatus 61 can be reduced, and the number of manufacturing steps can be reduced. In addition, the optical head apparatus 61 can be manufactured at a low cost and in light weight.
Also, because the compound objective lens having two focal points is utilized in the optical head apparatus 61, pieces of information can be reliably recorded or reproduced from an information medium by utilizing the optical head apparatus 61 regardless of whether the information medium is thick or thin.
In the seventh embodiment, the astigmatic aberration generating unit 62 formed out of the plane parallel plate is arranged between the converging lens 55 and the photo detector 63. However, as an optical head apparatus 65 is shown in
Also, as an optical head apparatus 67 is shown in
Also, as an optical head apparatus 70 is shown in
Also, as an optical head apparatus 71 is shown in
In the sixth and seventh embodiments, when the transmitted light L4 (that is, zero-order diffracted light L4) converged on the first information medium 23 is reflected toward the compound objective lens to reproduce a piece of information recorded on the first information medium 23, a part of the transmitted light L4R is diffracted in the hologram lens 26 (or 32, 33, 42) on the incoming optical path, so that the part of the transmitted light L4R is changed to a beam of first-order diffracted light L13. Therefore, the first-order diffracted light L13 diverges from the hologram lens 26, and a converging spot S11 of the diffracted light L13 is formed on the photo detector 57 or 63 in a relatively large size, as shown in FIG. 34. The size of the converging spot S11 is larger than those of the sextant photo-detector 59 and the quadrant photo-detector 64. Therefore, there is a drawback that a signal-noise ratio in the information signal deteriorates.
To solve the drawback, it is preferred that the photo detector 57 (or 63) further comprise an information photo-detector 73 surrounding the sextant photo-detector 59 (or the quadrant photo-detector 64). The size of the information photo-detector 73 is equal to or larger than a 1 mm square. Therefore, in cases where the information signal is determined by the sum of the intensity of the transmitted light L4 detected in the sextant photo-detector 59 (or the quadrant photo-detector 64) and the intensity of the diffracted light L13 detected in the information photo-detector 73, the signal-noise ratio in the information signal can be enhanced, and frequency characteristics of the information signal can be enhanced.
(Eighth Embodiment)
Next, a method of focusing performed in the optical head apparatuses 51, 61, 65, 67, 70 and 71 is described according to an eighth embodiment of the present invention.
The intensity of the transmitted light L4 is high because the numerical aperture of the objective lens 27 for the transmitted light L4 is large. Therefore, as shown in
In contrast, the intensity of the diffracted light L5 is comparatively low because the numerical aperture of the objective lens 27 for the diffracted light L5 is comparatively small. Therefore, as shown in
Therefore, in cases where the focusing of the transmitted light L4 on the first information medium 23 is performed, the objective lens 27 placed far from the first information medium 23 is gradually brought near to the first information medium 23. Thereafter, when the strength of the focus error signal reaches a threshold value, a focus servo loop provided in the photo detector 57 or 63 is set to an operation condition, so that the objective lens 27 is set to be focused on the first information medium 23. Also, in cases where the focusing of the diffracted light L5 on the second information medium 25 is performed, the objective lens 27 placed far from the second information medium 25 is gradually brought near to the second information medium 25 in the same manner. Thereafter, when the strength of the focus error signal reaches a threshold value, a focus servo loop provided in the photo detector 57 or 63 is set to an operation condition, so that the objective lens 27 is set to be focused on the second information medium 25.
Accordingly, the inverse influence of the unnecessary focus error signal FE4 on the focusing of the diffracted light L5 can be prevented. Also, because the objective lens 27 placed far from the information medium 23 or 25 is gradually brought near to the information medium 23 or 25 regardless of whether the information medium is T1 or T2 in thickness, a focusing operation in each of the optical head apparatuses 51, 61, 65, 67, 70 and 71 with the hologram lens 26, 32 or 33 can be performed according to a common procedure by changing the threshold value or performing an auto gain control in which the focus error signal is normalized by detecting the total intensity of the transmitted light L4R or the diffracted light L5R. Therefore, a control circuit required to perform the focusing operation can be made at a low cost.
As shown in
In contrast, as shown in
Therefore, in cases where the focusing of the diffracted light L6 on the first information medium 23 is performed, the objective lens 27 placed near to the first information medium 23 is gradually moved away from the first information medium 23. Thereafter, when the strength of the focus error signal reaches a threshold value, a focus servo loop provided in the photo detector 57 or 63 is set to an operation condition, so that the objective lens 27 is set to be focused on the first information medium 23. Also, in cases where the focusing of the transmitted light L4 on the second information medium 25 is performed, the objective lens 27 placed near to the second information medium 25 is gradually moved away from the second information medium 25 in the same manner. Thereafter, when the strength of the focus error signal reaches a threshold value, a focus servo loop provided in the photo detector 57 or 63 is set to an operation condition, so that the objective lens 27 is set to be focused on the second information medium 25.
Accordingly, the inverse influence of the unnecessary focus error signal FE8 on the focusing of the transmitted light L4 can be prevented. Also, because the objective lens 27 placed near to the information medium 23 or 25 is gradually moved away from the information medium 23 or 25 regardless of whether the information medium is T1 or T2 in thickness, a focusing operation in each of the optical head apparatuses 51, 61, 65, 67, 70 and 71 with the hologram lens 42 can be performed according to a common procedure by changing the threshold value or performing the auto gain control. Therefore, a control circuit required to perform the focusing operation can be made at a low cost.
(Ninth Embodiment)
An optical head apparatus with the compound objective lens 29, 34, 45, 46 or 47 in which the incident light L3 is efficiently utilized to obtain an information signal and servo signals is described with reference to
As shown in
In the above configuration, the transmitted light L4 (or the diffracted light L5) are converged by the converging lens 27 in the same manner as in the sixth embodiment. Thereafter, in cases where a piece of information is recorded or reproduced on or from the first information medium 23, the transmitted light L4 is converged on the first information medium 23 to form the first converging spot S1. Thereafter, a beam of transmitted light L4R reflected by the first information medium 23 passes through the same optical path in the reverse direction. That is, a great part of the transmitted light L4R again transmits through the compound objective lens without any diffraction and is reflected by the beam splitter 54. Thereafter, the transmitted light L4R is converged by the converging lens 55, and a part of the transmitted light L4R is reflected by the beam splitter 82. Thereafter, the wavefront of a great part of the transmitted light L4R is changed by the wavefront changing unit 56, and the great part of the transmitted light L4R is converged on the photo detector 57 to form the converging spots S8, S9. Therefore, an information signal and servo signals such as a focus error signal and a tracking error signal are obtained in the same manner as in the sixth embodiment. Also, a remaining part of the transmitted light L4R not changed its wavefront is converged on the photo detector 57 to form the converging spot S7.
In contrast, in cases where a piece of information is recorded or reproduced on or from the second information medium 25, the diffracted light L5 is converged on the second information medium 25 to form the second converging spot S2. Thereafter, a beam of diffracted light L5R reflected by the second information medium 25 passes through the same optical path in the reverse direction, and a great part of the diffracted light L5R transmits through the hologram lens 26 without any diffraction. Therefore, the diffracted light L5R passes through the incoming optical path differing from the outgoing optical path. Thereafter, the diffracted light L5R is reflected by the beam splitter 54 and is converged by the converging lens 55. Thereafter, a part of the diffracted light L5R transmits through the beam splitter 82. In this case, an astigmatic aberration is generated in the diffracted light L5R. Thereafter, the diffracted light L5R is converged on the photo detector 63 to form a converging spot S12 of which the shape is the same as the converging spot S10 shown in
In this case, though a remaining part of the transmitted light L4R transmits through the beam splitter 82, the remaining part of the transmitted light L4R is not converged at the converging spot S12 because the transmitted light L4R passes through the same optical path. Also, though a remaining part of the diffracted light L5R is reflected the beam splitter 82, the remaining part of the diffracted light L5R is not converged at the converging spot S7, S8 or S9 because the diffracted light L5R passes through the incoming optical path differing from the outgoing optical path.
In the ninth embodiment, because the diffracted light L5R transmits through the hologram lens 26 without any diffraction, the converging spot S12 formed on the photo detector 63 does not relate to a radiating point of the light source 52 in a mirror image, while the converging spot S7 formed on the photo detector 57 relates to the radiating point of the light source 52 in the mirror image. In other words, a focal point of the diffracted light L5R converged by the converging lens 55 differs from that of the transmitted light L4R converged by the converging lens 55. Therefore, the photo detector 57 for detecting the intensity of the transmitted light L4R and the photo detector 63 for detecting the intensity of the diffracted light L5R are required.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 81, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium is thick or thin.
An example of the utilization of the optical head apparatus 81 for various types of optical disks is described.
In cases where the optical head apparatus 81 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk 23 are recorded or reproduced and pieces of information recorded in a thick type of optical disk 25 are exclusively reproduced, the diffraction efficiency of the hologram lens 26, 32 or 33 in the compound objective lens 29, 34, 45, 46 or 47 for changing a beam of light to a beam of first-order diffracted light is set to a value equal to or lower than 30%. Therefore, in cases where a piece of information recorded on the thick type of optical disk 25 is reproduced in the photo detector 63, a signal-noise ratio of each of the servo signals and the information signal obtained in the photo detector 63 can be enhanced because the diffracted light L5R transmitting through the hologram lens 26, 32 or 33 at a high transmission efficiency is utilized to obtain the servo signals and the information signal. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information recorded on the thick type of optical disk 25 is reproduced, so that the output power of the incident light L3 can be minimized. Also, even though a high intensity of the transmitted light L4 is required to record a piece of information on the high density optical disk 23, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because a transmission efficiency of the hologram lens 26, 32 or 33 for the incident light L3 is high. Also, in cases where a piece of information recorded on the high density optical disk 23 is reproduced in the photo detector 57, a signal-noise ratio of each signal obtained in the photo detector 57 can be enhanced because the transmission efficiency of the hologram lens 26, 32 or 33 for the light L3, L4R is high.
(Tenth Embodiment)
An optical head apparatus with the compound objective lens 29, 34, 45, 46 or 47 in which the incident light L3 is efficiently utilized to obtain an information signal and servo signals is described with reference to
As shown in
The beam splitter 92 is made of a plane parallel plate inclined to an optical path, so that an astigmatic aberration is generated in the transmitted light L4R passing through the beam splitter 92. Also, as shown in
In the above configuration, the transmitted light L4 and the diffracted light L5 are converged by the converging lens 27 in the same manner as in the sixth embodiment. Thereafter, in cases where a piece of information is recorded or reproduced on or from the first information medium 23, the transmitted light L4 is converged on the first information medium 23 to form the first converging spot S1. Thereafter, a beam of transmitted light L4R reflected by the first information medium 23 passes through the same optical path in the reverse direction. That is, a large part of the transmitted light L4R again transmits through the compound objective lens 29 without any diffraction and is reflected by the beam splitter 54. Thereafter, the transmitted light L4R is converged by the converging lens 55, and a large part of the transmitted light L4R transmits through the beam splitter 92. In this case, an astigmatic aberration is generated in the transmitted light L4R. Thereafter, the transmitted light L4R is converged on the photo detector 63 to form a converging spot S13 of which the shape is the same as the converging spot S10 shown in
In contrast, in cases where a piece of information is recorded or reproduced on or from the second information medium 25, the diffracted light L5 is converged on the second information medium 25 to form the second converging spot S2. Thereafter, a beam of diffracted light L5R reflected by the second information medium 25 passes through the same optical path in the reverse direction, and a large part of the diffracted light L5R transmits through the hologram lens 26 without any diffraction. Therefore, the diffracted light L5R transmits on the incoming optical path differing from the outgoing optical path in the same manner as in the ninth embodiment. Thereafter, the diffracted light L5R is reflected by the beam splitter 54 and is converged by the converging lens 55 on the beam splitter 92 to form a converging spot on the reflection type of hologram 93 of the beam splitter 92. Therefore, all of the diffracted light L5R is diffracted and reflected by the hologram 93 to be converged on the photo detector 57. That is, the diffracted light L5R diffracted and reflected in the diffracted light generating region 93a of the hologram 93 is splitted into two beams and is converged on the detecting sections SE1 to SE6 of the sextant photo-detector 59 in the photo detector 57 in the same manner as in the sixth embodiment. Also, the diffracted light L5R diffracted and reflected in the diffracted light generating region 93b of the hologram 93 is splitted into two beams, and the intensity of the diffracted light L5R is detected in the tracking photo-detectors 60a and 60d. Also, the diffracted light L5R diffracted and reflected in the diffracted light generating region 93c of the hologram 93 is splitted into two beams, and the intensity of the diffracted light L5R is detected in the tracking photo-detectors 60b and 60c. Therefore, an information signal and servo signals such as a focus error signal and a tracking error signal are obtained in the same manner as in the sixth embodiment.
In the tenth embodiment, because the transmitted light L4R transmits through the hologram lens 26 without any diffraction, the converging spot S13 formed on the photo detector 63 does not relate to a radiating point of the light source 52 in a mirror image. Therefore, the photo detector 57 for detecting the intensity of the diffracted light L5R and the photo detector 63 for detecting the intensity of the transmitted light L4R are required.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 91, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium is thick or thin.
Also, because all of the diffracted light L5R is completely diffracted and reflected by the hologram 93 of the beam splitter 92, the diffracted light L5R can be utilized at high efficiency. Therefore, a signal-noise ratio of the signals obtained in the photo detector 57 can be enhanced.
An example of the utilization of the optical head apparatus 91 for various types of optical disks is described.
In cases where the optical head apparatus 91 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk 23 are recorded or reproduced and pieces of information recorded in a thick type of optical disk 25 are exclusively reproduced, the diffraction efficiency of the hologram lens 26, 32 or 33 in the compound objective lens 29, 34, 45, 46 or 47 for changing a beam of light to a beam of first-order diffracted light is set to a value equal to or lower than 30%. Therefore, in cases where a piece of information recorded on the thick type of optical disk 25 is reproduced in the photo detector 57, a signal-noise ratio of each of the servo signals and the information signal obtained in the photo detector 57 can be enhanced because the diffracted light L5R transmitting through the hologram lens 26, 32 or 33 at a high transmission efficiency is utilized to obtain the servo signals and the information signal. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information recorded on the thick type of optical disk 25 is reproduced, so that the output power of the incident light L3 can be minimized. Also, even though a high intensity of the transmitted light L4 is required to record a piece of information on the high density optical disk 23, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because a transmission efficiency of the hologram lens 26, 32 or 33 for the incident light L3 is high. Also, in cases where a piece of information recorded on the high density optical disk 23 is reproduced in the photo detector 63, a signal-noise ratio of each signal obtained in the photo detector 63 can be enhanced because the transmission efficiency of the hologram lens 26, 32 or 33 for the light L3, L4R is high.
(Eleventh Embodiment)
An optical head apparatus with the compound objective lens 29, 34, 45, 46 or 47 in which the incident light L3 is efficiently utilized to obtain an information signal and servo signals is described with reference to
As shown in
The beam splitter 102 is made of a plane parallel plate inclined to an optical path, so that an astigmatic aberration is generated in the light L4R, L5R passing through the beam splitter 102. Also, as shown in
The photo detector 104 comprises the sextant photo-detector 59 in which the detecting sections SE1, SE2, SE3, SE4, SE5 and SE6 are provided in the same manner as the photo detector 57.
In the above configuration, the transmitted light L4 and the diffracted light L5 are converged by the converging lens 27 in the same manner as in the sixth embodiment. Thereafter, in cases where a piece of information is recorded or reproduced on or from the first information medium 23, as shown in
In contrast, in cases where a piece of information is recorded or reproduced on or from the second information medium 25, as shown in
Also, the transmitted light L4 is converged on the second information medium 25 in defocus as shown in FIG. 40B. That is, the transmitted light L4 incident on the rear surface of the second information medium 25 is converged at the front surface of the second information medium 25. Thereafter, a beam of transmitted light L4R reflected at the front surface of the second information medium 25 again transmits through the compound objective lens without any diffraction and is reflected by the beam splitter 54. Thereafter, the transmitted light L4R is converged by the converging lens 55 on the beam splitter 102 to form a converging spot on the of hologram 103 of the beam splitter 102. Therefore, all of the transmitted light L4R is diffracted by the hologram 103 and is converged on the photo detector 104. That is, the transmitted light L4R diffracted in the diffracted light generating regions 103a of the hologram 103 is changed to a first spherical wave SW1 of which a focal point is placed at the front of the photo detector 104, and the transmitted light L4R diffracted in the diffracted light generating regions 103b of the hologram 103 is changed to a second spherical wave SW2 of which a focal point is placed at the rear of the photo detector 104. Thereafter, as shown in
In cases where the diffracted light L5 is converged on the information medium 25 in defocus, the converging spots S15A, S15B of the transmitted light L4R shown in
Sfθ=(SC15+SC17−SC16)−(SC18+SC20−SC19) (11)
Thereafter, the position of the compound objective lens is moved in a direction along an optical axis at high speed so as to minimize the absolute value of the focus error signal Sfθ. Therefore, the focus error signal is obtained in the same manner as in the sixth embodiment.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 101, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium is thick or thin.
Also, because all of the transmitted light L4R reflected by the second information medium 25 is completely diffracted by the hologram 103 of the beam splitter 102 to detect the focus error signal, the transmitted light L4R can be utilized at high efficiency. Therefore, a signal-noise ratio of the focus error signal obtained in the photo detector 104 can be enhanced.
Also, the information signal and the servo signals can be obtained in the photo detector 104 regardless of whether the information medium 23 or 25 is thin or thick. Therefore, the number of parts required to manufacture the optical head apparatus 101 can be reduced, and a small sized optical head apparatus can be manufactured at a low cost and in light weight even though pieces of information are recorded or reproduced on or from an information medium by utilizing the optical head apparatus 101 regardless of whether the information medium is thick or thin.
An example of the utilization of the optical head apparatus 101 for various types of optical disks is described.
In cases where the optical head apparatus 101 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk 23 are recorded or reproduced and pieces of information recorded in a thick type of optical disk 25 are exclusively reproduced, the diffraction efficiency of the hologram lens 26, 32 or 33 in the compound objective lens 29, 34, 45, 46 or 47 is set to a value equal to or lower than 30%. Therefore, in cases where a piece of information recorded on the thick type of optical disk 25 is reproduced in the photo detector 104, a signal-noise ratio of each of the servo signals and the information signal obtained in the photo detector 104 can be enhanced because the diffracted light L5R transmitting through the hologram lens 26, 32 or 33 at a high transmission efficiency is utilized to obtain the information signal. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information recorded on the thick type of optical disk 25 is reproduced, so that the output power of the incident light L3 can be minimized. Also, even though a high intensity of the transmitted light L4 is required to record a piece of information on the high density optical disk 23, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because a transmission efficiency of the hologram lens 26, 32 or 33 for the incident light L3 is high. Also, in cases where a piece of information recorded on the high density optical disk 23 is reproduced in the photo detector 63, a signal-noise ratio of each signal obtained in the photo detector 63 can be enhanced because the transmission efficiency of the hologram lens 26, 32 or 33 for the light L3, L4R is high.
(Twelfth Embodiment)
An optical head apparatus with the compound objective lens 29M, 43, 45, 46 or 47 in which the incident light L3 is efficiently utilized to obtain an information signal and servo signals is described with reference to
As shown in
In the above configuration, a beam of incident light L3 radiated from the light source 52 is collimated in the collimator lens 53 and transmits through the beam splitter 54. Thereafter, a part of the incident light L3 transmits through the compound objective lens 29 without any diffraction, and a remaining part of the incident light L3 is diffracted.
Thereafter, in cases where a piece of information is recorded or reproduced on or from the first information medium 23, the diffracted light L6 is converged on the first information medium 23 to form the converging spot S5. That is, the diffracted light L6 is incident on the rear surface of the first information medium 23, and the converging spot S5 is formed on the front surface of the first information medium 23. Thereafter, a beam of diffracted light L6R reflected at the front surface of the first information medium 23 passes through the same optical path in the reverse direction, and a great part of the diffracted light L6R is again diffracted by the hologram lens 42. Therefore, the diffracted light L6R transmits on the incoming optical path agreeing with the outgoing optical path. Thereafter, the diffracted light L6R is reflected by the beam splitter 54 and is converged by the converging lens 55. Thereafter, a part of the diffracted light L6R transmits through the beam splitter 82. In this case, an astigmatic aberration is generated in the diffracted light L6R. Thereafter, the diffracted light L6R is converged on the photo detector 63 to form the converging spot S10 of which the shape is shown in
In contrast, in cases where a piece of information is recorded or reproduced on or from the second information medium 25, the transmitted light L4 is converged on the second information medium 25 to form the converging spot S6. That is, the transmitted light L4 is incident on the rear surface of the second information medium 25, and the converging spot S6 is formed on the front surface of the second information medium 25. Thereafter, a beam of transmitted light L4R reflected at the front surface of the second information medium 25 passes through the same optical path in the reverse direction. That is, the transmitted light L4R is collimated by the objective lens 27 on the incoming optical path. Thereafter, a great part of the transmitted light L4R is diffracted by the hologram lens 42. Therefore, the transmitted light L4R transmits on the incoming optical path differing from the outgoing optical path. Thereafter, the transmitted light L4R is reflected by the beam splitter 54 and is converged by the converging lens 55. Thereafter, a part of the transmitted light L4R is reflected by the beam splitter 82. Thereafter, the wavefront of a great part of the transmitted light L4R is changed by the wavefront changing unit 56, and the great part of the transmitted light L4R is converged on the photo detector 57 to form converging spots S16, S17. Therefore, an information signal and servo signals such as a focus error signal and a tracking error signal are obtained in the same manner as in the sixth embodiment. Also, a remaining part of the transmitted light L4R not changed its wavefront by the wavefront changing unit 56 is converged on the photo detector 57 to form the converging spot S18.
In the twelfth embodiment, because the transmitted light L4R is diffracted by the hologram lens 42 on the incoming optical path, the converging spot S18 formed on the photo detector 57 does not relate to a radiation point of the light source 52 in a mirror image, while the converging spot S10 formed on the photo detector 63 relates to the radiation point of the light source 52 in the mirror image. In other words, a focal point of the transmitted light L4R converged by the converging lens 55 differs from that of the diffracted light L6R converged by the converging lens 55. Therefore, the photo detector 57 for detecting the intensity of the transmitted light L4R and the photo detector 63 for detecting the intensity of the diffracted light L6R are required.
Accordingly, even though pieces of information are recorded or reproduced on or from an information medium, the information can be reliably recorded or reproduced on or from the information medium regardless of whether the information medium is thick or thin.
Also, because the diffracted light L6 formed in the hologram lens 42 converges before the diffracted light L6 is incident on the objective lens 27, the distance in an optical axis direction between the converging spots S5, S6 can be lengthened to about 1 mm. Therefore, even though the transmitted light L4 (or the diffracted light L6) is converged on the converging spot S6 (or S5) in focus to record or read a piece of information, the light L6 (or L4) is not converged on the converging spot S6 (or S5) in focus to reduce the intensity of the light L6 (or L4) at the converging spot S6 (or S5). Accordingly, no adverse influence is exerted on the recording or reproduction of the information
Also, because the hologram lens 42 functions as a convex lens for the first-order diffracted light L6, the occurrence of a chromatic aberration can be prevented in the optical head apparatus 111.
An example of the utilization of the optical head apparatus 111 for various types of optical disks is described.
In cases where the optical head apparatus 111 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk 23 are recorded or reproduced and pieces of information recorded in a thick type of optical disk 25 are exclusively reproduced, the diffraction efficiency of the hologram lens 26M or 42 in the compound objective lens 29M, 43, 45, 46 or 47 for changing a beam of light to a beam of first-order diffracted light is set to a value equal to or higher than 55%. Therefore. in cases where a piece of information recorded on the thick type of optical disk 25 is reproduced in the photo detector 57, a signal-noise ratio of each of the servo signals and the information signal obtained in the photo detector 57 can be enhanced because the transmitted light L4R diffracted by the hologram lens 26M or 42 at a high diffraction efficiency is utilized to obtain the servo signals and the information signal. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information recorded on the thick type of optical disk 25 is reproduced, so that the output power of the incident light L3 can be minimized. Also, even though a high intensity of the diffracted light L6 is required to record a piece of information on the high density optical disk 23, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because the diffraction efficiency of the hologram lens 26M or 42 for the incident light L3 and the diffracted light L6R is high. Also, in cases where a piece of information recorded on the high density optical disk 23 is reproduced in the photo detector 63, a signal-noise ratio of each signal obtained in the photo detector 63 can be enhanced because the diffraction efficiency of the hologram lens 26M or 42 for the light L3, L6R is high.
(Thirteenth Embodiment)
An optical head apparatus with the compound objective lens 29M, 43, 45, 46 or 47 in which the incident light L3 is efficiently utilized to obtain an information signal and servo signals is described with reference to
As shown in
In the above configuration, the transmitted light L4 and the diffracted light L6 are converged by the converging lens 27 in the same manner as in the twelfth embodiment. Thereafter, in cases where a piece of information is recorded or reproduced on or from the first information medium 23, the diffracted light L6 is converged on the first information medium 23 to form the converging spot S5. Thereafter, a beam of diffracted light L5R reflected by the first information medium 23 passes through the same optical path in the reverse direction, and a large part of the diffracted light L6R is diffracted by the hologram lens 42. Therefore, the diffracted light L6R transmits on the incoming optical path agreeing with the outgoing optical path in the same manner as in the twelfth embodiment. Thereafter, the diffracted light L6R is reflected by the beam splitter 54 and is converged by the converging lens 55 on the beam splitter 92 to form a converging spot on the reflection type of hologram 93 of the beam splitter 92. Therefore, all of the diffracted light L6R is diffracted and reflected by the hologram 93 to be converged on the photo detector 57 in the same manner as in the tenth embodiment. Therefore, an information signal and servo signals such as a focus error signal and a tracking error signal are obtained in the same manner as in the sixth embodiment.
In contrast, in cases where a piece of information is recorded or reproduced on or from the second information medium 25, the transmitted light L4 is converged on the second information medium 25 to form the converging spot S6. Thereafter, a beam of transmitted light L4R reflected by the second information medium 25 passes through the same optical path in the reverse direction. That is, a large part of the transmitted light L4R is collimated by the objective lens 27 on the incoming optical path. Thereafter, a great part of the transmitted light L4R is diffracted by the hologram Lens 42. Therefore, the transmitted light L4R transmits on the incoming optical path differing from the outgoing optical path in the same manner as in the twelfth embodiment. Thereafter, the transmitted light L4R is reflected by the beam splitter 54 and is converged by the converging lens 55. Thereafter, a large part of the transmitted light L4R transmits through the beam splitter 92. In this case, an astigmatic aberration is generated in the transmitted light L4R. Thereafter, the transmitted light L4R is converged on the photo detector 63 to form a converging spot S19 of which the shape is the same as the converging spot S10 shown in
In the thirteenth embodiment, because the transmitted light L4R is diffracted by the hologram lens 42, the converging spot S19 formed on the photo detector 63 does not relate to a radiation point of the light source 52 in a mirror image. Therefore, the photo detector 57 for detecting the intensity of the diffracted light L6R and the photo detector 63 for detecting the intensity of the transmitted light L4R are required.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 121, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium is thick or thin.
Also, because the diffracted light L6 formed in the hologram lens 42 converges before the diffracted light L6 is incident on the objective lens 27, the distance in an optical axis direction between the converging spots S5, S6 can be lengthened to about 1 mm. Therefore, even though the transmitted light L4 (or the diffracted light L6) is converged on the converging spot S6 (or S5) in focus to record or read a piece of information, the light L6 (or L4) is not converged on the converging spot S6 (or S5) in focus to reduce the intensity of the light L6 (or L4) at the converging spot S6 (or S5). Accordingly, no adverse influence is exerted on the recording or reproduction of the information
Also, because the hologram lens 42 functions as a convex lens for the first-order diffracted light L6, the occurrence of a chromatic aberration can be prevented in the optical head apparatus 121.
An example of the utilization of the optical head apparatus 121 for various types of optical disks is described.
In cases where the optical head apparatus 121 is utilized for an optical disk device in which pieces of information recorded in a thin type of high density optical disk,23 are recorded or reproduced and pieces of information recorded in a thick type of optical disk 25 are exclusively reproduced, the diffraction efficiency of the hologram lens 26M or 42 in the compound objective lens 29M, 43, 45, 46 or 47 for changing a beam of light to a beam of first-order diffracted light is set to a value equal to or higher than 70%. Therefore, in cases where a piece of information recorded on the thick type of optical disk 25 is reproduced in the photo detector 57, a signal-noise ratio of each of the servo signals and the information signal obtained in the photo detector 57 can be enhanced because the transmitted light L4R diffracted by the hologram lens 26M or 42 at a high diffraction efficiency is utilized to obtain the servo signals and the information signal. In other words, a utilization efficiency of the incident light L3 can be enhanced when a piece of information recorded on the thick type of optical disk 25 is reproduced, so that the output power of the incident light L3 can be minimized. Also, even though a high intensity of the diffracted light L6 is required to record a piece of information on the high density optical disk 23, the recording of the information can be reliably performed without increasing the intensity of the incident light L3 because the diffraction efficiency of the hologram lens 26M or 42 for the incident light L3 and the diffracted light L6R is high. Also, in cases where a piece of information recorded on the high density optical disk 23 is reproduced in the photo detector 63, a signal-noise ratio of each signal obtained in the photo detector 63 can be enhanced because the diffraction efficiency of the hologram lens 26M or 42 for the light L3, L6R is high.
(Fourteenth Embodiment)
An optical head apparatus in which noises included in an information signal are reduced is described with reference to
As shown in
As shown in
The photo detector 136 comprises the quadrant photo-detector 64 having the detecting sections SE7 to SE10 and a noise cancelling photo detector 138 for detecting the intensity of light passing through the peripheral region 135b of the hologram lens 135. Because the grating pattern P12 of the peripheral region 135b is drawn in the non-concentric shape, light diffracted in the peripheral region 135b is not converged on the detecting sections SE7 to SE10.
In the above configuration, the incident light L3 linearly polarized in a first direction is radiated from the light source 52 and is reflected by the beam splitter 132 because the polarizing separation film 133 functions as a mirror for the incident light L3 linearly polarized in the first direction. Therefore, the incident light L3 is directed in an upper direction and is collimated by the collimator lens 134. Thereafter, a part of the incident light L3 incident on the central region 135a of the hologram lens 135 transmits through the central region 135a without any diffraction to form the transmitted light L4, and a remaining part of the incident light L3 incident on the central region 135a of the hologram lens 135 is diffracted in the central region 135a to form the diffracted light L5. Also, a part of the incident light L3 incident on the peripheral region 135b of the hologram lens 135 transmits through the peripheral region 135b without any diffraction to form a beam of noise cancelling light L14. Thereafter, the light L4, L5 and L14 pass through the ¼−λ plates so that the light L4, L5 and L14 linearly polarized in the first direction is changed to the light L4, L5 and L14 circularly polarized. Thereafter, the light L4, L5 and L14 are converged by the converging lens 27.
Thereafter, in cases where a piece of information is recorded or reproduced on or from the first information medium 23 (or the second information medium 25), the transmitted light L4 (or the diffracted light L5) is converged on the information medium 23 (or 25) to form the converging spot S1 (or S2). Thereafter, a beam of transmitted light L4R (or a beam of diffracted light L5R) reflected by the information medium 23 (or 25) passes through the same optical path in the reverse direction. That is, the transmitted light L4R (or the diffracted light L5R) is circularly polarized in reverse and again passes through the converging lens 27 and the ¼−λ plate 69. Therefore, the light L4R (or L5R) is linearly polarized in a second direction perpendicular to the first direction. Thereafter, a part of the transmitted light L4R transmits through the central region 135a of the hologram lens 135 without any diffraction, or a part of the diffracted light L5R is again diffracted in the central region 135a. Thereafter, the transmitted light L4R (or the diffracted light L5R) is converged by the collimator lens 134 and passes through the beam splitter 132 without any reflection because the polarizing separation film 133 functions as a transparent plate for the light L4R (or L5R) linearly polarized in the second direction. In this case, an astigmatic aberration is generated in the transmitted light L4R (or the diffracted light L5R) in the same manner as in the seventh embodiment. Thereafter, the transmitted light L4R (or the diffracted light L5R) is incident on the detecting sections SE7 to SE10 of the photo detector 136 to form a converging spot S20 of which the shape is the same as the converging spot S10 shown in
Sin=SC21+SC22+SC23+SC24 (12)
Also, the noise cancelling light L14 is converged on the information medium 23 to form a converging spot surrounding the converging spot S1. Thereafter, a beam of noise cancelling light L14R reflected by the first information medium 23 passes through the same optical path in the reverse direction. That is, the noise cancelling light L14R again passes through the converging lens 27 and the ¼−λ plate 69, and a part of the noise cancelling light L14R is diffracted and converged in the peripheral region 135b of the hologram lens 135 and is incident on the noise cancelling photo detector 138. In the photo detector 138, an output signal SC25 is generated according to the intensity of the noise cancelling light L14R. Thereafter, a noise cancelled information signal Snc expressing a piece of information recorded on the first information medium 23 is obtained by adding all of the signals according to an equation (13):
Snc=(SC21+SC22+SC23+SC24)+R ×SC25 (13),
where the symbol R is a weighting factor.
In this case, because the term R×SC25 is added to obtain the information signal Snc, inverse influence of noises included in the term (SC21+SC22+SC23+SC24) on the noise cancelled information signal Snc can be reduced. The reason is described.
As is well known (for example, Japanese Patent Gazette No. 22452 of 1990 laid open to public inspection on Jul. 23, 1985 under Provisional Publication No. 138748 of 1985 and Published Unexamined Patent Application No. 131245 of 1986), signals expressing pieces of information recorded on an optical disk shifts to a higher frequency as the density of the information recorded becomes high. Also, the amplitude of a signal having a high frequency becomes low as compared with that of a signal having a low frequency in cases where the signals are produced according to light passing through a central region of a hologram lens. In contrast, the amplitude of a signal having a high frequency is emphasized in cases where the signal is produced according to light passing through a peripheral region of the hologram lens. Therefore, in cases where the information signal Snc is obtained according to the equation (13), high frequency components included in the information signal Snc is emphasized, and low frequency noise components included in the term (SC21+SC22+SC23+SC24) are comparatively reduced. As a result, a signal-noise ratio in the information signal Snc can be enhanced.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 131, pieces of information can be reliably recorded or reproduced or or from an information medium regardless of whether the information medium is thick or thin.
Also, even though pieces of information are densely recorded in a thin type of high density optical disk represented by the first information medium 23, the information signal Snc can be reliably reproduced at a high signal-noise ratio.
Also, because the intensity of the light L4R or L5R incident on the detecting sections SE7 to SE10 of the photo detector 136 is reduced by converging the noise cancelling light L14R on the photo detector 138, a positioning accuracy of the photo detector 136 can be coarsely lowered to 1/100.
Also, in cases where the grating pattern P12 of the peripheral region 135b functions as a lens for the incident light L3 diffracted in the peripheral region 135b, unnecessary diffracted light generated in the peripheral region 135b on the outgoing optical path forms a comparatively large converging spot in defocus on the first information medium 23. Therefore, pieces of information recorded on the first information medium 23 are read by the unnecessary diffracted light, and the information are treated as a piece of averaged information in the photo detector 136 even though the unnecessary diffracted light is incident on the photo detector 136. Accordingly, the information read by the unnecessary diffracted light does not adversely influence on the information signal Snc as a noise.
Also, in cases where a transmission efficiency of the peripheral region 135b of the hologram lens 135 is set to agree with another transmission efficiency of the central region 135a, secondary maxima (or side lobes) occurring around the converging spot S1 can be lowered as compared with the first embodiment. Accordingly, a signal-noise ratio in the information signal Snc can be enhanced.
(Fifteenth Embodiment)
An optical head apparatus in which noises included in an information signal are reduced is described with reference to
As shown in
As shown in
The photo detector 143 comprises the quadrant photo-detector 64 having the detecting sections SE7 to SE10, a pair of noise cancelling photo detector 138a, 138b for detecting the intensity of light passing through the peripheral region 142b, 142c of the hologram lens 142.
In the above configuration, the transmitted light L4 (or the diffracted light L5) generated in the central region 142a of the hologram lens 142 is converged on the first information medium 23 (or the second information medium 25) in an outgoing optical path to form the converging spot S1 (or S2). Thereafter, the transmitted light L4R (or the diffracted light L5R) passes through the same optical path in the reverse direction. That is, the transmitted light L4R (or the diffracted light L5R) again passes through the converging lens 27, and a part of the transmitted light L4R transmits through the central region 142a of the hologram lens 142 without any diffraction or a part of the diffracted light L5R is again diffracted in the central region 142a. Thereafter, the transmitted light L4R (or the diffracted light L5R) is converged by the collimator lens 134 and passes through the beam splitter 82. In this case, an astigmatic aberration is generated in the transmitted light L4R (or the diffracted light L5R) in the same manner as in the seventh embodiment. Thereafter, the transmitted light L4R (or the diffracted light L5R) is incident on the detecting sections SE7 to SE10 of the photo detector 143 to form a converging spot S21 of which the shape is the same as the converging spot S10 shown in
Sin=SC26+SC27+SC28+SC29 (14)
Also, a part of the incident light L3 incident on the peripheral region 142b of the hologram lens 142 transmits through the peripheral region 142b without any diffraction to form a beam of noise cancelling light L15, and a part of the incident light L3 incident on the peripheral region 142c of the hologram lens 142 transmits through the peripheral region 142c without any diffraction to form a beam of noise cancelling light L16. Thereafter, the noise cancelling light L15, L16 are converged on the information medium 23 to form a converging spot surrounding the converging spot S1. Thereafter, beams of noise cancelling light L15R, L16R reflected by the first information medium 23 passes through the same optical path in the reverse direction. That is, the noise cancelling light L15R, L16R again passes through the converging lens 27. A part of the noise cancelling light L15R is diffracted and converged in the peripheral region 142b of the hologram lens 142 and is incident on the noise cancelling photo detector 138a, and a part of the noise cancelling light L16R is diffracted and converged in the peripheral region 142c of the hologram lens 142 and is incident on the noise cancelling photo detector 138b. In the photo detector 138a, an output signal SC30 is generated according to the intensity of the noise cancelling light L15R. Also, an output signal SC31 is generated according to the intensity of the noise cancelling light L16R in the photo detector 138b. Thereafter, a noise cancelled information signal Snc expressing the information recorded on the first information medium 23 is obtained by adding all of the signals according to an equation (15):
Snc=(SC26+SC27+SC28+SC29)+R×(SC30+SC31) (15),
where the symbol R is a weighting factor.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 141, pieces of information can be reliably recorded or reproduced from an information medium regardless of whether the information medium is thick or thin.
Also, a signal-noise ratio in the information signal Snc can be enhanced in the same manner as in the fourteenth embodiment.
Also, even though pieces of information are densely recorded in a thin type of high density optical disk represented by the first information medium 23, the information signal Snc can be reliably reproduced at a high signal-noise ratio.
Also, because the intensity of the light L4R or L5R incident on the detecting sections SE7 to SE10 of the photo detector 143 is reduced by converging the noise cancelling light L15R, L16R on the photo detectors 138a, 138b, a positioning accuracy of the photo detector 143 can be coarsely lowered to 1/100.
Also, in cases where the grating patterns P13, P14 of the peripheral regions 142b, 142c functions as a lens for the incident light L3 diffracted in the peripheral region 142b, 142c, unnecessary diffracted light generated by diffracting the incident light L3 in the peripheral regions 142b, 142c on the outgoing optical path forms a comparatively large converging spot in defocus on the first information medium 23. Also, an numerical number of each of the peripheral regions 142b, 142c is lowered as compared with that of the region 135b in the fourteenth embodiment because the hologram lens 142 are partitioned into many fields. Therefore, the size of the converging spot of the unnecessary diffracted light formed in defocus on the first information medium 23 becomes larger than that in the fourteenth embodiment. As a result, more pieces of information recorded on the first information medium 23 are read by the unnecessary diffracted light, and the information are treated as a piece of averaged information in the photo detector 143 even though the unnecessary diffracted light is incident on the photo detector 143. Accordingly, the information read by the unnecessary diffracted light is moreover averaged, and the averaged information does not adversely influence on the information signal Snc as a noise.
Also, as shown in
In cases where the light source 52 is formed of a semiconductor laser, a far field pattern of the incident light L3 incident on the hologram lens 142 is distributed in the Gaussian distribution as shown in
In the fifteenth embodiment, the noise cancelled information signal Snc is obtained according to the equation (15). However, it is preferred that the noise cancelled information signal Snc be obtained according to the equation (16):
Snc=(SC26+SC27+SC28+SC29)+(R1×SC30+R2×SC31) (16),
where the symbols R1, R2 are weighting factors. In this case, the noises included in the information can be moreover reduced.
(Sixteenth Embodiment)
An optical head apparatus manufactured in a small size and stably operated is described with reference to
As shown in
As shown in
The holographic element 152 is produced by proton-exchange surface parts of a lithium niobate substrate or by utilizing a liquid crystal cell, as is described in Provisional Publication No. 189504/86 (S61-189504) and Provisional Publication No. 241735/88 (S63-241735). Therefore, light linearly polarized in a non-diffracting direction parallel to an X3 axis transmits through the holographic element 152 without any diffraction. In contrast, light linearly polarized in a diffracting direction parallel to a Y3 axis which is perpendicular to the X3 axis is diffracted by the holographic element 152.
In the above configuration, the incident light L3 linearly polarized in a non-diffracting direction parallel to an X3 axis is radiated from the light source 52 and transmits through the holographic element 152 without any diffraction. Thereafter, the incident light L3 is collimated by the collimator lens 53, and the incident light L3 linearly polarized is changed to the incident light L3 circularly polarized by the ¼−λ plate 69. Thereafter, a part of the incident light L3 transmits through the hologram lens 26 without any diffraction to form the transmitted light L4, and a remaining part of the incident light L3 is diffracted by the hologram lens 26 to form the diffracted light L5. Thereafter, the light L4, L5 are converged by the objective lens 27, and the converging spot S1 of the transmitted light L4 (or the converging spot S2 of the diffracted light L5) is formed on the first information medium 23 (or the second information medium 25). When the light L4 or L5 is reflected by the information medium 23 (or 25) and is changed to the light L4R (or L5R), a rotational direction of the circular polarization in the light L4 is reversed. Therefore, the light L4R (or L5R) having the reversed circular polarization passes through the same optical path in the opposite direction. That is, the transmitted light L4R (or the diffracted light L5R) again passes through the converging lens 27, and a part of the transmitted light L4R transmits through the hologram lens 142 without any diffraction or a part of the diffracted light L5R is again diffracted by the hologram lens 142. Thereafter, the transmitted light L4R (or the diffracted light L5R) circularly polarized in reverse is changed to the light L4R (or L5R) linearly polarized in a diffracting direction parallel to a Y3 axis by the ¼−λ plate 69. Thereafter, the light L4R (or L5R) is converged by the collimator lens 53 and is diffracted by the holographic element 152 to form a plurality of converging spots on the photo detectors 153. Therefore, an information signal expressing a piece of information recorded on the information medium 23 (or 25) and servo signals such as a focus error signal and a tracking error signal are obtained in the photo detector 153 in the same manner as in the sixth embodiment.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 151, pieces of information can be reliably recorded or reproduced or or from an information medium regardless of whether the information medium is thick or thin.
Also, because all of the incident light L3 transmits through the holographic element 152 on the outgoing optical path and because all of the light L4R or L5R is diffracted by the holographic element 152 on the incoming optical path, a utilization efficiency of the incident light L3 can be enhanced. Therefore, even though a radiation intensity of the incident light L3 in the light source 52 is low, the information signal and the servo signals having a high signal-noise ratio can be reliably obtained.
Also, because no beam splitter is utilized in the optical head apparatus 151, the optical head apparatus 151 can be manufactured at a small size, in a light weight, and at a low cost.
Also, because optical parts of the optical head apparatus 151 are located along its optical axis, the optical head apparatus 151 stably operated can be obtained even though a circumstance temperature largely varies and the apparatus is operated for a long time.
Also, because the light L4R or L5R transmitting through the holographic element 152 without any diffraction on the incoming optical path is not required, it is preferred that a diffraction efficiency of the holographic element 152 be heightened to set a transmission efficiency of the holographic element 152 to almost zero. In this case, a combination of the holographic element 152 and the ¼−λ plate 69 function functions as an isolator to prevent the light L4R or L5R from returning to the light source 52. Therefore, in cases where a semiconductor laser is utilized as the light source 52, any light does not return to an active layer of the semiconductor laser. Accordingly, noises induced by the light returning to the semiconductor laser can be prevented.
Also, because the light source 52 and the photo detector 153 are located on the same substrate 154, the light source 52 and the photo detector 153 can be closely arranged each other. Therefore, a relative position between the light source 52 and the photo detector 153 can be easily set at a high accuracy. For example, the relative position can be set at an accuracy within several μm. Accordingly, a manufacturing cost of the optical head apparatus 151 can be lowered, and the optical head apparatus 151 can be moreover manufactured at a small size, in a light weight, and at a low cost.
Also, the light source 52 is electrically connected with an external circuit through first wirings, and the photo detector 153 is electrically connected with another external circuit through second wirings. In this case, because the light source 52 and the photo detector 153 are located on the same substrate 154, the first and second wirings can pass on an X3-Y3 plane in common. Therefore, the light source 52 and the photo detector 153 can be easily and automatically connected with the external circuits. In addition, because reference lines required to connect the light source 52 and the photo detector 153 with the external circuits are only drawn on the X3-Y3 plane, the relative position between the light source 52 and the photo detector 153 can be easily set at a high accuracy.
In the sixteenth embodiment, the optical head apparatus 151 with the holographic element 152 is described. However, in cases where the intensity of the incident light L3 is sufficient, it is applicable that a hologram having a small grating pitch or a blazed hologram be utilized in place of the holographic element 152. In this case, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium is thick or thin. Also, because no beam splitter is utilized in the optical head apparatus 151, the optical head apparatus 151 can be manufactured at a small size, in a light weight, and at a low cost. Also, because optical parts of the optical head apparatus 151 are located along its optical axis, the optical head apparatus 151 stably operated can be obtained even though a circumstance temperature largely varies and the apparatus is operated for a long time.
(Seventeenth Embodiment)
An optical head apparatus manufactured in a small size and stably operated is described with reference to
As shown in
In the above configuration, the incident light L3 linearly polarized in a first direction is radiated from the light source 52 and is collimated by the collimator lens 53. Thereafter, all of the incident light L3 is reflected by the polarizing separation film 162 because the incident light L3 is linearly polarized in the first direction. Therefore, the incident light L3 is directed in an upper direction. Thereafter, the linear polarization of the incident light L3 is changed to a circular polarization in the ¼−λ plate 69, and a part of the incident light L3 transmits through the hologram lens 26 to form the transmitted light L4. Also, a remaining part of the incident light L3 is diffracted by the hologram lens 26 to form the diffracted light L5. Thereafter, the light L4, L5 are converged by the objective lens 27, and the converging spot S1 of the transmitted light L4 (or the converging spot S2 of the diffracted light L5) is formed on the first information medium 23 (or the second information medium 25). Thereafter, the transmitted light L4R (or the diffracted light L5R) circularly polarized in reverse again passes through the converging lens 27 in the same manner as in the sixteenth embodiment, and a part of the transmitted light L4R transmits through the hologram lens 26 without any diffraction or a part of the diffracted light L5R is again diffracted by the hologram lens 26. Thereafter, the transmitted light L4R (or the diffracted light L5R) circularly Polarized in reverse is changed to the light L4R (or L5R) linearly polarized in a second direction perpendicular to the first direction by the ¼−λ plate 69. Thereafter, all of the light L4R (or L5R) is refracted by the polarizing separation film 162 and is diffracted and reflected by the hologram 164. Thereafter, the light L4R (or L5R) transmits through the polarizing separation film 162 and is converged by the collimator lens 53 to form a plurality of converging spots on the photo detector 57. Therefore, an information signal expressing a piece of information recorded on the information medium 23 (or 25) and servo signals such as a focus error signal and a tracking error signal are obtained in the photo detector 57 in the same manner as in the sixth embodiment.
Accordingly, because the compound objective lens having two focal points is utilized in the optical head apparatus 161, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium is thick or thin.
Also, because the incident light L3 incident on the polarizing separation film 162 is collimated, a reflectivity for the incident light L3 is uniform over the entire film 162. Therefore, a diffraction-limited spot of the light L4 or L5 can be easily formed on the information medium 23 or 25. Also, because the light L4R, L5R incident on the polarizing separation film 162 are collimated, a transmissivity for the light L4R, L5R is uniform over the entire film 162. Therefore, an offset occurring in the servo signals can be prevented.
Also, because all of the incident light L3 transmits through the hologram 164 on the outgoing optical path and because all of the light L4R or L5R is diffracted by the hologram 164 on the incoming optical path, a utilization efficiency of the incident light L3 can be enhanced. Therefore, even though a radiation intensity of the incident light L3 in the light source 52 is low, the information signal and the servo signals having a high signal-noise ratio can be reliably obtained.
Also, because a hybrid element composed of the film 162, the substrate 163 and the hologram 164 functions as a beam splitter and a rising mirror, the optical head apparatus 161 can be manufactured at a small size, in a light weight, and at a low cost.
Also, because optical parts of the optical head apparatus 161 are located along its optical axis, the optical head apparatus 161 stably operated can be obtained even though a circumstance temperature largely varies and the apparatus is operated for a long time.
Also, a combination of the film 162 and the ¼−λ plate 69 function functions as an isolator to prevent the light L4R or L5R from returning to the light source 52. Therefore, in cases where a semiconductor laser is utilized as the light source 52, any light does not return to an active layer of the semiconductor laser. Accordingly, noises induced by the light returning to the semiconductor laser can be prevented.
Also, it is preferred that the hologram 164 be blazed. In this case, because the generation of unnecessary diffracted light such as minus first-order diffracted light in the hologram 164 is prevented, a diffraction efficiency of the hologram 164 for changing light to first-order diffracted light can be set to almost 100%. Therefore, the incident light L3 can be efficiently utilized to obtain the signals.
Also, because light incident on the hologram 164 is diffracted to first-order diffracted light, a chromatic aberration occurring in the light L4R, L5R can be compensated in the hologram 164. Therefore, the servo signals can be stably obtained.
In the seventeenth embodiment, the collimator lens 53 is located between the light source 52 and the film 162. However, the collimator lens 53 is not necessary in the optical head apparatus 161.
Also, the optical head apparatus 161 with the film 162 and the ¼−λ plate 69 is described. However, in cases where the intensity of the incident light L3 is sufficient, it is applicable that a reflection film having a reflectivity of almost ⅓ be utilized in place of the film 162 and the ¼−λ plate 69 be omitted. In this case, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium is thick or thin. Also, because a hybrid element composed of the film 162, the substrate 163 and the hologram 164 functions as a beam splitter and a rising mirror, the optical head apparatus 161 can be manufactured at a small size, in a light weight, and at a low cost. Also, because optical parts of the optical head apparatus 161 are located along its optical axis, the optical head apparatus 161 stably operated can be obtained even though a circumstance temperature largely varies and the apparatus is operated for a long time.
In the sixth to seventeenth embodiments, pieces of information can be reliably recorded or reproduced on or from an information medium regardless of whether the information medium represents a conventional optical disk such as a compact disk having a thickness T2 of about 1.2 mm or a prospective high density optical disk having a thickness T1 ranging from 0.4 mm to 0.8 mm. However, when the information recorded or reproduced on or from the information medium, it is required to examine the thickness of the information medium in advance. Therefore, in cases where a piece of distinguishing information is recorded on the information medium in advance to distinguish the thickness of the information medium, it is convenient for a user. Because no distinguishing information is recorded on the conventional optical disk, it is preferred that the distinguishing information be recorded on the prospective high density optical disk appearing on the market in. the future. Therefore, a high density optical disk with the distinguishing information is described according to eighteenth and nineteenth embodiments.
(Eighteenth Embodiment)
As shown in
In the above configuration, the diffracted light L5 according to the first or second embodiment (or the transmitted light L4 according to the third embodiment) is initially converged on an inner region of the information medium 23, 25 while performing a focus control corresponding to the second information medium 25 having the thickness T2. In cases where the information medium 23 or 25 is the optical disk 171, a piece of distinguishing information informing that the optical disk 171 having the thickness T1 is converged by the light L5 (or L4) is detected. Thereafter, the transmitted light L4 (or the diffracted light L6) is automatically converged on the outer region 171a of the optical disk 171 while performing a focus control corresponding to the first information medium 23 having the thickness T1.
In contrast, in cases where the information medium 23 or 25 is a thick type of conventional optical disk having a thickness T2, no distinguishing information is detected when the light L5 (or L4) is converged on the inner region 171b of the conventional optical disk. In this case, the focus control corresponding to the second information medium 25 is continued to detect an information signal expressing a piece of information recorded on the conventional optical disk.
Accordingly, in cases where one of the optical head apparatuses shown in
Also, because only the distinguishing information is recorded in the inner region, the inner region can be small. Therefore, a memory capacity of the optical disk 171 is not lowered by the addition of the second recording pit 173.
(Nineteenth Embodiment)
As shown in
In the above configuration, the diffracted light L5 according to the first or second embodiment (or the transmitted light L4 according to the third embodiment) is initially converged on an inner region of the information medium 23 or 25 while performing a focus control corresponding to the second information medium 25 having the thickness T2. In cases where the information medium 23 or 25 is the optical disk 174, the light L5 (or L4) is converged on each of the second recording pits 175 in defocus. However, because each of the second recording pits 175 is large in size, a converging spot of the light L5 (or L4) is reliably formed in one of the second recording pits 175. Therefore, a piece of distinguishing information, which informs that the optical disk 174 having the thickness T1 is converged by the light L5 (or L4), is detected. Thereafter, the transmitted light L4 (or the diffracted light L6) is automatically converged on the outer region 174a of the optical disk 174 while performing a focus control corresponding to the first information medium 23 having the thickness T1.
In contrast, in cases where the information medium 23 or 25 is a thick type of conventional optical disk having a thickness T2, no distinguishing information is detected when the light L5 (or L4) is converged on the inner region 174b of the conventional optical disk. In this case, the focus control corresponding to the second information medium 25 is continued to detect an information signal expressing a piece of information recorded on the conventional optical disk.
Accordingly, in cases where one of the optical head apparatuses shown in
Also, because only the distinguishing information is recorded in the inner region of the optical disk 174, the inner region can be small. Therefore, a memory capacity of the optical disk 174 is not lowered by the addition of the second recording pit 173.
Also, because the thickness of the optical disk 174 is uniform, the optical disk 174 can be easily manufactured at a low cost. Also, the optical disk 174 can be thinned.
(Twentieth Embodiment)
An optical disk apparatus with one of the optical head apparatuses in which it is automatically judged whether a high density optical disk having the thickness T1 or a conventional optical disk having the thickness T2 is utilized is described.
As shown in
In the above configuration, the high density optical disk 171 or the conventional optical disk 25 is set to a prescribed position of the optical disk apparatus 176, and the optical disk 171 or 25 is rotated by the rotating means 178. Thereafter, the optical head apparatus 51 is moved to a position just under an innermost recording track of the optical disk 171 or 25 by the moving means 177 in a step 211, and the diffracted light L5 is converged on the innermost recording track of the optical disk 171 or 25 while performing a focus control corresponding to the conventional optical disk 25 of the thickness T2 in a step 212. Thereafter, a tracking control is performed, and a piece of information recorded on the innermost recording track of the optical disk 171 or 25 is detected in a step 213. In detail, a focus error signal and a tracking error signal corresponding to a positional relationship between the optical head apparatus 51 and the optical disk 171 or 25 are sent to the electric circuit 179. In the electric circuit 179, an actuating signal is generated according to the focus error signal and the tracking error signal and is sent to the actuating unit 58 to precisely move the compound objective lens 29 (or 29M, 34, 43, 45, 46 or 47) of the optical head apparatus 51. That is, the second focus and tracking controls of the optical head apparatus 51 corresponding to the second thickness T2 are performed to read the information. Thereafter, it is judged in a step 214 whether the information agrees with a piece of distinguishing information informing that the optical disk 171 having the thickness T1 is set to the optical disk apparatus 176.
In cases where the high density optical disk 171 is set to the optical disk apparatus 176, the distinguishing information is detected. Thereafter, the transmitted light L4 is automatically converged on the optical disk 171 while performing a focus control corresponding to the optical disk 171 of the thickness T1 in a step 215. In detail, a focus error signal and a tracking error signal corresponding to a positional relationship between the optical head apparatus 51 and the optical disk 171 are sent to the electric circuit 179. In the electric circuit 179, an actuating signal is generated according to the focus error signal and the tracking error signal and is sent to the actuating unit 58 to precisely move the compound objective lens 29 (or 29M, 34, 43, 45, 46 or 47) of the optical head apparatus 51. That is, the first focus and tracking controls of the optical head apparatus 51 corresponding to the first thickness T1 are performed. Therefore, pieces of information are recorded or reproduced on or from the optical disk 171.
In contrast, in cases where the conventional optical head 25 is set to the optical disk apparatus 176, the distinguishing information is not detected. In this case, the convergence of the diffracted light L5 on the conventional optical disk 25 is continued while performing the focus control and the tracking control corresponding to the conventional optical disk 25 in a step 216. Therefore, pieces of information are recorded or reproduced on or from the conventional optical disk 25.
Accordingly, the thickness of the optical disk set in the optical disk apparatus 176 can be rapidly judged at a high accuracy. Also, pieces of information can be stably recorded or reproduced on or from an optical disk regardless of whether the optical disk is the high density optical disk 171 (or 174) or the conventional optical disk 25.
(Twenty-first Embodiment)
An optical disk apparatus with one of the optical head apparatuses in which it is automatically judged whether a high density optical disk having the thickness T1 or a conventional optical disk having the thickness T2 is utilized is described.
As shown in
In the above configuration, the high density optical disk 182 or the conventional optical disk 25 is set to a prescribed position of the optical disk apparatus 181, and the optical disk 182 or 25 is rotated by the rotating means 182. Thereafter, the optical head apparatus 51 is moved to a position just under an innermost recording track of the optical disk 182 or 25 in a step 221 because a piece of information is reliably recorded on the innermost recording track, and the diffracted light L5 is converged on the innermost recording track of the optical disk 182 or 25 while performing a focus control corresponding to the conventional optical disk 25 of the thickness T2 in a step 222. Thereafter, a tracking control is performed, and a piece of information recorded on the innermost recording track of the optical disk 182 or 25 is detected in a step 223. Thereafter, it is judged in a step 224 whether the intensity of an information signal expressing the information detected is more than a threshold value. That is, the intensity of the information signal more than the threshold value denotes that the diffracted light L5 is converged in focus on the optical disk 182 or 25, and the intensity of the information signal not more than the threshold value denotes that the diffracted light L5 is converged in defocus on the optical disk 182 or 25.
In cases where the high density optical disk 182 is set to the optical disk apparatus 181, the intensity of the information signal not more than the threshold value is detected. In this case, the transmitted light L4 is automatically converged on the optical disk 182 while performing a focus control corresponding to the high density optical disk 182 of the thickness T1 in a step 225. Therefore, pieces of information are recorded or reproduced on or from the optical disk 182.
In contrast, in cases where the conventional optical head 25 is set to the optical disk apparatus 181, the intensity of the information signal more than the threshold value is detected. In this case, the convergence of the diffracted light L5 on the conventional optical disk 25 is continued while performing the focus control and the tracking control corresponding to the conventional optical disk 25 in a step 226. Therefore, pieces of information are recorded or reproduced on or from the conventional optical disk 25.
Accordingly, the thickness of the optical disk set in the optical disk apparatus 181 can be judged even though the optical disk 171 or 174 is not utilized. Also, pieces of information can be stably recorded or reproduced on or from an optical disk regardless of whether the optical disk is the high density optical disk 182 or the conventional optical disk 25.
(Twenty-second Embodiment)
A binary focus microscope having two focal points in which two images formed on different planes are simultaneously observed is described according to a twenty-second embodiment.
As shown in
The optical axis passes through the centers of the objective lens 192, the hologram lens 26, the inner lens 195 and the ocular lens 194. The position of the first sample plane PL1 differs from that of the second sample plane PL2 along the optical axis.
In the above configuration, the position of the objective lens 192 is adjusted to set the distance between the first sample plane PL1 and the objective lens 192 to the first focal length F1 of the objective lens 192. In this case, the distance between the second sample plane PL2 and the objective lens 192 is set to a second focal length F2. Also, the position of the combination element is adjusted to clearly view the first and second images. That is, a beam of first light L17 diverging from the first image on the first sample plane PL1 is collimated in the objective lens 192, and a part of the first light L17 transmits through the hologram lens 26. Also, a beam of second light L18 diverging from the second image on the second sample plane PL2 is refracted in the objective lens 192, and a part of the second light L18 is diffracted in the hologram lens 26 to pass the second light L18 through the same optical path as the first light L17 passes through. Therefore, a beam of superposed light L19 is formed of the first and second light L17, L18. Thereafter, the superposed light L19 is converged by the inner lens 193 at an inner focal point Pf1 to simultaneously form the first and second images enlarged on an image plane PL3, and the superposed light L19 diverging from the point Pf1 is converged by the ocular lens 194 to simultaneously form the first and second images moreover enlarged on an operator's eye.
Accordingly, because the hologram lens 26, 26M, 32, 33 or 42 is utilized to form the superposed light L19, the first image of the first sample SP1 put on the first sample plane PL1 and the second image of the second sample SP2 put on the second sample plane PL2 can be simultaneously observed by simultaneously focusing the binary focus microscope 191 on the first and second samples SP1, SP2.
Also, even though the intensities of the first and second light L17, L18 are reduced when the light L17, L18 pass through the hologram lens 26, the intensity of the superposed light L19 is sufficient to observe the first and second images because the intensity of the superposed light L19 is determined by adding the intensities of the first and second light L17, L18.
Also, because the hologram lens 26 is blazed as shown in
Also, as shown in
Also, the difference between the first and second focal lengths can be changed by moving the inner and outer lens-barrels 195, 196 because the distance between the hologram lens 26 and the objective lens 192 is changed. Therefore, even though the thickness of the second sample holder 198 is changed, the first and second images can be reliably observed.
In the twenty-second embodiment, the ocular lens 194 is utilized in the binary focus microscope 191. However, the ocular lens 194 is not necessarily required. Also, as shown in
(Twenty-third Embodiment)
In cases where a minute circuit is formed on a semiconductor wafer, a photosensitive material is coated on the semiconductor wafer, and the photosensitive material covering the semiconductor wafer is exposed to ultraviolet light through a photomask having a mask pattern in an exposure process. Therefore, the mask pattern of the photomask is transferred to the photosensitive material. In this case, the semiconductor wafer is required to be aligned with the photomask at a high accuracy in an alignment process performed prior to the exposure process. Therefore, a reference image drawn on the semiconductor wafer and the mask pattern drawn on the photomask are simultaneously observed with a conventional microscope having a deep focal depth. However, because the magnification of the conventional microscope having a deep focal depth is low, it is impossible to align the reference image and the mask pattern at an accuracy within 5 μm.
To solve the above drawback in the present invention, an alignment apparatus utilized in the alignment process in which the semiconductor wafer is aligned with the photomask at a high accuracy while simultaneously observing a reference image drawn on the semiconductor wafer and the mask pattern drawn on the photomask is described according to a twenty-third embodiment.
As shown in
The particular wavelength of the alignment light is determined on condition that a transmissivity of the semiconductor substrate 203 for the alignment light is sufficiently high. The optical axis passes through the centers of the objective lens 192, the hologram lens 26 and the inner lens 193.
A binary microscope 208 is composed of the objective lens 192, the hologram lens 26 (or 26M, 32, 33 or 42), the inner lens 193, the inner lens-barrel 195 and the outer lens-barrel 196 in the same manner as in the twenty-second embodiment.
In the above configuration, a beam of first alignment light L20 diverging from the first reference image RF1 is collimated in the objective lens 192, and a part of the first alignment light L20 transmits through the hologram lens 26. Also, a beam of second alignment light L21 diverging from the second reference image RF2 is refracted in the objective lens 192, and a part of the second alignment light L21 is diffracted by the hologram lens 26 to pass the second alignment light L21 through the same optical path as the first alignment light L20 passes through. Therefore, a beam of superposed alignment light L22 is formed of the first and second alignment light L20, L21. Thereafter, the superposed alignment light L22 is converged at an inner focal point Pf2 to simultaneously form the first and second reference images RF1, RF2 enlarged. Thereafter, the first and second reference images RF1, RF2 enlarged are photographed and recorded by the camera 205. Thereafter, a relative position between the first and second reference images RF1, RF2 is examined in the control means 207, and the photomask 202 is moved in a horizontal direction by the moving means 206 under control of the control means 207 to align the first reference image RF1 with the second reference image RF2. Thereafter, as shown in
Accordingly, because the hologram lens 26, 26M, 32, 33 or 42 is utilized to form the binary microscope 208 having two focal points, the first reference image RF1 and the second reference image RF2 can be simultaneously observed even though a focal depth of the binary microscope 208 is low. Also, because the focal depth of the binary microscope 208 can be lowered, the magnification of the binary microscope 208 can be heightened. Therefore, the first reference image RF1 of the photomask 202 can be aligned with the second reference image RF2 of the semiconductor substrate 203 at a high accuracy.
(Twenty-fourth Embodiment)
As shown in
In the above configuration, pieces of image information are recorded in the outer region 171a of the optical disk 171 or in the optical disk 174 at a high recording density, and the thickness T1 is, for example, 0.6 mm. Also, pieces of image information are recorded in the conventional optical disk 25 having the thickness T2 at an ordinary recording density. The conventional optical disk 25 represents a video compact disk having a thickness of 1.2 mm. Because the optical disk apparatus 176 is provided for the image reproducing apparatus 221, regardless of whether pieces of particular image information are recorded in the optical disk 171 (or 174) or the conventional optical disk 25, the particular image information are read from the optical disk 171, 174 or 25, and a particular image can be displayed in the displaying unit 222. Therefore, a user is not required to prepare both a conventional image reproducing apparatus for reproducing the image information recorded in the conventional optical disk 25 and an updated image reproducing apparatus for reproducing the image information recorded in an updated optical disk having a thickness of 0.6 mm.
As shown in
In the above configuration, pieces of voice information are recorded in the outer region 171a of the optical disk 171 or in the optical disk 174 at a high recording density, and the thickness T1 is, for example, 0.6 mm. Also, pieces of voice information are recorded in the conventional optical disk 25 having the thickness T2 at an ordinary recording density. The conventional optical disk 25 represents an audio compact disk having a thickness of 1.2 mm. Because the optical disk apparatus 176 is provided for the voice reproducing apparatus 231, regardless of whether pieces of particular voice information are recorded in the optical disk 171 (or 174) or the conventional optical disk 25, the particular voice information are read from the optical disk 171, 174 or 25, and particular voices can be reproduced by the voice reproducing unit 232. Therefore, a user is not required to prepare both a conventional voice reproducing apparatus for reproducing the voice information recorded in the conventional optical disk 25 and an updated voice reproducing apparatus for reproducing the voice information recorded in an updated optical disk having a thickness of 0.6 mm.
As shown in
In the above configuration, pieces of recorded information are recorded in the outer region 171a of the optical disk 171 or in the optical disk 174 at a high recording density, and the thickness T1 is, for example, 0.6 mm. Also, pieces of recorded information are recorded in the conventional optical disk 25 having the thickness T2 at an ordinary recording density. The conventional optical disk 25 represents a CD-ROM having a thickness of 1.2 mm. Because the optical disk apparatus 176 is provided for the voice reproducing apparatus 231, regardless of whether pieces of particular recorded information are recorded in the optical disk 171 (or 174) or the conventional optical disk 25, the particular recorded information are read from the optical disk 171, 174 or 25, and a particular image can be displayed in the displaying unit 245 according to the recorded information. Also, when a user inputs pieces of input information to the inputting apparatus 242, even though any of the optical disks 171, 174 and 25 is set in the optical disk apparatus 176, the input information are recorded in the optical disk 171, 174 or 25. Therefore, the user is not required to prepare both a conventional image reproducing apparatus for reproducing the image information recorded in the conventional optical disk 25 and an updated image reproducing apparatus for reproducing the image information recorded in an updated optical disk having a thickness of 0.6 mm.
In cases where a game program is recorded in the optical disk 171, 174 or 25, the user can play a game while observing a game image displayed in the displaying unit 245 and inputting pieces of operating data to the inputting apparatus 242 regardless of whether the game program is recorded in any of the optical disks 171, 174 or 25.
Also, in cases where the information processing apparatus 241 is utilized in a home, the information processing apparatus 241 can be utilized as an information terminal for a domestic use.
Also, as shown in
Having illustrated and described the principles of our invention in a preferred embodiment thereof, it should be readily apparent to those skilled in the art that the invention can be modified in arrangement and detail without departing from such principles. We claim all modifications coming within the spirit and scope of the accompanying claims.
Nishino, Seiji, Mizuno, Sadao, Komma, Yoshiaki
Patent | Priority | Assignee | Title |
8804221, | Oct 05 2009 | Commissariat a l Energie Atomique et aux Energies Alternatives | Stacking a visible image and a synthetic hologram |
Patent | Priority | Assignee | Title |
3999009, | Mar 11 1971 | U.S. Philips Corporation | Apparatus for playing a transparent optically encoded multilayer information carrying disc |
4441179, | Jan 15 1979 | Discovision Associates | Optical video disc structure |
4450553, | Mar 22 1978 | U S PHILLIPS CORPORATION, A CORP OF DE | Multilayer information disc |
4637697, | Oct 27 1982 | Novartis AG | Multifocal contact lenses utilizing diffraction and refraction |
4731772, | May 06 1986 | LEE, WAI-HON | Optical head using hologram lens for both beam splitting and focus error detection functions |
4733065, | Jun 27 1984 | Canon Kabushiki Kaisha; Canon Denshi Kabushiki Kaisha; CANON KABUSHIKI KAISHA A CORP OF JAPAN | Optical head device with diffraction grating for separating a light beam incident on an optical recording medium from a light beam reflected therefrom |
4733943, | Nov 17 1982 | Pioneer Electronic Corporation | Pickup for optical disc |
4757197, | May 01 1986 | LEE, WAI-HON | Semiconductor laser and detector device |
4758062, | Apr 08 1985 | FUJI PHOTO FILM CO , LTD | Light beam scanning apparatus, and read-out apparatus and recording apparatus using same |
4773052, | Sep 20 1984 | Pioneer Electric Corporation | Dual mode disk player/recorder |
4876680, | Sep 05 1986 | Ricoh Company, Ltd. | Monolithic optical pick-up using an optical waveguide |
4929823, | Oct 05 1987 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD , 1006, OAZA KADOMA, KADOMA- SHI, OSAKA, JAPAN A CORP OF JAPAN | Optical pickup head with holographic servo signal detection using a spot size detection system |
4945529, | Dec 10 1985 | NEC Corporation | Optical head comprising a diffraction grating for directing two or more diffracted beams to optical detectors |
4986641, | May 19 1989 | U S PHILIPS CORPORATION | Retrofocus objective lens and optical scanning device provided with such a lens |
5017000, | May 14 1986 | Multifocals using phase shifting | |
5056908, | Nov 12 1987 | Optic zone phase channels | |
5062098, | Oct 19 1988 | Matsushita Electric Industrial Co., Ltd. | Optical pick-up device having holographic element |
5073007, | Jun 11 1990 | Holo-or Ltd. | Diffractive optical element |
5111448, | Jun 09 1988 | Matsushita Electric Industrial Co., Ltd. | Optical pickup head having a hologram-associated objective lens and optical information processing apparatus using the same |
5116111, | Apr 01 1988 | Minnesota Mining and Manufacturing Company | Multi-focal diffractive ophthalmic lenses |
5122903, | Mar 15 1989 | Omron Corporation | Optical device and optical pickup device using the same |
5129718, | Apr 01 1988 | Minnesota Mining and Manufacturing Company | Multi-focal diffractive ophthalmic lenses |
5134604, | Jan 11 1990 | Matsushita Electric Industrial Co., Ltd. | Combination optical data medium with multiple data surfaces and cassette therefor |
5153863, | Apr 04 1988 | AP6 CO , LTD ; NIPPON CONLUX CO , LTD | Apparatus for optically recording and reproducing information |
5161040, | Jan 30 1989 | SEIKO EPSON CORPORATION, A CORP OF JAPAN | Optical system with aberration suppression and optical head utilizing the same |
5175651, | Mar 17 1989 | WACHOVIA BANK, NATIONAL | Multi-focus system for a low light level vision apparatus |
5177349, | May 15 1990 | Canon Kabushiki Kaisha | Image reading apparatus utilizing a four step or more staircase diffraction grating structure |
5202875, | Jun 04 1991 | Mitsubishi Electric Corporation | Multiple data surface optical data storage system |
5218471, | Sep 21 1987 | Massachusetts Institute of Technology | High-efficiency, multilevel, diffractive optical elements |
5227915, | Feb 13 1990 | Holo-or Ltd. | Diffractive optical element |
5229797, | Aug 08 1990 | MINNESOTA MINING AND MANUFACTURING COMPANY, A CORP OF DE | Multifocal diffractive ophthalmic lenses |
5243590, | Oct 31 1990 | Sony Corporation | Optical disc |
5245596, | Jun 26 1991 | EASTMAN KODAK COMPANY, A CORPORATION OF NJ | Optical head having a grating with a doubly periodic structure |
5251198, | May 29 1992 | Reading device for multi-layered optical information carrier | |
5278816, | Sep 22 1989 | Recording/reproducing system using wavelength/depth selective optical storage medium | |
5303224, | Mar 02 1990 | Pioneer Electronic Corporation | Optical pickup, optical information recording carrier and recording and reproducing apparatus thereof |
5344447, | Nov 12 1992 | Massachusetts Institute of Technology | Diffractive trifocal intra-ocular lens design |
5438187, | Nov 01 1991 | PSC SCANNING, INC | Multiple focus optical system for data reading applications |
5442480, | Feb 14 1990 | Massachusetts Institute of Technology | Lens/zone plate combination for chromatic dispersion correction |
5446565, | Feb 01 1993 | Matsushita Electric Industrial Co., Ltd. | Compound objective lens having two focal points |
CN1042613, | |||
EP339940, | |||
EP341743, | |||
EP357780, | |||
EP367878, | |||
EP452953, | |||
EP457553, | |||
EP470807, | |||
EP486060, | |||
EP517490, | |||
EP537904, | |||
EP539019, | |||
EP807928, | |||
JP2185722, | |||
JP222452, | |||
JP4212730, | |||
JP5054406, | |||
JP5101540, | |||
JP5205282, | |||
JP61131245, | |||
JP61189504, | |||
JP6173246, | |||
JP62073429, | |||
JP6215406, | |||
JP63241735, | |||
JP6325405, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 10 2005 | Panasonic Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Jul 27 2013 | 4 years fee payment window open |
Jan 27 2014 | 6 months grace period start (w surcharge) |
Jul 27 2014 | patent expiry (for year 4) |
Jul 27 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 27 2017 | 8 years fee payment window open |
Jan 27 2018 | 6 months grace period start (w surcharge) |
Jul 27 2018 | patent expiry (for year 8) |
Jul 27 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 27 2021 | 12 years fee payment window open |
Jan 27 2022 | 6 months grace period start (w surcharge) |
Jul 27 2022 | patent expiry (for year 12) |
Jul 27 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |