A channel coding device is disclosed. In the device, a bit inserter inserts known bits in an input data bit stream at predetermined positions. A channel coder codes the bit-inserted data bit stream to generate coded symbols. A rate matcher matches a rate of the coded symbols to a given channel symbol rate. A channel interleaver interleaves the rate matched channel symbols. The rate matcher includes a puncturer for puncturing the inserted known bits included in the coded symbols when the coded symbol rate is higher than the given channel symbol rate. The rate matcher includes a repeater for repeating the coded symbols to match the coded symbol rate to the given channel symbol rate when the coded symbol rate is lower than the given channel symbol rate.
|
0. 52. A channel coding method comprising the steps of:
inserting known bits in an input data bit stream at predetermined positions;
turbo coding the bit-inserted data bit stream to generate coded symbols;
matching a rate of the coded symbols to a given channel symbol rate; and
interleaving the rate matched channel symbols.
0. 40. A channel coding device comprising:
a bit inserter for inserting known bits in an input data bit stream at predetermined positions;
a turbo coder for turbo coding the bit-inserted data bit stream to generate coded symbols;
a rate matcher for matching a rate of the coded symbols to a given channel symbol rate; and
a channel interleaver for interleaving the rate matched channel symbols.
0. 39. A channel coding device comprising:
a bit inserter for inserting known bits in an input data bit stream at predetermined positions;
a channel coder for coding the bit-inserted data bit stream to generate coded symbols;
a rate matcher for matching a rate of the coded symbols to a given channel symbol rate; and
a channel interleaver for interleaving the rate matched channel symbols,
wherein the rate matcher comprises:
a repeater for repeating the coded symbols to match the rate of the coded symbols to the given channel symbol rate, when the coded symbol rate is lower than the given channel symbol rate; and
a puncturer for puncturing the coded symbols to match the rate of the coded symbols to the given channel symbol rate, when the coded symbol rate is higher than the given channel symbol rate.
0. 1. A channel coding device comprising:
a bit inserter for inserting known bits in an input data bit stream at predetermined positions;
a channel coder for coding the bit-inserted data bit stream to generate coded symbols;
a rate matcher for matching a rate of the coded symbols to a given channel symbol rate; and
a channel interleaver for interleaving the rate matched channel symbols.
0. 2. The channel coding device as claimed in
0. 3. The channel coding device as claimed in
0. 4. The channel coding device as claimed in
0. 5. The channel coding device as claimed in
0. 6. The channel coding device as claimed in
0. 7. The channel coding device as claimed in
0. 8. The channel coding device as claimed in
a repeater for repeating the coded symbols to approximately match the coded symbol rate to the given channel symbol rate when the coded symbol rate is lower than the given channel symbol rate; and
a puncturer for puncturing the repeated symbols to match a rate of the repeated symbols to the given channel symbol rate.
0. 9. The channel coding device as claimed in
0. 10. The channel coding device as claimed in
0. 11. The channel coding device as claimed in
0. 12. The channel coding device as claimed in
0. 13. A channel coding device comprising:
first bit inserters for inserting known bits in corresponding source user data bit streams at predetermined positions;
first channel coders for coding the bit-inserted user data bit streams to generate coded user symbols;
first rate matchers for matching a rate of the user symbols to a given channel user symbol rate;
a second bit inserter for inserting known bits in a source control data bit stream at predetermined positions;
a second channel coder for coding the bit-inserted control data bit stream to generate coded control symbols;
a second rate matcher for matching a rate of the control symbols to a given channel control symbol rate;
a multiplexer for multiplexing an output of the first rate matcher and an output of the second rate matcher;
a channel rate matcher for matching a rate of symbols outputted from the multiplexer to a given channel control symbol rate; and
a channel interleaver for interleaving output symbols of the channel rate matcher in a channel unit.
0. 14. The channel coding device as claimed in
0. 15. The channel coding device as claimed in
0. 16. The channel coding device as claimed in
a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate when the user symbol rate is lower than the given channel user symbol rate; and
a puncturer for puncturing the repeated user symbols to match a rate of the repeated user symbols to the given channel user symbol rate.
0. 17. The channel coding device as claimed in
0. 18. The channel coding device as claimed in
0. 19. The channel coding device as claimed in
a repeater for repeating the control symbols to approximately match the control symbol rate to the given channel control symbol rate when the control symbol rate is lower than the given channel control symbol rate; and
a puncturer for puncturing the repeated control symbols to match a rate of the repeated control symbols to the given channel control symbol rate.
0. 20. The channel coding device as claimed in
0. 21. The channel coding device as claimed in
0. 22. The channel coding device as claimed in
a repeater for repeating the symbols outputted from the multiplexer to approximately match a symbol rate to the given channel symbol rate when the rate of the symbols outputted from the multiplexer is lower than the given channel symbol rate; and
a puncturer for puncturing the repeated symbols to match a repeated symbol rate to the given channel symbol rate.
0. 23. A channel coding device comprising:
first bit inserters for inserting known bits in corresponding source user data bit streams at predetermined positions;
first channel coders for coding the bit-inserted user data bit streams to generate coded user symbols;
first rate matchers for matching a rate of the user symbols to a given channel user symbol rate;
a second channel coder for coding a source control data bit stream to generate coded control symbols;
a second rate matcher for matching a rate of the control symbols to a given channel control symbol rate;
a multiplexer for multiplexing an output of the first rate matcher and an output of the second rate matcher;
a channel rate matcher for matching a rate of symbols outputted from the multiplexer to a given channel symbol rate; and
a channel interleaver for interleaving output symbols of the channel rate matcher in a channel unit.
0. 24. The channel coding device as claimed in
0. 25. The channel coding device as claimed in
0. 26. The channel coding device as claimed in
a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate when the user symbol rate is lower than the given channel user symbol rate; and
a puncturer for puncturing the repeated user symbols to match a repeated user symbol rate to the given channel user symbol rate.
0. 27. The channel coding device as claimed in
0. 28. The channel coding device as claimed in
0. 29. The channel coding device as claimed in
a repeater for repeating the control symbols to approximately match the control symbol rate to the given channel control symbol rate when the control symbol rate is lower than the given channel control symbol rate; and
a puncturer for puncturing the repeated control symbols to match a repeated control symbol rate to the given channel control symbol rate.
0. 30. The channel coding device as claimed in
0. 31. The channel coding device as claimed in
0. 32. The channel coding device as claimed in
a repeater for repeating the symbols outputted from the multiplexer to approximately match the symbol rate to the given channel symbol rate when a rate of the symbols outputted from the multiplexer is lower than the given channel symbol rate; and
a puncturer for puncturing the repeated symbols to match a repeated symbol rate to the given channel symbol rate.
0. 33. A channel coding method comprising the steps of:
inserting known bits in an input data bit stream at predetermined positions;
coding the bit-inserted data bit stream to generate coded symbols;
matching a rate of the coded symbols to a given channel symbol rate; and
interleaving the rate matched channel symbols.
0. 34. The channel coding method as claimed in
0. 35. The channel coding method as claimed in
0. 36. The channel coding method as claimed in
repeating the coded symbols to approximately match the coded symbol rate to the given channel symbol rate when the coded symbol rate is lower than the given channel symbol rate; and
puncturing the repeated symbols to match a repeated symbol rate to the given channel symbol rate.
0. 37. A channel coding method comprising the steps of:
inserting known bits in corresponding source user data bit streams at predetermined positions;
coding the bit-inserted user data bit streams to generate coded user symbols;
matching a rate of the user symbols to a given channel user symbol rate;
inserting known bits in a source control data bit stream at predetermined positions;
coding the bit-inserted control data bit stream to generate coded control symbols;
matching a rate of the control symbols to a given channel control symbol rate;
multiplexing an output of the first rate matcher and an output of the second rate matcher;
matching a rate of symbols outputted from the multiplexer to a given channel symbol rate; and
interleaving output symbols of the channel rate matcher in a channel unit.
0. 38. A channel coding method comprising the steps of:
inserting known bits in corresponding source user data bit streams at predetermined positions;
coding the bit-inserted user data bit streams to generate coded user symbols;
matching a rate of the user symbols to a given channel user symbol rate;
coding a source control data bit stream to generate coded control symbols;
matching a rate of the control symbols to a given channel control symbol rate;
multiplexing an output of the first rate matcher and an output of the second rate matcher;
matching a rate of symbols outputted from the multiplexer to a given channel symbol rate; and
interleaving output symbols of the channel rate matcher in a channel unit.
0. 41. The channel coding method as claimed in
0. 42. The channel coding device as claimed in
0. 43. The channel coding device as claimed in
0. 44. The channel coding device as claimed in
0. 45. The channel coding device as claimed in
0. 46. The channel coding device as claimed in
0. 47. The channel coding device as claimed in
a repeater for repeating the coded symbols to match the rate of the coded symbols to the given channel symbol rate when the coded symbol rate is less than the given channel symbol rate; and
a puncturer for puncturing the coded symbols to match the rate of the coded symbols to the given channel symbol rate when the coded symbol rate is greater than the given channel symbol rate.
0. 48. The channel coding device as claimed in
0. 49. The channel coding device as claimed in
0. 50. The channel coding device as claimed in
0. 51. The channel coding device as claimed in
0. 53. The channel coding method as claimed in
0. 54. The channel coding method as claimed in
0. 55. The channel coding method as claimed in
0. 56. The channel coding method as claimed in
0. 57. The channel coding method as claimed in
0. 58. The channel coding method as claimed in
0. 59. The channel coding method as claimed in
repeating the coded symbols to match the rate of the coded symbols to the given channel symbol rate, when the coded symbol rate is less than the given channel symbol rate; and
puncturing the coded symbols to match the rate of the coded symbols to the given channel symbol rate, when the coded symbol rate is greater than the given channel symbol rate.
0. 60. The channel coding method as claimed in
0. 61. The channel coding method as claimed in
0. 62. The channel coding method as claimed in
0. 63. The channel coding method as claimed in
0. 64. The channel coding method as claimed in
|
This application claims priority to an application entitled “Channel Coding Device and Method” filed in the Korean Industrial Property Office on Jun. 5, 1998 and assigned Ser. No. 98-20990, the contents of which are hereby incorporated by reference.
1. Field of the Invention
The present invention relates generally to a channel coding device and method for a communication system. Specifically, the present invention relates to a rate matching device and methods for inserting known bits in an input source data bit stream, channel coding the bit-inserted data stream and then, puncturing the channel coded data symbols.
2. Description of the Related Art
In a communication system, a rate of source user data is changed to a rate of channel symbols during data transmission via a channel. Particularly, in a spread spectrum communication system, since a chip rate for spreading is fixed, a channel symbol rate should be changed in order to be a multiple of the chip rate after multiplexing various service channels. Such a procedure is called rate matching.
With reference to
The channel coder 102 of
A turbo decoder for decoding the output of the turbo coder of
A description will now be made as to symbol repetition performed for matching rates of symbols outputted from the channel coders 602, 612 and 622. A simple repetition of the channel coded symbols is a very simple symbol repetition method. However, the simple symbol repetition is not suitable for error correction. This is because in the light of the channel coded symbols, although a BER for the case where all the symbols are repeated two times (i.e., a rate ½) is similar to a BER for the case where the symbols are not repeated (i.e., a rate 1), a performance degradation may occur according to a channel condition in the case where the respective symbols are unequally repeated (see the CSELT Reference). Therefore, when unequal symbol repetition is performed for rate matching, efficiency of the overall system typically decreases.
Further, reference will be made to a turbo coder of
Therefore, for rate matching which requires symbol repetition, it is possible to guard against performance degradation by providing a channel coder which inserts specific bits in an input data bit stream and encodes the bit-inserted data bit stream. It is assumed herein that a value of the specific bits and bit inserting positions where the specific bits are to be inserted are known to both a transmission party and a reception party. Moreover, when puncturing is required for the channel coded symbols, the turbo coder selects puncturing positions for the parity bits, such that performance degradation due to puncturing is minimized.
It is, therefore, an object of the present invention to minimize performance degradation of a communication system during symbol repetition, puncturing and puncturing-after-symbol repetition in a rate matching device.
It is another object of the present invention to provide a rate matching device and method for inserting known bits in an input source data bit stream, channel coding the bit-inserted data bit stream and thereafter puncturing the channel coded data symbols.
It is further another object of the present invention to minimize performance degradation caused during puncturing by selecting acceptable symbol puncturing positions when performing rate matching for input channel coded symbols.
To achieve the above objects, there is provided a channel coding device. In the device, a bit inserter inserts known bits in an input data bit stream at predetermined positions. A channel coder codes the bit-inserted data bit stream to generate coded symbols. A rate matcher matches a rate of the coded symbols to a given channel symbol rate. A channel interleaver interleaves the rate matched channel symbols. The rate matcher includes a puncturer for puncturing the inserted known bits included in the coded symbols when the coded symbol rate is higher than the given channel symbol rate. The rate matcher includes a repeater for repeating the coded symbols to match the coded symbol rate to the given channel symbol rate when the coded symbol rate is lower than the given channel symbol rate.
The above and other objects, features and advantages of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings, in which:
Preferred embodiments of the present invention will be described herein below with reference to the accompanying drawings. In the following description, well known functions or constructions are not described in detail since they would obscure the invention in unnecessary detail.
It is assumed herein that a K=3 RSC coder is used for both first and second constituent coders. A soft-decision iterative decoder is used for the first and second constituent coders. Further, a MAP or SOVA decoder can be used for the soft-decision iterative decoder. In addition, not only an RSC coder but also a non-RSC coder can be used for the first and second constituent coders. Moreover, the first and second constituent coders may use different constraint lengths and generator polynomials.
A rate matcher 704 matches a rate of symbol data outputted from the channel coder 703 to a symbol rate of the transmission channel. The rate matcher 704 can be composed of a repeater and a puncturer. Also, the rate matcher 704 can be composed of any one of the repeater and the puncturer. A channel interleaver 705 interleaves the rate matched symbols. A modulator 706 modulates the channel interleaved symbol data. The modulator 706 may employ code division multiple access (CDMA) modulation techniques. A transmitter 707 converts the modulated transmission data to an RF signal and transmits the converted RF signal.
When a coded symbol rate is higher than a given channel symbol rate, the rate matcher 704 can be implemented by a puncturer for puncturing the symbols. However, when the coded symbol rate is lower than the given channel symbol rate, the rate matcher 704 can be implemented by a repeater for repeating the symbols to match the coded symbol rate to the given channel symbol rate. Alternatively, when the coded symbol rate is lower than the given channel symbol rate, the rate matcher 704 can be implemented by a repeater for repeating the symbols to approximately match the symbol rate to the given symbol rate and a puncturer for matching a rate of the repeated symbols to the given channel symbol rate.
For the channel coder 703, a K=3 turbo coder or a K=9 convolutional coder can be used.
In addition, a portion having a high error occurrence probability of an overall input data frame can be reinforced during bit insertion. With respect to performance of the channel coder, since a previously known value, i.e., a high reliability is used during decoding, an error rate is reduced in finding a survival path on a trellis of a decoder. The bit insertion technique which uses the bits previously known to both the transmission party and the reception party provides a higher performance at all the traveling velocities, and an increase in the number of the inserting bits increases the performance. Further, the bit inserter can vary the number of inserting bits according to a service option and class for the source user data or according to a service option and class for the control data.
The bit-inserted input data is channel coded by the channel coder 703 and the channel coded symbols are provided to the rate matcher 704 which matches a rate of the channel coded symbols to a specific symbol rate by puncturing. This procedure will be described below, by way of example.
Since the transmission party and the reception party both know the value and positions of the 43 bits inserted in the data outputted from the source coder 701, it is not necessary to actually transmit the bits via the channel. Therefore, the rate matcher 804 outputs 2048 rate matched symbols by puncturing 43 inserted bits. Since this technique provides many data bits previously known to both the transmission party and the reception party, an error probability is drastically reduced in tracing a survival path on a trellis during decoding. The number of the inserting bits varies according to a data rate.
Referring to
In the meantime, when a turbo coder is used for the channel coder 703 of
Further, in the conventional turbo coder of
In general, a transmission party exchanges rate information with a reception party in the process of call setup. However, when the rate information is not directly transmitted from the transmission party to the reception party, the reception party decodes a received signal according to predetermined various data rates and thereafter, checks a CRC included in the received data frame to detect the data rate. Therefore, in a system where a rate is matched by inserting specific bits in a data bit stream, when the reception party cannot be directly provided with the rate information in the call setup process, the reception party can perform decoding by changing the number of inserting bits, which is predetermined according to the data rate, and thereafter, checks a CRC in the data frame to determine where the data rate has an error.
With reference to
A first source coder 901 codes input source user data according to a predetermined coding method. A first bit inserter 902 inserts a predetermined number of known bits in the coded source data at predetermined positions, in order to transmit the coded source data at a specific data rate. The number of inserting bits and the positions where the inserting bits are inserted are previously scheduled with receiving devices. A first channel coder 903 codes the data outputted from the first bit inserter 902 at a specific coding rate and outputs user symbols (including data symbols and parity symbols). A turbo coder or a convolutional coder can be used for the first channel coder 903. A first rate matcher 904 matches a rate of symbol data outputted from the first channel coder 903 to a symbol rate of the transmission channel. The first rate matcher 904 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the first rate matcher 904 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded user symbol rate is higher than a given channel user symbol rate, the first rate matcher 904 can be implemented by a puncturer for puncturing the user symbols. However, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 904 can be implemented by a repeater for repeating the user symbols to match the user symbol rate to the given channel user symbol rate. Alternatively, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 904 can be implemented by a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate and a puncturer for matching a rate of the repeated user symbols to the given channel user symbol rate.
Furthermore, a second source coder 911 codes input source control data according to a predetermined coding method. A second bit inserter 912 inserts a predetermined number of bits in the coded source data, in order to transmit the coded source data at a specific data rate. The number of inserting bits and the positions where the inserting bits are inserted are previously scheduled with receiving devices. A second channel coder 913 codes the data outputted from the second bit inserter 912 at a specific coding rate and outputs data symbols and parity symbols. A turbo coder or a convolutional coder can be used for the second channel coder 913. A second rate matcher 914 matches a rate of symbol data outputted from the second channel coder 913 to a symbol rate of the transmission channel. The second rate matcher 914 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the second rate matcher 914 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded control symbol rate is higher than a given channel control symbol rate, the second rate matcher 914 can be implemented by a puncturer for puncturing the control symbols. However, when the coded control symbol rate is lower than the given channel control symbol rate, the second rate matcher 914 can be implemented by a repeater for repeating the control symbols to match the control symbol rate to the given channel control symbol rate. Alternatively, when the coded control symbol rate is lower than the given channel control symbol rate, the second rate matcher 914 can be implemented by a repeater for repeating the control symbols to approximately match the control symbol rate to the given channel control symbol rate and a puncturer for matching a rate of the repeated control symbols to the given channel control symbol rate.
A multiplexer 905 multiplexes the rate matched user data symbols and control data symbols, and a channel interleaver 906 interleaves the rate matched symbol data. A modulator 907 modulates the channel interleaved symbol data. The modulator 907 may employ CDMA modulation techniques. A transmitter 908 converts the modulated transmission data to an RF signal and transmits the converted RF signal.
Further, the demultiplexed control data experiences symbol combination or insertion at a second rate dematcher 1015, and a second channel decoder 1016 decodes the rate dematched control data. Since the decoded data includes the bits inserted by the second bit inserter 912 of
More specifically, when a coded user symbol rate is higher than a given channel user symbol rate, the first rate matcher 1104 can be implemented by a puncturer for puncturing the user symbols. However, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 1104 can be implemented by a repeater for repeating the user symbols to match the user symbol rate to the given channel user symbol rate. Alternatively, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 1104 can be implemented by a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate and a puncturer for matching a rate of the repeated user symbols to the given channel user symbol rate.
Furthermore, a second source coder 1111 codes input source control data according to a predetermined coding method. A secured channel coder 1112 codes the data outputted from the second source coder 1111 at a specific coding rate and output data symbols and parity symbols. A turbo coder or a convolutional coder can be used for the second channel coder 1112. A second rate matcher 1113 matches a rate of symbol data outputted from the second channel coder 1112 to a symbol rate of the transmission channel. The second rate matcher 1113 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the second rate matcher 1113 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded control symbol rate is higher than a given channel control symbol rate, the second rate matcher 1113 can be implemented by a puncturer for puncturing the control symbols. However, when the coded control symbol rate is lower than the given channel control symbol rate, the second rate matcher 1113 can be implemented by a repeater for repeating the control symbols to match the control symbol rate to the given channel control symbol rate. Alternatively, when the coded control symbol rate is lower than the given channel control symbol rate, the second rate matcher 1113 can be implemented by a repeater for repeating the control symbols to approximately match the control symbol rate to the given channel control symbol rate and a puncturer for matching a rate of the repeated control symbols to the given channel control symbol rate.
A multiplexer 1105 multiplexes the rate matched user data symbols and control data symbols, and a channel interleaver 1106 interleaves the rate matched symbol data. A modulator 1107 modulates the channel interleaved symbol data. The modulator 1107 may employ CDMA modulation techniques. A transmitter 1108 converts the modulated transmission data to an RF signal and transmits the converter RF signal.
Moreover, the demultiplexed control data experiences symbol combination or insertion at a second rate dematcher 1215, and a second channel decoder 1216 decodes the rate dematched control data. A second source decoder 1217 decodes the decoded data to output the control data. For the channel decoders 1206 and 1216 of
A first source coder 1301 codes first input user data according to a predetermined coding method. A first bit inserter 1302 inserts a predetermined number of known bits in the coded source data at predetermined positions, in order to transmit the coded source data at a specific data rate. The number of inserting bits and the positions where the inserting bits are inserted are previously scheduled with receiving devices. A first channel coder 1303 codes the data outputted from the first bit inserter 1302 at a specific coding rate to output user symbols (including data symbols and parity symbols). A turbo coder or a convolutional coder can be used for the first channel coder 1303. A first rate matcher 1304 matches a rate of symbol data outputted from the first channel coder 1303 to a symbol rate of the transmission channel. The first rate matcher 1304 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the first rate matcher 1304 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded user symbol rate is higher than a given channel user symbol rate, the first rate matcher 1304 can be implemented by a puncturer for puncturing the user symbols. However, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 1304 can be implemented by a repeater for repeating the user symbols to match the user symbol rate to the given channel user symbol rate. Alternatively, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 1304 can be implemented by a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate and a puncturer for matching a rate of the repeated user symbols to the given channel user symbol rate.
Further, a second source coder 1311 codes second input user data according to a predetermined coding method. A second bit inserter 1312 inserts a predetermined number of known bits in the coded source data at predetermined positions, in order to transmit the coded source data at a specific data rate. The number of inserting bits and the positions where the inserting bits are inserted are previously scheduled with receiving devices. A second channel coder 1313 codes the data outputted from the second bit inserter 1312 at a specific coding rate to output user symbols (including data symbols and parity symbols). A turbo coder or a convolutional coder can be used for the second channel coder 1313. A second rate matcher 1314 matches a rate of symbol data outputted from the second channel coder 1313 to a symbol rate of the transmission channel. The second rate matcher 1314 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the second rate matcher 1314 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded user symbol rate is higher than a given channel user symbol rate, the second rate matcher 1314 can be implemented by a puncturer for puncturing the user symbols. However, when the coded user symbol rate is lower than the given channel user symbol rate, the second rate matcher 1314 can be implemented by a repeater for repeating the user symbols to match the user symbol rate to the given channel user symbol rate. Alternatively, when the coded user symbol rate is lower than the given channel user symbol rate, the second rate matcher 1314 can be implemented by a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate and a puncturer for matching a rate of the repeated user symbols to the given channel user symbol rate.
Moreover, a third source coder 1321 codes input source control data according to a predetermined coding method. A third bit inserter 1322 inserts a predetermined number of known bits in the coded source data at predetermined positions, in order to transmit the coded source data at a specific data rate. The number of inserting bits and the positions where the inserting bits are inserted are previously scheduled with receiving devices. A third channel coder 1323 codes the data outputted from the third bit inserter 1322 at a specific coding rate to output control symbols (including data symbols and parity symbols). A turbo coder or a convolutional coder can be used for the third channel coder 1323. A third rate matcher 1324 matches a rate of symbol data outputted from the third channel coder 1323 to a symbol rate of the transmission channel. The third rate matcher 1324 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the third rate matcher 1324 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded control symbol rate is higher than a given channel control symbol rate, the third rate matcher 1324 can be implemented by a puncturer for puncturing the control symbols. However, when the coded control symbol rate is lower than the given channel control symbol rate, the third rate matcher 1324 can be implemented by a repeater for repeating the control symbols to match the control symbol rate to the given channel control symbol rate. Alternatively, when the coded control symbol rate is lower than the given channel control symbol rate, the third rate matcher 1324 can be implemented by a repeater for repeating the control symbols to approximately match the control symbol rate to the given channel control symbol rate and a puncturer for matching a rate of the repeated control symbols to the given channel control symbol rate.
It is contemplated that the number of bits inserted at the first through third bit inserters 1302, 1312 and 1322 can be varied according to the service options and classes of the first user data, the second user data and the control data.
A multiplexer 1305 multiplexes the rate matched user data symbols and control data symbols. A rate of the multiplexed data is matched to a channel symbol rate at a channel rate matcher 1306, and the rate matched symbol data is interleaved by a channel interleaver 1307. A modulator 1308 modulates the channel interleaved symbol data. The modulator 1308 may employ CDMA modulation techniques. A transmitter 1309 converts the modulated transmission data to an RF signal and transmits the converter RF signal.
In this embodiment, when a rate of the symbols outputted from the multiplexer 1305 is higher than a given channel symbol rate, the channel rate matcher 1306 can be implemented by a puncturer for puncturing the symbols. However, when the rate of the symbols outputted from the multiplexer 1305 is lower than the given channel control symbol rate, the channel rate matcher 1306 can be implemented by a repeater for repeating the symbols to match the symbol rate to the given channel symbol rate. Alternatively, when the rate of the symbols outputted from the multiplexer 1305 is lower than the given channel symbol rate, the channel rate matcher 1306 can be implemented by a repeater for repeating the symbols to approximately match the symbol rate to the given channel symbol rate and a puncturer for matching a rate of the repeated symbols to the given channel symbol rate.
Furthermore, the second demultiplexed user data experiences symbol combination or insertion at a second rate dematcher 1416, and a second channel decoder 1417 decodes the rate dematched user data. Since the decoded data includes the bits inserted by the second bit inserter 1312 of
Moreover, the demultiplexed control data experiences symbol combination or insertion at a third rate dematcher 1426, and a third channel decoder 1427 decodes the rate dematched control data. Since the decoded data includes the bits inserted by the third bit inserter 1322 of
For the channel decoders 1407, 1417 and 1427 of
A first source coder 1501 codes first input user data according to a predetermined coding method. A first bit inserter 1502 inserts a predetermined number of known bits in the coded source data at predetermined positions, in order to transmit the coded source data at a specific data rate. The number of inserting bits and the positions where the inserting bits are inserted are previously scheduled with receiving devices. A first channel coder 1503 codes the data outputted from the first bit inserter 1502 at a specific coding rate to output user symbols (including data symbols and parity symbols). A turbo coder or a convolutional coder can be used for the first channel coder 1503. A first rate matcher 1504 matches a rate of symbol data outputted from the first channel coder 1503 to a symbol rate of the transmission channel. The first rate matcher 1504 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the first rate matcher 1504 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded user symbol rate is higher than a given channel user symbol rate, and the first rate matcher 1504 can be implemented by a puncturer for puncturing the user symbols. However, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 1504 can be implemented by a repeater for repeating the user symbols to match the user symbol rate to the given channel user symbol rate. Alternatively, when the coded user symbol rate is lower than the given channel user symbol rate, the first rate matcher 1504 can be implemented by a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate and a puncturer for matching a rate of the repeated user symbols to the given channel user symbol rate.
Further, a second source coder 1511 codes second input user data according to a predetermined coding method. A second bit inserter 1512 inserts a predetermined number of known bits in the coded source data at predetermined positions, in order to transmit the coded source data at a specific data rate. The number of inserting bits and the positions where the inserting bits are inserted are previously scheduled with receiving devices. A second channel coder 1513 codes the data outputted from the second bit inserter 1512 at a specific coding rate to output user symbols (including data symbols and parity symbols). A turbo coder or a convolutional coder can be used for the second channel coder 1513. A second rate matcher 1514 matches a rate of symbol data outputted from the second channel coder 1513 to a symbol rate of the transmission channel. The second rate matcher 1514 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the second rate matcher 1514 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded user symbol rate is higher than a given channel user symbol rate, the second rate matcher 1514 can be implemented by a puncturer for puncturing the user symbols. However, when the coded user symbol rate is lower than the given channel user symbol rate, the second rate matcher 1514 can be implemented by a repeater for repeating the user symbols to match the user symbol rate to the given channel user symbol rate. Alternatively, when the coded user symbol rate is lower than the given channel user symbol rate, the second rate matcher 1514 can be implemented by a repeater for repeating the user symbols to approximately match the user symbol rate to the given channel user symbol rate and a puncturer for matching a rate of the repeated user symbols to the given channel user symbol rate.
Moreover, a third source coder 1521 codes input source control data according to a predetermined coding method. A third channel coder 1522 codes the data outputted from the third source coder 1521 at a specific coding rate to output data symbols and parity symbols. A turbo coder or a convolutional coder can be used for the third channel coder 1522. A third rate matcher 1523 matches a rate of symbol data outputted from the third channel coder 1522 to a symbol rate of the transmission channel. The third rate matcher 1523 can be composed of a repeater for repeating input data and a puncturer for puncturing the repeated symbol data. Also, the third rate matcher 1523 can be composed of any one of the repeater and the puncturer.
More specifically, when a coded control symbol rate is higher than a given channel control symbol rate, the third rate matcher 1523 can be implemented by a puncturer for puncturing the control symbols. However, when the coded control symbol rate is lower than the given channel control symbol rate, the third rate matcher 1523 can be implemented by a repeater for repeating the control symbols to match the control symbol rate to the given channel control symbol rate. Alternatively, when the coded control symbol rate is lower than the given channel control symbol rate, the third rate matcher 1523 can be implemented by a repeater for repeating the control symbols to approximately match the control symbol ate to the given channel control symbol rate and a puncturer for matching a rate of the repeated control symbols to the given channel control symbol rate.
A multiplexer 1505 multiplexes the rate matched user data symbols and control data symbols. A rate of the multiplexed data is matched to a channel symbol rate at a channel rate matcher 1506, and the rate matched symbol data is interleaved by a channel interleaver 1507. A modulator 1508 modulates the channel interleaved symbol data. The modulator 1508 may employ CDMA modulation techniques. A transmitter 1509 converts the modulated transmission data to an RF signal and transmits the converter RF signal.
In this embodiment, when a rate of the symbols outputted from the multiplexer 1505 is higher than a given channel symbol rate, the channel rate matcher 1506 can be implemented by a puncturer for puncturing the symbols. However, when the rate of the symbols outputted from the multiplexer 1505 is lower than the given channel control symbol rate, the channel rate matcher 1506 can be implemented by a repeater for repeating the symbols to match the symbol rate to the given channel symbol rate. Alternatively, when the rate of the symbols outputted from the multiplexer 1505 is lower than the given channel symbol rate, the channel rate matcher 1506 can be implemented by a repeater for repeating the symbols to approximately match the symbol rate to the given channel symbol rate and a puncturer for matching a rate of the repeated symbols to the given channel symbol rate.
Furthermore, the second demultiplexed user data experiences symbol combination or insertion at a second rate dematcher 1616, and a second channel decoder 1617 decodes the rate dematched user data. Since the decoded data includes the bits inserted by the second bit inserter 1512 of
Moreover, the demultiplexed control data experiences symbol combination or insertion at a third rate dematcher 1626, and a third channel decoder 1627 decodes the rate dematched control data. A third source decoder 1628 decodes the decoded data outputted from the third channel decoder 1627 to output the control data. For the channel decoders 1607, 1617 and 1627 of
The transmission schemes of
As described above, in accordance with the present invention, it is possible to minimize performance degradation of a mobile communication system during symbol repetition, puncturing and puncturing-after-symbol repetition in a rate matching device for facilitating implementation of hardware. Furthermore, since the reception party previously knows the inserted bits in the novel rate matching device, performance of the overall communication system increases as compared with a simple symbol repetition or puncturing-after-symbol repetition method where the reception party does not know the inserted bits.
In addition, with the present invention, it is possible to minimize performance degradation by puncturing the parity bits, not the data bits, when puncturing the coded symbols outputted from an RSC channel coder. Also, it is possible to minimize performance degradation by performing selective puncturing, such that the parity bits simultaneously generated by the respective constituent coders are not all punctured.
While the invention has been shown and described with reference to a certain preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Park, Chang-Soo, Lee, Hyeon-Woo
Patent | Priority | Assignee | Title |
7924763, | Dec 11 2007 | Google Technology Holdings LLC | Method and appratus for rate matching within a communication system |
8074155, | Sep 28 2006 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Tail-biting turbo coding to accommodate any information and/or interleaver block size |
8520496, | Dec 11 2007 | Motorola Mobiity LLC | Method and apparatus for rate matching within a communication system |
8719670, | May 07 2008 | SK HYNIX MEMORY SOLUTIONS INC | Coding architecture for multi-level NAND flash memory with stuck cells |
9047213, | May 07 2008 | SK hynix memory solutions inc. | Coding architecture for multi-level NAND flash memory with stuck cells |
9220112, | Jan 08 2010 | Nokia Technologies Oy | Method, device, and system for multiplexing data with selected modulation and coding schemes |
Patent | Priority | Assignee | Title |
5436918, | Aug 23 1991 | Matsushita Electric Industrial Co., Ltd. | Convolutional encoding/decoding apparatus with fixed bit insertion |
5878085, | Aug 15 1997 | Intersil Americas, Inc | Trellis coded modulation communications using pilot bits to resolve phase ambiguities |
5944849, | Jun 25 1994 | NEC Corporation | Method and system capable of correcting an error without an increase of hardware |
6081921, | Nov 20 1997 | THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT | Bit insertion approach to convolutional encoding |
6141353, | Sep 15 1994 | Canon Kabushiki Kaisha | Subsequent frame variable data rate indication method for various variable data rate systems |
6166667, | Apr 04 1998 | Samsung Electronics Co., Ltd. | Selection of turbo or non-turbo error correction codes based on data type or length |
GB2296165, | |||
JP2000068862, | |||
JP5055932, | |||
JP5183448, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 15 2004 | Samsung Electronics Co., Ltd | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 09 2011 | ASPN: Payor Number Assigned. |
Nov 15 2013 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 10 2013 | 4 years fee payment window open |
Feb 10 2014 | 6 months grace period start (w surcharge) |
Aug 10 2014 | patent expiry (for year 4) |
Aug 10 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 10 2017 | 8 years fee payment window open |
Feb 10 2018 | 6 months grace period start (w surcharge) |
Aug 10 2018 | patent expiry (for year 8) |
Aug 10 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 10 2021 | 12 years fee payment window open |
Feb 10 2022 | 6 months grace period start (w surcharge) |
Aug 10 2022 | patent expiry (for year 12) |
Aug 10 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |