A docking adapter for reliably inserting and removing a memory storage device from a memory storage device bay includes a rack and a removable carrier. The rack has a pair of lateral rails for holding the carrier. The carrier slidably engages the rails to enable the carrier to slide into the rack. The carrier is adapted for holding a hard disk drive. The carrier has a face with cooling fans, a cantilever mounted on the face for engaging the rack and a cover with a cam. The cover is hinged to the face. The cover rotates from a closed position where the cover parallels the face to an open position where the cover opens, pressing the cam against the cantilever against the rack to smoothly extract the carrier from the rack.
|
0. 7. A method, comprising:
obtaining a carrier configured to hold a memory storage device, a cover, and a shock absorbing element between the cover and the carrier, wherein the shock absorbing element comprises a cantilever having two legs and an opening between the two legs to facilitate airflow out of the carrier and through a fan mounted to a face of the carrier; and
inserting the carrier into a rack having at least two lateral rails.
0. 6. A data handling device, comprising:
a carrier configured to hold a memory storage device;
a rack having at least two lateral rails, wherein the carrier engages the at least two lateral rails;
a cover; and
a shock absorbing element between the carrier and the cover, wherein the shock absorbing element comprises a cantilever structure having two legs, and wherein the cantilever defines an opening between the legs to facilitate airflow out of the carrier and through a fan carried by a face of the carrier.
0. 4. A data handling device, comprising:
a carrier configured to hold a memory storage device;
a rack having at least two lateral rails, wherein the carrier engages the at least two lateral rails;
a cantilever coupled to the carrier, wherein the cantilever comprises two legs, and wherein the cantilever defines an opening between the legs to facilitate airflow out of the carrier and through a fan carried by a face of the carrier; and
a cover having a cam, wherein the cantilever is disposed between the cover and the carrier.
2. A memory storage device docking adapter, comprising:
a carrier for holding a hard disk drive, the carrier has a face;
a rack having two lateral rails, the carrier slidably engages the rails to enable the carrier to slide into the rack;
a cantilever mounted on the face for engaging the rack;
a cover with a cam, the cover is hinged to the face, the cover rotates from a closed position where the cover parallels the face to an open position where the cam presses the cantilever against the rack; and
wherein the cantilever is resilient and bends in response to the cam to dampen shock associated with insertion and removal of the carrier form from the rack.
1. A memory storage device docking adapter, comprising:
a carrier for holding a hard disk drive, the carrier has a face;
a rack having two lateral rails, the carrier slidably engages the rails to enable the carrier to slide into the rack;
a cantilever mounted on the face for engaging the rack;
a cover with a cam, the cover is hinged to the face, the cover rotates from a closed position where the cover parallels the face to an open position where the cam presses the cantilever against the rack;
the face includes at least one fan to blow air through the docking adapter; and
wherein the cantilever is bifurcated having two legs, the cantilever defines an opening between the legs to facilitate airflow through the fan.
3. The docking adapter as set forth in of
0. 5. The memory storage device apparatus of
0. 8. The method of
|
This application is a reissue application of U.S. patent application Ser. No. 09/751,122, filed on Dec. 27, 2000, now U.S. Pat. No. 6,565,163, which is a divisional of application Ser. No. 09/290,113, filed Apr. 12, 1999 now U.S. Pat. No. 6,193,339.
The present invention pertains to a docking adapter for memory storage devices and, more particularly mobile carrier and rack assemblies for hard disk drives and the like.
Docking adapters removeably interconnect memory storage devices to computer systems and memory storage device systems, for example. Docking adapters can provide many advantages over fixed hardware including improved data security, optimization of data backup procedures and sharing of vast amounts of data between non-integrated networks and systems. Docking adapters can also enable multiple users, each with his or her own hard drive, to use a single a machine without interfering with operating settings and data of another.
U.S. Pat. No. Re. 34,369 to Darden et al., the disclosure of which is incorporated herein by reference, discloses a docking adapter for a hard disk drive. The docking adapter includes a carrier for holding a hard drive and a rack that mounts in a computer housing. A connector is included on both the carrier and the rack. The carrier slides into the rack to couple the connectors. A key and lock are provided with the rack to lock and unlock the carrier in the rack. The carrier has a fixed handle to enable removal of the hard disk drive from the rack when the carrier is unlocked.
One drawback to the fixed handle design is that an operator may misalign the carrier with respect to the rack during insertion and removal of the carrier. Should the operate wiggle the carrier with the fixed handle, the connector that couples the carrier with the rack may be damaged.
U.S. Pat. No. 5,563,767 to Chen, the disclosure of which is incorporated herein by reference, discloses a docking adapter having a carrier and a rack. The carrier has a rotatable handle. The handle includes a disengagement mechanism (221) that cams directly against the rack to urge the carrier from the rack when the handle lifts.
One drawback to the device disclosed by Chen is that the handle lifts. As the handle lifts, the disengagement mechanism rotates against the rack and adds to this lifting force. As a result, the frontal portion of the carrier experiences a lifting force that may misalign the carrier with respect to the rack, damaging the connectors that couple the carrier to the rack.
Both the Darden et al. device and the Chen device have a lock that operates independently of the handle. When an over zealous operator pulls on the handle when the carrier is locked, the docking adapter may break. What is desired is a way of preventing the carrier and rack from being damaged during use.
Hard disk drives generate heat. Chen provides for vents to convectively cool any enclosed hard disk drive. The Chen device has vents and appears to be fabricated from injection molded plastic, which is typically a poor heat conductor. While the vents enable convective cooling under certain conditions, convective cooling may fail in systems that lack enough space for sufficient air flow. What is desired is a way of better cooling a hard disk drive in a mobile carrier and rack assembly.
Commonly assigned U.S. patent application Ser. No. 08,926,874, the disclosure of which is incorporated herein by reference introduces the concept providing a hard drive with a heat sink. Heat sinks vastly improve conductive cooling of hard drives over the capabilities of a plastic carrier, for example.
Docking adapters have connectors for coupling carriers with the rack. It has been found that durability of the connectors may be compromised due to excessive handling and repetitive insertion and removal of the carrier from the rack. It is possible that that friction between a plastic carrier and plastic rack can cause the carrier to resist movement in the rack. To overcome static friction, an operator must force the carrier to move with respect to the rack. Forcing the carrier may misalign the carrier and the rack and can ultimately cause failure of the data connector that couples the hard drive carrier with the rack. What is desired is a way of minimizing any force required to dock and undock a carrier and rack. What is also desired is a way to improve docking adapter reliability.
The present invention includes a memory storage device carrier and rack. The carrier holds a memory storage device such as a hard disk drive. The carrier smoothly inserts and removes the hard disk drive into and out of a fixed rack. The rack may be fixed in a computer housing, or a memory storage device housing for example. The carrier of the present invention can carry hard disk drives, optical drives, floppy drives and other memory storage media.
The carrier is portable for moving a hard drive from one machine to another. Carriers may be adapted to enable alternate memory storage devices, i.e. optical drives, PCMCIA drives, flash memory cards and hard disk drives to be interchanged in a single rack.
The rack is typically fixed in a hosing such as a computer housing or a RAID tower, and the like. The rack has two lateral rails. Each rail includes a slide bearing for sliding the carrier into and out from the racks. While rails are disclosed for holding the slide bearings, it can be appreciated that the rack may be fully enclosed for holding the slide bearings, or the slide bearings may be integrated into a computer housing, for example. Further, the rack rails may be integrated into an external-type hard drive rack.
A cantilever mounts on the face for engaging the rack. A cover rotatably attaches to the carrier. The cover has an end that forms a cam. The cover rotates from a closed position where the cover parallels the face to an open position. The cam presses the cantilever against the rack as the cover opens.
The cantilever has a contoured end, a fulcrum region, and a fixed end. The fixed end is fixed to the face. The fulcrum region contacts the cam when the cover angles with respect to the face of the carrier. The contoured end of the cantilever engages one rail of the rack to undock the carrier from the rack.
The cantilever is resilient and bends in response to rotation of the cam to dampen shock associated with insertion and removal of the carrier from the rack. The fixed end of the cantilever attaches to the center of the face of the carrier to optimize alignment of the carrier when the carrier slides into the rack. The contoured end absorbs shock such as when the carrier is shoved into the rack. Bending of the cantilever further buffers the insertion of the carrier into the rack. The cantilever, however, is relaxed when the carrier inserts into the rack and the cover is closed.
The cover 16 rotates from a closed position as shown in
The rack has a backplane 26 and two lateral rails 32 and 33 extending from the backplane for holding the carrier 12 in alignment with the rack 14. The carrier 12 slidably engages the rails 32 and 33 to enable the carrier 12 to slide out from and into the rack 14.
The rack 14 is fabricated from sheet metal for several reasons. Sheet metal e.g. steel is durable, conducts heat well and shields electromagnetic interference. The rails 32 and 33 are each fabricated from a single piece of metal for ease of manufacture. Each rail 32 and 33 includes integrated tabs 30 that attach to the rails 32 and 33 of the backplane 26.
The cantilever 34 has a fixed end 38 that mounts to the face 20 of the carrier 12. The cantilever 34 includes a fulcrum region 40 that aligns with and contacts the cam 42 of the cover 16. The cantilever 34 also includes a contoured end 44 that engages the rail 32 of the rack 14.
When the cover 16 rotates from the closed position (
The cantilever 34 is bifurcated having two legs 46. Each leg 46 independently attaches to the center of the face 20. The bifurcated cantilever 34 defines an opening 48 between the legs 46. The opening 48 enables air to flow out of the carrier 12 through the fans 22 and the cantilever 34. It can be appreciated that the legs 46 can assume any of a variety of configurations that allow air to pass through the cantilever. For example the legs may define a frame, grate, screen or other mechanism for enabling air to pass through the cantilever.
The cantilever 34 is resilient and bends. The cantilever 34 is formed with angled portions 50 that function as a leaf spring. The angled portions 50 also distance portions of the cantilever 34 from the face 20 of the carrier 12. The angled portions 50 prevent the face 20 from interfering with flexion of the cantilever 34 when the cantilever 34 bends. Typically the cam 42 flexes and bends the cantilever 34 when the cam 42 rotates. The cantilever 34 flexes to dampen shock associated with removal of the carrier 12 from the rack 14.
The cantilever 34 also flexes during insertion of the carrier 12 into the rack 14. When the contoured end 44 of the cantilever 34 contacts the rail 32 of the rack 14, and the carrier 12 further inserts into the rack 14, the cantilever 34 flexes to absorb shock. Such flexion presses the fulcrum region 40 into the cam 42 to rotate the cam 42 and automatically close the cover 16 when the cover 16 is open during insertion of the carrier into the rack. It can be appreciated, however, that it is preferred to closed the cover prior to inserting the carrier 12 into the rack 14.
The contoured end 44 of the cantilever 34 has a lateral face 52 and a posterior face 54. The lateral face 52 presses against one rail 32 to laterally align the carrier 12 with respect to the lateral rail 32 of the rack 14. The rail 32 has an axis. The posterior face 54 opposes the face 20 of the carrier 12. The posterior face 54 presses against the rail 32 when the cover 16 opens.
The rack 14 includes a lock 51 with a rotating cylinder 54 and a locking arm 56 attached to the lateral rail 33. The cylinder 54 rotates the locking arm 56 into contact with the cover 16 to lock the cover 16 in the closed position. The locking arm 56 contacts the face 20 of the carrier 12. The locking arm 56 thereby holds the carrier 12 in the rack 14 by contacting both the face 22 of the carrier 12 and the cover 16.
The fixed end 38 of the cantilever 34 against the center of the face 20 prevents the cantilever 34 from disturbing the alignment between the carrier 12 and the rack 14. The operation of the cover 16, the cam 42 and the lever cause sufficient force in the direction of the arrow 60 to decouple the carrier 12 from the rack 14 while maintaining alignment between the carrier 12 and the rack 14. Maintaining alignment is important to protect connectors that electronically couple the carrier 12 with the rack 14.
The lateral rails 32 and 33 extend from the backplane 26 to align the carrier 12 with the connector 62. The lateral rails 32 and 33 have a inner sides 64 and a slide bearing 66 fixed to each inner side 64. The slide bearing 66 has a smooth bearing surface 68 for sliding the carrier along the rails 32 and 33.
According to one aspect of the invention, the lateral rails 32 and 33 are fabricated from sheet metal and the slide bearings 66 are fabricated from nylon. According to an alternate aspect of the invention, the lateral rails 32 and 33 are fabricated from sheet metal and the slide bearings 66 are fabricated from a lubricous polymer. It can be appreciated that the bearing surface 68 conforms to whatever shape the carrier has so the bearing surface 68 may be planar, contoured, or may have various angles.
The lateral rails 32 and 33 each include a groove 72 formed on the inner sides 64 for receiving the slide bearing 66. The slide bearing 66 has “T” shaped extension 74 that inserts into the groove 72 to hold the slide bearing 66 with respect to the lateral rails 32 and 33, respectively.
The backplane 26 includes a vented section of sheet metal with a connector opening, an adapter board 78, a frame 80 and connectors 82 and 84. The connector 82 couples with the carrier 12 (FIG. 1), the other connector 84 couples with a hard drive controller, for example.
The present invention may be modified in any of a variety of ways without departing from the scope of the appended claims. For example, the slide bearings may include roller bearings and multiple rails that slide with respect to each other such as commonly seen in desk, or file cabinet drawers. Accordingly, the scope of this invention is to be limited only by the claims below.
Patent | Priority | Assignee | Title |
8077467, | Jan 05 2009 | Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd.; Hon Hai Precision Industry Co., Ltd. | Mounting apparatus for disk drive |
8154863, | Dec 11 2009 | Hong Fu Jin Precision Industry (ShenZhen) Co., Ltd.; Hon Hai Precision Industry Co., Ltd. | Data storage device assembly |
8508930, | Nov 05 2010 | Promise Technology, Inc. | Hard disk carrying apparatus |
8534776, | Jun 24 2011 | Hon Hai Precision Industry Co., Ltd. | Bezel assembly for computer |
8611093, | Oct 25 2011 | Dell Products, LP | Top accessible disk drive carrier for horizontally mounted hard drive |
9134772, | Aug 27 2013 | FULIAN PRECISION ELECTRONICS TIANJIN CO , LTD | Mounting apparatus for hard disk drive and electronic device with the mounting apparatus |
9158366, | Mar 14 2013 | SanDisk Technologies, Inc | Thermal control of a storage device receiving a limited amount of power |
9426920, | Oct 25 2011 | Dell Products, LP | Top accessible disk drive carrier for horizontally mounted hard drive |
Patent | Priority | Assignee | Title |
5563767, | May 04 1995 | Drawer type hard diskdrive adapter | |
5588728, | Nov 29 1994 | Intel Corporation | Portable disk drive carrier and chassis |
5641296, | Dec 23 1994 | HJS&E Engineering, Inc. | Folding handle carrier assembly |
5668696, | Jul 10 1995 | Dell USA, L.P. | Carrier-based mounting structure for computer peripheral chassis |
5673029, | Feb 15 1996 | FOOTHILLS IP LLC | Apparatus for cooling a memory storage device |
5751551, | Nov 07 1995 | Oracle America, Inc | Universal hard drive bracket with shock and vibrational isolation and electrical grounding |
5765933, | Feb 13 1997 | CRU Acquisition Group, LLC | Cam assisted ejection handle for a removable drive carrier |
5767445, | Nov 07 1995 | Drawer type hard diskdrive box assembly | |
5791753, | Aug 29 1996 | Hewlett Packard Enterprise Development LP | Computer component handle assembly |
5797667, | Jul 31 1996 | Hard disk case mounting structure | |
5808867, | Mar 27 1997 | Power supply assembly | |
5862037, | Mar 03 1997 | HANGER SOLUTIONS, LLC | PC card for cooling a portable computer |
5886639, | Feb 15 1996 | FOOTHILLS IP LLC | Memory storage device housing and cooling device |
6040981, | Jan 26 1999 | DELL USA, L P | Method and apparatus for a power supply cam with integrated cooling fan |
6067225, | Aug 04 1997 | Sun Microsystems, Inc | Disk drive bracket |
6104607, | Mar 03 1997 | HANGER SOLUTIONS, LLC | Cooling fan for PC card slot |
6108195, | Dec 11 1998 | SERVSTOR TECHNOLOGIES, LLC | Computer system having thin-profile display with removable connector assembly |
6142796, | Jun 08 1999 | HANGER SOLUTIONS, LLC | Collapsible hard disk drive docking adapter |
6185097, | Sep 10 1997 | FOOTHILLS IP LLC | Convectively cooled memory storage device housing |
6185106, | Dec 21 1995 | Cisco Technology, Inc | Printed circuit board extractor tool operated latch |
6193339, | Apr 12 1999 | SERVSTOR TECHNOLOGIES, LLC | Docking adapter for memory storage devices |
6288902, | May 25 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Modular data storage system for reducing mechanical shock and vibrations |
6319116, | Apr 12 1999 | SERVSTOR TECHNOLOGIES, LLC | Memory storage device docking adapter having hinged air filter |
6473297, | Apr 23 1999 | BUFFALO PATENTS, LLC | Memory storage device docking adapted having a laterally mounted fan |
6475016, | Jul 26 2000 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method and apparatus for securing electrical connectors |
6565163, | Apr 12 1999 | SERVSTOR TECHNOLOGIES, LLC | Rack for memory storage devices |
6628518, | Apr 23 1999 | BUFFALO PATENTS, LLC | Memory storage device rack having vented rails |
6676505, | Apr 12 1999 | SERVSTOR TECHNOLOGIES, LLC | Memory storage device docking adapter having a hinged air filter cover |
6840801, | Oct 29 1998 | HANGER SOLUTIONS, LLC | Docking apparatus for PC card devices |
6925246, | Jul 05 2000 | BUFFALO PATENTS, LLC | Television recorder having a removeable hard disk drive |
DE19701548, | |||
DE29621713, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 20 2001 | INCLOSE DESIGN, INC | COMERICA BANK | SECURITY AGREEMENT | 025681 | /0128 | |
Aug 23 2002 | COMERICA BANK | SYSKEY INTERNATIONAL | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025683 | /0527 | |
May 11 2004 | SYSKEY INTERNATIONAL | SUPERGATE TECHNOLOGY USA, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025683 | /0781 | |
May 27 2004 | SUPERGATE TECHNOLOGY, INC | Steinbeck Cannery LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025685 | /0471 | |
Nov 11 2004 | BEHL, SUNNY | Steinbeck Cannery LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025683 | /0987 | |
Aug 11 2015 | Steinbeck Cannery LLC | ZARBAÑA DIGITAL FUND LLC | MERGER SEE DOCUMENT FOR DETAILS | 037319 | /0984 | |
Aug 25 2021 | INTELLECTUAL VENTURES ASSETS 177 LLC | SERVSTOR TECHNOLOGIES, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 058537 | /0271 |
Date | Maintenance Fee Events |
Oct 25 2010 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 28 2014 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 17 2013 | 4 years fee payment window open |
Feb 17 2014 | 6 months grace period start (w surcharge) |
Aug 17 2014 | patent expiry (for year 4) |
Aug 17 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 17 2017 | 8 years fee payment window open |
Feb 17 2018 | 6 months grace period start (w surcharge) |
Aug 17 2018 | patent expiry (for year 8) |
Aug 17 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 17 2021 | 12 years fee payment window open |
Feb 17 2022 | 6 months grace period start (w surcharge) |
Aug 17 2022 | patent expiry (for year 12) |
Aug 17 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |