A method of optimal power calibration adapted to rewritable or recordable disks is disclosed. In addition to an original power calibration area (PCA) in the inner track of a disk, another rearranged PCA is allocated in the lead-out area of the outmost track. Two optimal power calibration processes are performed on both of the power calibration areas allocated on the inner and outmost tracks to respectively derived optimal recording powers. A relation curve is established by using these two optimal recording powers that this relation curve describes the relationships between the optimal recording powers of the recording positions and the distances from these recording positions to the center of the optical storage disk. Required optimal recording power of any recording position can be derived from the relation curve while performing data recording operations.
|
0. 22. An optical storage drive, comprising:
a head configured to record or read:
a first power calibration area in an inner track of said optical storage medium for deriving a first recording power;
a second power calibration area in a non-data-operation area of said optical storage medium for deriving a second recording power; and
a program area allocated between said first power calibration area and said second power calibration area, wherein a recording power of a recording position inside said program area is derived from a relation curve established by using said first recording power and said second recording power, wherein the relation curve is based on a polynomial equation.
0. 21. A data recording method for an optical storage medium comprising:
performing a first power calibration process on an original power calibration area of said optical storage medium to obtain a first recording power;
performing a second power calibration process on a rearranged power calibration area of said optical storage medium to obtain a second recording power;
deriving a characteristic information based on said first recording power and said second recording power, wherein the characteristic information is based on a polynomial equation; and
performing a data recording operation on said optical storage medium by using a recording power derived from said characteristic information.
0. 23. An apparatus for determining an optical recording power, comprising:
an optical recording head; and
a disk drive coupled to the optical recording head, wherein the optical recording head is configured to record onto an optical disk or read from the optical disk:
a first power calibration area in an inner track of the optical disk to derive a first recording power,
a second power calibration area in a non-data-operation area of the optical disk to derive a second recording power, and
a program area allocated between the first power calibration area and the second power calibration area, wherein a recording power of a recording position inside the program area is derived from a relation curve established by using the first recording power and the second recording power, wherein the relation curve is based on a polynomial equation.
15. An optical storage medium having at least one data session for storing data comprising:
a first power calibration area in an inner track of said optical storage medium, wherein a first optimal power calibration process is performed on said first power calibration area to derive a first optimal recording power;
a second power calibration area in an outmost track of said optical storage medium, wherein a second optimal power calibration process is performed on said second power calibration area to derive a second optimal recording power; and
a program area allocated between said first power calibration area and said second power calibration area, wherein an optimal recording power of a recording position inside said program area is derived from a relation curve established by using said first optimal recording power and said second optimal recording power, wherein the relation curve is based on a polynomial equation.
1. A data recording method for an optical storage medium comprising:
performing a first optimal power calibration process on an original power calibration area of said optical storage medium;
obtaining a first optimal recording power while performing said first optimal calibration process;
performing a second optimal power calibration process on a rearranged power calibration area of said optical storage medium;
obtaining a second optimal recording power while performing said second optimal calibration process;
deriving a characteristic information illustrative of overall optimal recording powers of said optical storage medium by using said first optimal recording power and said second optimal recording power, wherein the characteristic information is based on a polynomial equation; and
performing a data recording operation on said optical storage medium by using an optimal a recording power derived from said characteristic information.
9. A method of deriving an optimal a recording power for a recording position of an optical storage medium comprising:
performing a first optimal power calibration process on an original power calibration area of said optical storage medium, wherein said original power calibration area is allocated in an inner track of said optical storage medium;
obtaining a first optimal recording power from said original power calibration area while performing said first optimal power calibration process;
performing a second optimal power calibration process on a rearranged power calibration area of said optical storage medium, wherein said rearranged power calibration area is allocated in an outmost track of said optical storage medium;
obtaining a second optimal recording power while performing said first optimal power calibration process;
establishing a relation curve by using said first optimal recording power and said second optimal recording power, wherein the relation curve is based on a polynomial equation; and
deriving an optimal a recording power for any recording position of said optical storage medium from said relation curve.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
6. The method according to
7. The method according to
8. The method according to
10. The method according to
11. The method according to
12. The method according to
13. The method according to
14. The method according to
16. The optical storage medium according to
17. The optical storage medium according to
18. The optical storage medium according to
19. The optical storage medium according to
20. The optical storage medium according to
0. 24. The apparatus of
|
This application claims the priority benefit of Taiwan application serial no. 90109098, filed on Apr. 17, 2001.
1. Field of the Invention
The invention relates in general to a method of optimal power calibration. More particularly, the invention relates to a method of optimal power calibration that can derive the optimal recording power for any position of an optical storage medium such as a recordable or rewritable disk.
2. Description of the Related Art
Rewritable disks (CD-RW) and the recordable disks (CD-R) are currently popular optical storage medium in the market for data storage that a rewritable disk can vary or rewrite data stored inside, while the recordable disk can be used to record data only once. Both the rewritable and recordable disks have to undergo an optimal power calibration (OPC) process to obtain required optimal recording power before being used.
Conventional approaches for measuring the optimal recording power of disks are adapted to a constant linear velocity (CLV) mode rather than to a constant angular velocity (CAV) mode because the recording head follows different linear velocities for recording data in the inner and outer tracks under CAV mode. The linear velocities under CAV mode are proportional to the distances from the recording position (or, data block) to the center of the disk, while the velocities for recording the outer tracks can be as high as 2.5 times of that for recording the inner tracks. Such a difference may cause failures while recording the outer tracks by directly referring the optimal recording power derived from the power calibration area of the inner tracks. Although CLV mode is now the broadly used approach, however, it significantly consumes more recording time than that of the CAV mode. Additionally, even the CLV mode is adopted everywhere of a disk; different material coated on the inner and outer tracks should raise different requirements for recording. There is no solution now that overcomes data recording failures arisen from different material coated as aforementioned because the conventional OPC process can only find out the optimal recording power suitable for the inner tracks rather than whole the optical storage disk.
The principal object of the invention is to provide a method that obtains the optimal recording powers suitable for both the inner and outer tracks of a rewritable or recordable disk. A relation curve, which is a characteristic information illustrative of overall optimal recording powers of the disk is established. In the embodiment, the relation curve illustrates overall optimal recording powers by demonstrating the relationships between the optimal recording powers and the distances from the center of the disk to the recording positions. Therefore the optimal recording power can be derived for every recording position on a disk whether CLV or CAV mode is adopted, and regardless of what kind of material is coated on the inner and outer tracks.
The disclosed method can be applied to a recordable storage medium such as a rewritable disk or a recordable disk. Both the recordable and rewritable disks contain power calibration areas in their inner tracks. An optimal power calibration process is performed on the power calibration area of the inner track as conventional. Another power calibration area is rearranged at the outmost track of the optical storage disk and another power calibration process is performed on the rearranged power calibration area. Any data block of the disk may be used to record data by referring a relation curve established by using these two optimal recording powers. This relation curve that demonstrates the relationships between the optimal recording powers and the recording positions is used as an optimal recording power reference for recording operations performed later. Any optimal recording power of the currently recording position can be derived from the relation curve when performing a normal data recording operation.
In one embodiment of the invention, the power calibration performed on the power calibration area in the outmost track may damage a “lead-out” area. However, data accessing operations in the future will be normally performed because those data stored in so-called “lead-out” area is unusable while recovering the recorded data from the outmost tracks. By measuring the optimal recording powers for the inner and outmost tracks of the disk, the data block at any position of the disk can be recorded by means of the optimal recording power derived from the relation curve no matter CLV or CAV mode is adopted.
Both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
FIG. 2A and
As shown in
As shown in
In conclusion, the disclosed method measures the optimal recording power of both the inner and outmost tracks of an optical storage disk. A relation curve that illustrates the relationships between the optimal recording powers and the distances from the recording positions to the center of the disk is established by employing an interpolation approach. Associated data recording operation can be performed on everywhere in program area(s) of an optical storage disk by using the optimal recording powers derived from the relation curve whatever CLV or CAV mode is used.
It is appreciated that people of ordinary skill in the art may apply the method of optimal power calibration provided by the invention to any kind of recordable storage medium in addition to the rewritable and recordable disks. The rearranged power calibration area is preferably selected from a non-data operation area such as the outmost circle of the disk. In addition, an interpolation method is used to obtain the relation curve. In fact, other data analysis methods can also be applied to obtain various relation curves. Alternatively, only two calibration areas can be used for the method.
Other embodiments of the invention will appear to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Hsiao, Yuan-Kuen, Liow, Stanley
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5592463, | Sep 03 1993 | Pioneer Display Products Corporation | Apparatus for and method for determining optimum power for recording information on recordable optical disc |
6052347, | Feb 23 1996 | Ricoh Company, LTD | Method and apparatus for detecting optimum recording power for an optical disk |
6496807, | Sep 22 1998 | Sony Corporation | Recording medium, recording method and recording apparatus incorporating anti-tamper features involving writing billing information into a write-once area |
6711107, | Feb 09 2001 | MEDIATEK INC | System for constant angular velocity disk recording and method for laser power control thereof |
6987717, | Aug 10 2000 | Ricoh Company, LTD | Optical disk device recording data on a recordable or rewritable optical disk by setting a recording velocity and a recording power for each of zones on an optical disk |
20020110065, | |||
CN1368723, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 07 2007 | Via Technologies, INC | Tian Holdings, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025995 | /0769 |
Date | Maintenance Fee Events |
Jan 25 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 26 2017 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 17 2013 | 4 years fee payment window open |
Feb 17 2014 | 6 months grace period start (w surcharge) |
Aug 17 2014 | patent expiry (for year 4) |
Aug 17 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 17 2017 | 8 years fee payment window open |
Feb 17 2018 | 6 months grace period start (w surcharge) |
Aug 17 2018 | patent expiry (for year 8) |
Aug 17 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 17 2021 | 12 years fee payment window open |
Feb 17 2022 | 6 months grace period start (w surcharge) |
Aug 17 2022 | patent expiry (for year 12) |
Aug 17 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |