An electronic camera system includes a programmable transmission capability for selectively transmitting electronic image data to a plurality of remote base units. In one embodiment, a camera module is detachably coupled to a portable computer including a display screen and a data entry device. The electronic image data generated by the camera module is supplied to the portable computer for display on the display screen. The data entry device is used by an operator to select which of the plurality of base units are to receive the digital image data. The digital image data is supplied by the portable computer to a radio-frequency transmitter module for transmission to the selected base units. The radio-frequency transmitter module is formed either integral with the portable computer or, like the camera module, is detachably coupled to the portable computer. In a further embodiment, a combined telephone/camera unit is provided that includes a camera module for generating electronic image data representative of a scene to be imaged, a memory unit for storing the electronic image data generated by the camera module, a display screen for displaying the electronic image data stored in the memory unit, a mechanism for selecting which of the plurality of base units is to receive the digital image data, and a cellular transceiver for transmitting the digital image data to the base units selected by the selection mechanism.

Patent
   RE41542
Priority
Apr 24 1995
Filed
Feb 12 2009
Issued
Aug 17 2010
Expiry
Apr 24 2015
Assg.orig
Entity
Large
0
56
all paid
1. A portable handheld telephone system for selectively communicating with at least one of a plurality of receiving units, comprising:
(a) a telephone keypad for selecting a particular receiving unit;
(b) an image sensor for capturing image data;
(c) a memory for storing the captured image data;
(d) a control processor responsive to an image transmission mode signal indicating a type of image transmission mode receivable by the selected receiving unit for converting the stored image data into data which can be received by the selected receiving unit; and
(e) a portable transceiver/receiver including an antenna for transmitting the converted image data to the selected receiving unit in a format corresponding to the image transmission mode receivable by the selected receiving unit.
2. The portable handheld telephone system of claim 1, further including an image display for displaying the stored captured image.
3. The portable handheld telephone system of claim 1, wherein the memory can store a plurality of captured image data.
4. The portable handheld telephone system of claim 1, further including flash unit.
5. The portable handheld telephone system of claim 1, wherein the memory stores phone numbers for the receiving unit.
6. The portable handheld telephone system of claim 1 wherein the image transmission uses facsimile modes.
7. The portable handheld telephone system of claim 6, wherein the facsimile modes include Group IV facsimile and color facsimile.

This is a continuation of application Serial No. 08/842,458, filed Apr. 24, 1997, now U.S. Pat. No. 5,943,603, which is a divisional of U.S. patent application Ser. No. 08/426,993, filed Apr. 24, 1995, now U.S. Pat. No. 5,666,159.

The invention is directed to an electronic camera system. More specifically, the invention is directed to an electronic camera system that includes a transmission mechanism for sending image data to selected receiver units.

Motion video cameras and electronic still cameras have been utilized for several years in applications involving image data transmission. Electronic image data generated from a video camera, for example, can be transmitted by a conventional broadcast television station and received by any television in the broadcast area tuned to the appropriate channel. It is not possible, however, for the transmitter to select which receivers will obtain the image data, as selection is controlled at the receiver. Image data from electronic still cameras has been transmitted via conventional telephone lines to selected receivers through the use of a computer equipped with a modem. The image data must first be downloaded from the electronic still camera to the computer, which then transmits the image data to a second modem equipped computer via the telephone line where it can be viewed or printed. Unfortunately, the requirement for a telephone line to transmit image data does not allow images to be quickly and easily transmitted from remote field locations to receiver units. While systems have been proposed that utilize radio frequency transmission to transmit image data from an electronic camera to an individual base unit, none of these systems have the capability of selectively transmitting image data to a plurality of receiver units.

In view of the above, it is an object of the invention to provide an electronic camera system that includes a programmable transmission capability for selectively transmitting electronic image data to a plurality of remote receive units.

The invention provides an electronic camera system that includes a programmable transmission capability for selectively transmitting electronic image data to a plurality of remote receiver units. In one preferred embodiment of the invention, a camera module is detachably coupled to a portable computer including a display screen and a data entry device. The camera module includes an electronic image sensor for generating digital image data representative of a scene to be imaged. The electronic image data generated by the camera module is supplied to the portable computer for display on the display screen. The data entry device is used by an operator to select which of the plurality of base units are to receive the digital image data. The digital image data is supplied by the portable computer to a radio-frequency transmitter module for transmission to the selected receiver units. The radio-frequency transmitter module is formed either integral with the portable computer or, like the camera module, is detachably coupled to the portable computer. In a further preferred embodiment, a combined telephone/camera unit is provided that includes a camera module for generating electronic image data representative of a scene to be imaged, a memory unit for storing the electronic image data generated by the camera module, a display screen for displaying the electronic image data stored in the memory unit, a mechanism for selecting which of the plurality of receiver units is to receive the digital image data, and a cellular transceiver for transmitting the digital image data to the receiver units selected by the selection mechanism.

The invention will be described in greater detail with reference to certain preferred embodiments thereof and the accompanying drawings, wherein:

FIG. 1 is a diagram of a camera system in accordance with a first embodiment of the invention;

FIG. 2 is a perspective side view of a camera module utilized in the camera system illustrated in FIG. 1;

FIG. 3 is a front view of the camera module illustrated in FIG. 2;

FIG. 4 is a schematic block diagram of the components of the camera module illustrated in FIG. 2;

FIG. 5 is a flow diagram illustrating the operation of the camera system illustrated in FIG. 1;

FIG. 6 illustrates the display of a captured image and a receiver unit menu selection on a display screen of the camera system illustrated in FIG. 1;

FIG. 7 is a perspective front view of a combined telephone/camera unit in accordance with a second embodiment of the invention;

FIG. 8 is a top view of the combined telephone/camera unit illustrated in FIG. 7;

FIG. 9 is a schematic block diagram of the combined telephone/camera unit illustrated in FIG. 8;

FIG. 10 is a flow diagram illustrating the operation of the combined unit illustrated in FIG. 7; and

FIG. 11 is a diagram illustrating the transmission of image data to a base unit utilizing the combined unit illustrated in FIG. 7.

A diagram of a camera system in accordance with a first embodiment of the invention is illustrated in FIG. 1. The camera system includes a “clip-on” electronic camera module 10 coupled to a pen-based computer 12 that includes a radio frequency (RF) transmitter module 14 including an antenna. The camera module 10 can be of a form described in copending and commonly assigned U.S. patent application Ser. No. 07/988,517 entitled “Electronic Camera with Memory Card Interface to a Computer”, which describes a removable camera module that fits into and interfaces with a standard PCMCIA card interface slot of a pen-based computer, or of a type described in copending and commonly assigned U.S. patent application Ser. No. 07/988,560 entitled “Electronic Camera Incorporating a Computer-Compatible Bus Interface”, which describes a removable camera module that interfaces directly to a standard personal computer compatible bus. The camera module 10 takes still images that can be displayed on an interactive display screen 16 of the pen-based computer 12. The RF transmitter module 14 can either be a clip-on unit, like the camera module 10, or constructed integrally with the pen-based computer 12. The interactive display screen 16 acts as an input device to the pen-based computer 12, where a stylus or “pen” is used to select various icons or “buttons” displayed on the display screen 16 to enter data or commands into the pen-based computer 12. Still images captured by the camera module 10 are transmitted from the pen-based computer 12 to one or more receiver units, labeled A, B and C in FIG. 1, via the RF transmitter module 14. The still images can be displayed, printed, manipulated or stored at the receiver units A-C.

The camera module 10 is shown in greater detail in FIGS. 2 and 3 as preferably including a slide-out optical veiwfinder 18, a capture switch 20 for initiating an image capture operation, a lens 22, a flip-out flash unit 24 that protects the lens 22 when the camera module 10 is not in use, and a computer bus connector 26 that connects the camera module 10 to either the internal bus of the pen-based computer 12 or to an interface port (such as a PCMCIA slot) of the pen-based computer 12. Mounting clips 27 are provided to aid in securing the camera module 10 to the pen-based computer 12. As shown in FIG. 4, which illustrates a schematic block diagram of the internal components of the camera module 10, scene light passes through the lens 22, an adjustable aperture 28, a shutter mechanism 30 and a filter 32 to an electronic imaging unit 34. The electronic imaging unit 34 includes a charge coupled device (CCD) electronic imaging sensor 36, for example an Eastman Kodak KAF-400, driven by a CCD driver unit 38. The electronic imaging unit 34 is coupled to an image signal processor 40 that processes an analog image signal generated by the electronic imaging sensor 36 into digital image data, and supplies the digital image data to the computer bus connector 26. Specifically, the analog image signal is supplied to a gain stage, a correlated double sampling (CDS) circuit and then an analog-to-digital (A/D) converter which are not specifically illustrated in the diagram. The digitized output signal from the A/D converter is processed via an EPROM lookup table which performs gamma correction and white balancing. The overall operation of the camera module 10 is controlled by a camera control processor 42 that includes either a general purpose microprocessor or discrete circuit elements, which receives inputs from a light measuring unit 44 and the capture switch 20, and controls the operation of the flash 24, the signal processor 40, and a driver unit 46 that controls the operation of the aperture 28 and shutter 30.

The operation of the camera system is illustrated in greater detail in the flow diagram illustrated in FIG. 5. The user turns on the pen-based computer 12 using a power switch (not shown) to activate a camera application program stored in a memory unit of the pen-based computer 12, and then flips up the flash unit 24 which causes power to be supplied to the camera module 10 by activating a power switch (not shown). The user frames the subject using the optical viewfinder 18 and presses the capture switch 20 to initiate a sequence where the scene light level is read by the camera control processor 42 using the light measuring unit 44, the aperture 28 is adjusted, and the shutter 30 is opened to expose the electronic image sensor 36 to scene light. The camera control processor 42 also controls the firing of the flash unit 24 if the light measurement taken by the light measuring unit 44 indicates insufficient scene illumination. The image captured by the electronic image sensor 36 is processed by the image signal processor 40 and supplied to the pen-based computer 12 via the connector 26, where it is stored in the memory unit of the pen-based computer 12.

As illustrated in FIG. 6, the stored image is displayed on the display screen 16 of the pen-based computer 12 along with a transmission selection menu. The user has the option of transmitting the image to one or more of the receiver units A-C. The user selects the receiver units that are to receive the image by utilizing a pen or stylus to touch the appropriate icon displayed on the display screen 16. If appropriate, the image can be compressed, using for example JPEG compression, and converted to an appropriate format by the pen-based computer 12 prior to transmission to the receiver units A-C. After selection, the image is transmitted to the selected receiver units via the RF transmitter module 14.

The RF transmission link between the RF transmitter module 14 and the receiver units A-C may be a single frequency system including a cellular system, that uses the same frequency for all receivers, or a multiple frequency system, that uses different frequencies for each of the different receiver units A-C. In the latter case, the image is transmitted multiple times, once using the appropriate frequency band for each selected receiver unit. For single frequency systems, a header code is transmitted prior to transmitting the image. The header includes an ID for each receiver that is to receive the image. In a simple case, a three bit digital code is transmitted, where the first bit is 1 if receiver unit A should receive the image and 0 if it should not, the second bit is 1 if receiver unit B should receive the image and 0 if is should not, and the third bit is 1 if receiver unit C should receive the image and 0 if not. Alternatively, each receiver unit A-C could be assigned a specific address, and the header would contain the address of each receiver that should receive the image.

A second embodiment of the invention is illustrated in FIGS. 7 and 8. In this embodiment, a cellular telephone is provided with the components of an electronic image camera to form a combined telephone/camera unit 48. The top of the combined unit 48 includes a lens 50, a flip-up flash unit 52, and an antenna 54. The front face of the combined unit 48 is provided with a liquid crystal display screen 56 and a telephone keypad 58, both of which are coupled to an internal bus 60 along with a control processing unit 62, memory unit 64, and cellular transceiver 66 as shown in FIG. 9. The internal bus 60 is also connected to a camera module 68, which includes the same basic components as illustrated in FIG. 4, with the exception that the output from the image signal processor is supplied directly to the internal bus 60 instead of a connector.

In operation, as illustrated in greater detail by the flow diagram illustrated in FIG. 10, the user takes a picture by flipping up the flash unit 52 and pressing an image capture switch (not shown). Alternatively, a key (for example the # key) on the keypad 58 can be utilized as the image capture switch in an image capture mode of operation. The digitize picture data generated by the camera module 68 is stored in the memory unit 64 and displayed on the display screen 56. To transmit the image, the user dials the telephone number of a desired fax machine that is to receive the image using the keypad 58. The number is transmitted to the fax machine via the cellular transceiver 66. The fax machine responds back to the combined unit 48 with the type of fax mode it is capable of receiving, for example group IV fax, color fax, etc. The stored image is then converted to the appropriate fax standard by the control processing unit 62, and is transmitted to the receiving fax machine using the normal cellular telephone system that includes an RF link from the cellular transceiver 66 to a cellular base unit, which connects to the normal wire, fiber, and satellite telephone system as shown in FIG. 11. Once the image transmission is complete, the image can be transmitted to other fax machines by entering the desired numbers using the keypad 58. The memory unit 64 can include prestored phone numbers, to reduce the number of keystrokes needed to dial frequently used numbers, and can include memory for multiple images, so that multiple images can be transmitted to the same receiving fax machine, one after the other. In addition, the combined unit 48 may be pre-programmed so that the complete image capture and telephone dialing sequence is performed each time the image capture switch is activated.

The invention has been described with reference to certain preferred embodiments thereof. It will be understood, however, that modifications and variations are possible within the scope of the appended claims. For example, although the first illustrated embodiment utilizes a pen-based computer, other types of portable computers with non-interactive displays can be utilized. In such a case, commands and data would be entered via a keyboard, mouse or other data entry devices.

The invention provides an electronic camera system that includes a programmable transmission capability for selectively transmitting electronic image data to a plurality of remote base units. The camera system is particularly suited to applications, such as news gathering operations, in which it is desirable to capture images in remote field locations and transmit the images to a base station for subsequent review, distribution or publication.

Parts List

Parulski, Kenneth A., Schueckler, James R.

Patent Priority Assignee Title
Patent Priority Assignee Title
4363257, May 28 1980 FMC Corporation Strikedown service mechanism for a vertical launching system
4748655, Jul 25 1984 Racal Research Limited Portable telephones
5016115, Sep 11 1989 TV GUIDE, INC Point to multi point fax transmission method and system
5077784, Feb 29 1988 Sanyo Electric Co., Ltd. Visible telephone
5127041, Jun 01 1990 MLR, LLC A LIMITED LIABILITY COMPANY OF VIRGINIA ; SITI-SITES COM, INC System and method for interfacing computers to diverse telephone networks
5138459, Nov 20 1990 ST CLAIR INTELLECTUAL PROPERTY CONSULTANTS, INC Electronic still video camera with direct personal computer (PC) compatible digital format output
5146216, Dec 14 1989 Motorola, Inc. Multiple message signalling protocol for a selective call receiver
5179446, Oct 22 1991 Samsung Electronics Co., Ltd. Radio transmitting and receiving circuits of a video camera having a detached view finder
5189632, Aug 20 1990 Nokia Mobile Phones LTD Portable personal computer and mobile telephone device
5212628, Jan 17 1992 IDEA CORPORATION, THE Modular portable work station having a movable support tray
5237429, Jun 04 1990 Motorola, Inc. Facsimile interface device for radios
5343509, Aug 30 1991 Emergency information facsimile transmitter
5392447, Jan 10 1992 Eastman Kodak Compay Image-based electronic pocket organizer with integral scanning unit
5414444, Mar 30 1994 AT&T IPM Corp Personal communicator having orientable video imaging element
5438359, Sep 16 1992 Hoya Corporation Electronic camera system using IC memory card
5467198, Apr 20 1990 FUJIFILM Corporation Method for controlling an image processing system
5491507, Oct 23 1992 Hitachi, LTD Video telephone equipment
5550646, Sep 13 1993 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Image communication system and method
5570367, Jul 29 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Asymmetric protocol for wireless communications
5584070, Dec 29 1994 WILLIAM REBER, L L C Wireless pager with separable receiver unit and transmitter unit
5628055, Mar 04 1993 Telefonaktiebolaget L M Ericsson publ Modular radio communications system
5634080, Jun 29 1992 INPRO II LICENSING SARL Hand-held portable computer having an electroluminescent flat-panel display with pixel elements at right angles to the plane of the display and an excitation direction parallel to the plane of the display
5666159, Apr 24 1995 SCA VENTURES, LLC Electronic camera system with programmable transmission capability
5701258, Dec 29 1994 WILLIAM REBER, L L C Wireless pager with prestored images and methods and systems for use therewith
5712679, Jan 16 1989 COLES, CHRISTOPHER F , MR Security system with method for locatable portable electronic camera image transmission to a remote receiver
5724155, Dec 30 1993 Olympus Optical Co., Ltd. Electronic imaging system
5806072, Dec 20 1991 OLYMPUS OPTICAL CO , LTD Electronic imaging apparatus having hierarchical image data storage structure for computer-compatible image data management
5825408, Mar 31 1993 Casio Computer Co., Ltd. Portable compact imaging and displaying apparatus
5874999, Apr 28 1993 Fukuyama & Associates Image processing apparatus with multiple data modes
5893037, Dec 09 1994 Apple Inc Combined electronic/silver-halide image capture system with cellular transmission capability
5900947, Aug 27 1993 Canon Kabushiki Kaisha Communication apparatus prints or transmits received data depending on whether a predetermined number is included in a received command or not
5914787, Nov 19 1992 Olympus Optical Co., Ltd. Electronic imaging apparatus
5943603, Apr 24 1995 SCA VENTURES, LLC Electronic camera system with programmable transmission capability
5966643, May 14 1993 Alcatel Hand-held radiotelephone having two-part construction
6009336, Jul 10 1996 Google Technology Holdings LLC Hand-held radiotelephone having a detachable display
6122526, Apr 24 1997 SCA VENTURES, LLC Cellular telephone and electronic camera system with programmable transmission capability
6147708, Apr 28 1993 Olympus Optical Co., Ltd. Electronic still image camera apparatus
6427078, May 18 1995 IRONWORKS PATENTS LLC Device for personal communications, data collection and data processing, and a circuit card
DE4317488,
EP327834,
GB2242592,
GB2289555,
JP3295321,
JP4084587,
JP4170150,
JP4170881,
JP5167965,
JP63312730,
JP6338968,
RE34034, Oct 11 1985 MLR, LLC A LIMITED LIABILITY COMPANY OF VIRGINIA ; SITI-SITES COM, INC Cellular telephone data communication system and method
WO9008431,
WO9209169,
WO9314458,
WO9414274,
WO9422394,
WO9423371,
////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 31 1995SCHUECKLER, JAMES R Eastman Kodak CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0351950051 pdf
May 31 1995PARULSKI, KENNETH A Eastman Kodak CompanyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0351950051 pdf
Feb 12 2009Eastman Kodak Company(assignment on the face of the patent)
Feb 15 2012Eastman Kodak CompanyCITICORP NORTH AMERICA, INC , AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0282010420 pdf
Feb 15 2012PAKON, INC CITICORP NORTH AMERICA, INC , AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0282010420 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC NPEC INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONNPEC INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC FPC INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONFPC INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC KODAK IMAGING NETWORK, INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONKODAK IMAGING NETWORK, INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC PAKON, INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONPAKON, INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC QUALEX INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONQUALEX INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC CREO MANUFACTURING AMERICA LLCPATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONCREO MANUFACTURING AMERICA LLCPATENT RELEASE0299130001 pdf
Feb 01 2013Eastman Kodak CompanyIntellectual Ventures Fund 83 LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0303040525 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONKODAK PHILIPPINES, LTD PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC KODAK PHILIPPINES, LTD PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONKODAK AVIATION LEASING LLCPATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC Eastman Kodak CompanyPATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONEastman Kodak CompanyPATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC EASTMAN KODAK INTERNATIONAL CAPITAL COMPANY, INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONEASTMAN KODAK INTERNATIONAL CAPITAL COMPANY, INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC FAR EAST DEVELOPMENT LTD PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONFAR EAST DEVELOPMENT LTD PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC KODAK NEAR EAST , INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONKODAK NEAR EAST , INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC KODAK AMERICAS, LTD PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONKODAK AMERICAS, LTD PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC KODAK AVIATION LEASING LLCPATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONLASER-PACIFIC MEDIA CORPORATIONPATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC LASER-PACIFIC MEDIA CORPORATIONPATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONKODAK REALTY, INC PATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC KODAK REALTY, INC PATENT RELEASE0299130001 pdf
Feb 01 2013WILMINGTON TRUST, NATIONAL ASSOCIATIONKODAK PORTUGUESA LIMITEDPATENT RELEASE0299130001 pdf
Feb 01 2013CITICORP NORTH AMERICA, INC KODAK PORTUGUESA LIMITEDPATENT RELEASE0299130001 pdf
Mar 19 2015Intellectual Ventures Fund 83 LLCINTELLECTUAL VENTURES ASSETS 14 LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0352860274 pdf
Mar 31 2015INTELLECTUAL VENTURES ASSETS 14 LLCIQ HOLDINGS, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0353130354 pdf
Apr 02 2015IQ HOLDINGS, LLCNUMIC TECHNOLOGY, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0356340685 pdf
May 31 2017NUMIC TECHNOLOGY, LLCIQ HOLDINGS, LLCCORRECTIVE ASSIGNMENT TO CORRECT THE PATENT NUMBER 6660510 PREVIOUSLY RECORDED AT REEL: 043026 FRAME: 0988 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT 0432360916 pdf
May 31 2017NUMIC TECHNOLOGY, LLCIQ HOLDINGS, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0430260988 pdf
Jun 30 2017IQ HOLDINGS, LLCSCA VENTURES, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0440540263 pdf
Date Maintenance Fee Events
Aug 13 2010ASPN: Payor Number Assigned.
Dec 29 2011M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Aug 17 20134 years fee payment window open
Feb 17 20146 months grace period start (w surcharge)
Aug 17 2014patent expiry (for year 4)
Aug 17 20162 years to revive unintentionally abandoned end. (for year 4)
Aug 17 20178 years fee payment window open
Feb 17 20186 months grace period start (w surcharge)
Aug 17 2018patent expiry (for year 8)
Aug 17 20202 years to revive unintentionally abandoned end. (for year 8)
Aug 17 202112 years fee payment window open
Feb 17 20226 months grace period start (w surcharge)
Aug 17 2022patent expiry (for year 12)
Aug 17 20242 years to revive unintentionally abandoned end. (for year 12)