A velour fabric article consists of a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a loop yarn. The filament stitch yarn includes a heat sensitive material, e.g. a hot melt material or a heat shrinkable material, and/or an elastomeric material, such as spandex. The loop yarn includes flame retardant material, such as M-Aramide fiber. The fabric body has a velour surface formed at one or both of the technical back and the technical face. Raised fibers of at least one of the technical face and the technical back may be entangled, including in and/or through interstices of the fabric body, toward the other of the technical face and the technical back, e.g., by a hydroentanglement process applied after finishing. The fabric body has permeability of about 90 ft3/ft2/min, or less, under a pressure difference of ½ inch of water across the fabric body.
|
0. 36. A velour fabric article comprises a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a loop yarn, said filament stitch yarn comprising elastomeric material and said loop yarn comprising a spun yarn including flame retardant material selected from the group consisting of: m-Aramide fibers, m-Aramide fiber and p-Aramide fiber blends, and fibers and fiber blends of inherent flame retardant materials, said fabric body having a velour surface formed at one or both of said technical back and said technical face.
0. 35. A velour fabric article comprises a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a loop yarn, said filament stitch yarn comprising heat sensitive material and said loop yarn comprising a spun yarn including flame retardant material selected from the group consisting of: m-Aramide fibers, m-Aramide fiber and p-Aramide fiber blends, and fibers and fiber blends of inherent flame retardant materials, said fabric body having a velour surface formed at one or both of said technical back and said technical face, and said heat sensitive material responding to application of heat during processing to increase tortuosity and decrease permeability, thereby to improve dynamic insulation performance of the fabric article.
0. 1. A velour fabric article comprises a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a loop yarn, said filament stitch yarn comprising heat sensitive material and said loop yarn comprising flame retardant material selected from the group consisting of: m-Aramide fibers, m-Aramide fiber and p-Aramide fiber blends, and fibers and fiber blends of inherent flame retardant materials, said fabric body having a velour surface formed at one or both of said technical back and said technical face, and said heat sensitive material responding to application of heat during processing to increase tortuosity with a result of said fabric body having permeability of about 90 ft3/ft2min or less under a pressure difference of ½ inch of water across the fabric body.
0. 2. The velour fabric article of
0. 3. The velour fabric article of
0. 4. The velour fabric article of
0. 5. The velour fabric article of
0. 6. The velour fabric article of
0. 7. The velour fabric article of
0. 8. The velour fabric article of
0. 9. The velour fabric article of
0. 10. The velour fabric article of
0. 11. The velour fabric article of
0. 12. The velour fabric article of
0. 13. The velour fabric article of
0. 14. The velour fabric article of
0. 15. The velour fabric article of
0. 16. The velour fabric article of
0. 17. The velour fabric article of
0. 18. The velour fabric article of
0. 19. The velour fabric article of
0. 20. The velour fabric article of
0. 21. The velour fabric article of
0. 22. The velour fabric article of
0. 23. The velour fabric article of
0. 24. The velour fabric article of
0. 25. The velour fabric article of
0. 26. The velour fabric article of
0. 27. The velour fabric article of
0. 28. The velour fabric article of
0. 29. The velour fabric article of
0. 30. A velour fabric article comprises a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a loop yarn, said filament stitch yarn comprising elastomeric material and said loop yarn comprises flame retardant material selected from the group consisting of: m-Aramide fiber and p-Aramide fiber blends, and fibers and fiber blends of inherent flame retardant materials, said fabric body having a velour surface formed at one or both of said technical back and said technical face, and said fabric body having permeability of about 90 ft3/ft2/min or less under a pressure difference of ½ inch of water across the fabric body.
0. 31. The velour fabric article of
0. 32. The velour fabric article of
0. 33. The velour fabric article of
0. 34. The velour fabric of
0. 37. The velour fabric article of
0. 38. The velour fabric article of
0. 39. The velour fabric article of any one of claims 35 or
0. 40. The velour fabric article of
0. 41. The velour fabric article of
0. 42. The velour fabric article of
0. 43. The velour fabric article of
0. 44. The velour fabric article of
|
More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,828,003. This application is a continuation of reissue application Ser. No. 11/635,820, filed, Dec. 7, 2006, now U.S. Pat. No. RE 40,314, which is a broadening reissue of U.S. Pat. No. 6,828,003, issued Dec. 7, 2004.
This application is a continuation-in-part of U.S. application Ser. No. 09/982,720, filed Oct. 18, 2001, now abandoned which is a continuation-in-part of U.S. application Ser. No. 09/883,643, filed Jun. 18, 2001, now abandoned, which is a division of U.S. application Ser. No. 09/347,825, filed Jul. 2, 1999, now abandoned, the entire disclosures of all of which are incorporated herein by reference.
This invention relates to velour fabric articles, and, more particularly, to velour fabric articles having improved dynamic insulation performance due to relatively greater densification and tortuosity, and improved flame retardance.
Velour fabric articles having one or more fleece or raised surface regions at one surface or at both surfaces, e.g., achieved by processes of sanding, brushing and/or napping of exposed fibers, are known to have good insulation performance under static conditions, i.e., in calm or still air with no wind blowing through the fabric. However, the insulating performance of these fabric articles drops rapidly under dynamic conditions, i.e., in a chilling wind. As a result, a consumer wearing a velour fabric article will often find it necessary to also wear a shell, e.g., of woven nylon or other low permeability material, when conditions are likely to be windy.
It is also known to increase the thermal insulation performance of velour fabric articles by incorporating a relatively coarser stitch yarn and/or by tightening the stitch. However, these approaches result in fabric articles with very poor stretch, increased stiffness and increased weight.
According to one aspect of the invention, a double-face velour fabric article comprises a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a loop yarn, the filament stitch yarn comprising heat sensitive material and the loop yarn comprising flame retardant material, the fabric body having a velour surface formed at one or both of the technical back and the technical face, and the heat sensitive material responding to application of heat during processing to increase tortuosity with a result of the fabric body having permeability of about 90 ft3/ft2/min or less under a pressure difference of ½ inch of water across the fabric body (according to the testing method of ASTM Designation: D 737-96, “Standard Test Method for Air Permeability of Textile Fabrics,” the entire disclosure of which is incorporated herein by reference).
Preferred embodiments of this aspect of the invention may include one or more of the following additional features. The flame retardant material comprises m-Aramide fibers. The heat sensitive material is preferably selected from the group consisting of polypropylene, polyester, and polyamide. The heat sensitive material comprises heat shrinkable material, preferably selected from the group consisting of polypropylene, nylon, and polyester. The heat sensitive material responds to application of dry heat and/or to application of wet heat, e.g. steam or hot water, e.g. at about 212° F. to about 450° F. applied for about 2 minutes to about 60 minutes. The filament stitch yarn comprises elastomeric material, e.g. spandex. Filaments of the heat sensitive material and filaments of the elastomeric material are commingled or plaited together. The filament stitch yarn is a cored yarn comprising a core and a sheath, the sheath comprising hot melt material. The core material is preferably selected from the group consisting of polyester and nylon, and the hot melt material is preferably selected from the group consisting of polypropylene, polyester and polyamide. The loop yarn is split, e.g. by application of heat, e.g. the loop yarn of fine denier fibers or filaments comprises an “islands-in-sea” construction, or by application of a chemical, e.g. caustic soda, or by mechanical action, e.g. napping, to release multiple small diameter filaments. The loop yarn and/or the filament stitch yarn are textured. Raised fibers of the velour surface, of at least one of the technical face and the technical back, are entangled, including in and/or through interstices of the fabric body toward the other of the technical face and the technical back. Raised fibers of the technical back are entangled, including in and/or through interstices of the fabric body, toward the technical face. The fabric body has a velour surface region formed at the technical back or the fabric body has a velour surface region formed at each of the technical back and the technical face.
According to another aspect of the invention, a double-face velour fabric article comprises a fabric body having a technical face formed by a filament stitch yarn and a technical back formed by a filament loop yarn or spun loop yarn, the filament stitch yarn comprising elastomeric material and the loop yarn comprising flame retardant material, the fabric body having a velour surface formed at one or both of the technical back and the technical face, and the fabric body having permeability of about 90 ft3/ft2/min or less under a pressure difference of ½ inch of water across the fabric body.
Preferred embodiments of both of these aspects of the invention may include one or more of the following additional features. The flame retardant material comprises m-Aramide fibers. The elastomeric material comprises spandex. The fabric body has permeability of about 70 ft3/ft2/min or less. Raised fibers of the velour surface of at least one of the technical face and the technical back is entangled, including in and/or through interstices of the fabric body toward the other of the technical face and the technical back. Preferably, raised fibers of the technical back are entangled, including in and/or through interstices of the fabric body, toward the technical face.
According to yet another aspect of the invention, a method of forming a velour fabric body comprises the steps of: joining a filament or spun loop yarn and a filament stitch yarn to form a fabric prebody, the filament stitch yarn forming a technical face of the fabric prebody and the loop yarn forming a technical back of the fabric prebody, the filament stitch yarn comprising heat sensitive material and the loop yarn comprising flame retardant material, finishing at least one of the technical face and the technical back of the fabric prebody, thereby to form a velour fabric body having at least one velour surface region, entangling raised fibers of at least one of the technical face and the technical back, including in and/or through interstices of the fabric body, thereby to increase density and tortuosity of the fiber body, the fabric body having permeability of about 90 ft3/ft2/min or less under a pressure difference of ½ inch of water across the fabric body.
Preferred embodiments of this aspect of the invention may include one or more of the following additional features. The method comprises the further step of entangling the raised fibers in a process of hydroentanglement, by directing fine, high-pressure jets upon at least one of the technical face and the technical back. The method comprises the further step of directing fine, high-pressure jets upon the technical back, to cause raised fibers of the velour surface of the technical back to entangle, including in and/or through interstices of the fabric body, toward the technical face. The filament stitch yarn comprises heat sensitive material, and the method comprises the further step of exposing said fabric body to heating sufficient to cause a response by the heat sensitive material, thereby to increase tortuosity. The method comprises the further step of entangling the raised fibers in a process of hydroentanglement, by directing fine, high-pressure water jets upon at least one of the technical face and the technical back. The method comprises the further step of directing fine, high pressure jets (e.g., water jets or air jets) upon the technical back, to cause raised fibers of the velour surface of the technical back to entangle, including in and/or through interstices of the fabric body, toward the technical face. The method comprises the step of finishing the technical face and the technical back of the fabric prebody, thereby to form a velour fabric body having velour regions at opposite surfaces. The method comprises exposing the fabric body to the heating sufficient to cause a response by the heat sensitive material during dyeing and/or during finishing. The method comprises exposing the fabric body to dry heat and/or to wet heat, e.g. steam or hot water. The method comprises exposing the fabric body to heating sufficient to cause a response by the heat sensitive material for about 2 minutes to about 60 minutes at about 212° F. to about 450° F. The method comprises exposing the fabric body to heating sufficient to cause a response by the heat sensitive material, thereby to increase tortuosity with a result of the fabric body having permeability of about 70 ft3/ft2/min or less. The method comprises joining a loop yarn and a filament stitch yarn, the filament stitch yarn comprising elastomeric material, e.g., spandex.
An objective of the invention is to provide velour fabric articles having flame retardance and improved dynamic insulation performance while avoiding increased weight and/or loss of stretch and/or loss of flexibility. A further objective is to provide velour fabric articles that may be worn in chilling, windy conditions without markedly diminished insulation performance. Generally, tortuosity, and therefore density, is increased by using heat-sensitive and/or elastomeric materials in the stitch yarns and entangling the loop yarn fibers. The improved dynamic insulation performance achieved in conditions of relative wind speed (i.e., wind blowing and/or movement of the wearer in relation to ambient atmosphere) enhances flame retardance properties by allowing less air to penetrate through the fabric construction. Thus flame retardance is enhanced, e.g. in accordance with very stringent flame retardance requirements of the protective cloth and military markets, e.g., as set forth in NFPA 1975-94 (the complete disclosure of which is incorporated herein by reference), by including fibers of inherent flame retardant material, e.g., m-Aramide fibers (NOMEX®, as available from E. I. du Pont de Nemours and Company, of Wilmington, Del.) in the loop yarn of fleece or raised surface regions of the resulting velour fabric articles.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference symbols in the various drawings indicate like elements.
Referring to
The loop yarn 16 forming the technical back 20 of the knit fabric body 12 can be made of any synthetic or natural material. The cross section and luster of the fibers or filaments may be varied, e.g., as dictated by requirements of the intended end use. The loop yarn 16 can be a textured or flat filament or, preferably, a yarn of fine denier filaments or fibers (e.g., 1.5 dpf or lower), with a textured yarn being preferred for relatively greater dynamic insulating effect, as discussed below. The loop yarn overall denier is typically in the range of about 70 denier to 300 denier, with a preferred count of about 150 denier. At the preferred count, the filament count range is from about 100 filaments to 300 filaments, therefore providing a denier per filament (dpf) of from 1.5 to 0.5, respectively. A relatively smaller dpf, e.g. 1 dpf, is preferred for relatively greater dynamic insulating effect, as will be discussed below. A preferred commercial loop yarn is a 150/132 denier textured polyester yarn of fine denier filaments or fibers with a dpf of 1.14, e.g. as available from UNIFI, Inc., of Greensboro, N.C.
The stitch yarn 14 forming the technical face 16 of the knit fabric body 12 can be also made of any type of synthetic or natural material in a textured or flat filament yarn, with a textured yarn being preferred for relatively greater dynamic insulating effect. The range of stitch yarn count denier is typically between about 50 denier to 150 denier. Where the loop yarn is 150/132 textured, the preferred stitch yarn count is about 100 denier, and the filament count ranges from about 34 filaments to 200 filaments, i.e. 100/34 to 100/200, resulting in dpf from about 3 dpf to 0.5 dpf, with relatively finer filaments being preferred, again, for relatively greater dynamic insulating performance. A preferred stitch yarn is 100/136 denier textured polyester with about 0.7 dpf, e.g. as available commercially from UNIFI, Inc. Another preferred yarn is 130/408 denier textured polyester with about 0.3 dpf, e.g. as available from Hyosung, Inc., of Seoul, Korea.
From these examples, it can be seen that, for achieving markedly improved dynamic insulating performance, use of a textured 150/132 loop yarn and a textured 100/136 stitch yarn is preferred.
In comparison, in a prior art double-face velour fabric article (100,
In a preferred method of the invention, the fabric prebody 12 is formed by reverse plaiting on a fine cut circular knitting machine (e.g., 28 cut). This is principally a terry knit construction, where segments 22 of the loop yarn 16 cover the stitch yarn 14 o the technical back 20 and loops 23 of the loop yarn 16 form loops 23 at the technical face 18 of the fabric prebody 12 (see FIG. 1).
The fabric prebody 12 is next subjected to finishing. During the finishing process, the technical face and technical back surfaces 18, 20, respectively, of the fabric prebody 12, with the segments 22 of loop yarn 16 overlying the stitch yarn 14 at the technical face surface 18 and the loops 23 formed at the technical back surface 20, go through a finishing process such as sanding, brushing and/or napping, to generate a velour 24, 26. The yarn fibers are raised at both faces of the fabric prebody 12 (FIG. 1), including the technical face 18 and the technical back 20, to form the velour 24, 26 at each face of the fabric body 30 of the double-face velour fabric article 10 (
Referring to
Entangling raised fibers of the technical back, i.e., of the loop yarn, including in and/or through interstices of the fabric body, toward the technical face, results in relatively greater densification and therefore greater tortuosity, e.g., as compared to entanglement of raised fibers of the technical face, including in and/or through interstices of the fabric body, toward the technical back. Entangling from back to face, in addition to resulting in a relatively greater increase in tortuosity, also increases smoothness of the fabric/garment outer surface, while entangling from face to back increases tortuosity and increases smoothness of the fabric/garment inner surface.
Fabric performance and aesthetics of the fabric article 40 can also be adjusted by selection of knitting gauge (e.g., in the range of about 18 to about 36, and preferably about 28), yarn type (e.g., preferably textured, or flat filament), yarn denier (e.g., about 70 to about 300, and preferably about 100), fiber denier (e.g., about 0.3 to about 1.5, and preferably about 1.0), etc. Adjustment of jet speed and/or aperture size, e.g., within the ranges mentioned above, can further or instead be employed to adjust fabric performance and/or aesthetics.
The fabric article 40 is thereafter heat set to stabilize the fabric article width.
In this and other embodiments of the invention described below, heat may be applied to the fabric body, e.g. dry heat and/or wet heat, such as hot water or steam, e.g. during finishing or dyeing. As mentioned elsewhere, the stitch yarn (and/or the loop yarn) may include heat sensitive and/or elastomeric materials.
In a resulting double-face velour fabric article 10 of this embodiment of the invention, the overall density, i.e., weight per length, of the filament stitch yarn 14 is closely comparable to stitch yarn 102 used in a comparable prior art fabric article 100 having velour 104, 106 at the opposite faces. The diameter of the filament stitch yarn 14 may be slightly greater than that of the prior art stitch yarn 102 (likely due to increased filament-to-filament engagement of the filaments of the filament stitch yarn 14). The yarn count and gauge of the double-face velour fabric article 10 of the invention are also substantially the same as those for the comparable prior art fabric article 100. As a result, the weight and stretch performance of the double-face velour fabric article 10 of the invention is closely comparable to the weight and stretch of the prior art double-face velour fabric article 100 of the same gauge and yarn count.
The fact that the weight density of the filament stitch yarn 14 and the stitch yarn 102 are the same indicates that the ratio of yarn material to open volume for each of the respective articles is also approximately the same. However, in the filament stitch yarn 14, and in the resulting double-face velour fabric article 10 of the invention, the average cross sectional area of the individual filaments is considerably less that the average cross sectional area of filaments in the stitch yarn 102 employed in the comparable prior art fabric article 100, e.g. the denier per filament (dpf) of the preferred filament stitch yarn 14 is about 0.7 dpf, as compared to 3.0 dpf for the stitch yarn 102 of comparable prior art fabric article 100. As a result, the paths for passage of air, e.g., a chilling wind, through double-face velour fabric article 10 of the invention, while relatively more numerous, are also considerably smaller and relatively more tortuous, as compared to a comparable prior art double-face velour fabric article 100. The enhanced performance of the fabric article of the invention is achieved by increasing the yarn count and the filament count to make the paths through the fabric more tortuous, thus making it more difficult for air, i.e., a chilling wind, to penetrate quickly through the double-face velour fabric article 10 of the invention. As a result, the dynamic insulation performance of the double-face velour fabric of the invention is dramatically increased over the prior art.
In
In particular, it can be seen in the plot that at zero wind velocity there is relatively little difference in insulating performance among the materials tested. The dynamic insulating performance for each of the materials tested also decreased with increasing wind velocity. However, as may be seen in the plot, the rate of decrease in dynamic insulating performance was much more precipitous in fabrics of relatively greater permeability, i.e. as permeability increased, the rate of loss of dynamic insulating performance with increasing wind velocity was relatively smaller for fabrics of low permeability, as compared to fabrics having relatively greater permeability.
In Table A (below), the improvement in dynamic insulation performance of double-face velour fabric articles 10 (
The word “tortuosity” is used to describe the fabric property enhanced according to this invention by increasing yarn count and filament count. The paths through the fabric are made more “tortuous” than those of prior art fabrics, and greater “tortuosity” results in greater dynamic insulating effect. In addition, if a given fabric body is subjected to less than normal stretching, resulting in reduced final width of the fabric (i.e., the width resulting after heat setting of the fabric during the finishing process), the higher, still, the dynamic insulating performance of the resulting fabric article of the invention.
TABLE A
A1
A2
B1
B2
Loop Yarn
150/100
150/132
150/100
150/132
textured
textured
textured
textured
Stitch Yarn
100/34
100/34
100/34
100/34
textured
textured
textured
textured
Width
58-inch
58-inch
54-inch
54-inch
cuttable
cuttable
cuttable
cuttable
“Dynamic
100-110 cfm
60-70 cfm
70-80 cfm
50-60 cfm
Insulating
Performance”
Compare:
A1 to A2
A2 has finer loop yarn, and therefore relatively
better dynamic insulating performance.
Compare:
A1 to B1
B1 has narrower width, and therefore better
dynamic insulating performance.
Compare:
A1 to B2
B2 has finer loop yarn, and therefore better
dynamic insulating performance.
Compare:
A1 to B2
B2 has finer loop yarn and narrower width, and
therefore better dynamic insulating
performance.
In other preferred embodiments, fabric articles of the invention having relatively greater densification and tortuosity, and therefore increased dynamic insulation performance for enhanced protection from wind penetration, are achieved by incorporation of stitch yarns and/or loop yarns of predetermined selected characteristics. For example, stitch yarns and/or loop yarns including, or formed largely of, heat sensitive materials, e.g. hot melt or heat shrinkable materials, and/or elastomeric materials, such as spandex, may be employed.
For example, referring now to
Referring next to
Referring now to
Referring now to
Referring to
Referring finally to
Alternatively, referring to
Finally, referring to
Due to the increased tortuosity, including after heat treatment, a fabric article of the invention formed with stitch yarns including or consisting largely of heat sensitive materials and/or elastomeric materials, such as spandex, and/or loop yarns formed of heat sensitive materials and/or elastomeric materials such as spandex, and/or cored yarns having a sheath of hot melt material, have enhanced dynamic insulation performance, e.g. as compared to a prior art fabric article 100 (
Examples of fabric articles of the invention formed with heat sensitive materials and/or elastomeric materials will now be described. The air permeability was tested according to ASTM D-737 (the complete disclosure of which is incorporated herein by reference) on a Frazier machine with ½ of water pressure drop.
A fabric article of the invention, designated S/7380, was formed of a stitch yarn consisting of 150/34 POWERSTRETCH™ heat shrinkable textured polyester, available from UNIFI, Inc., and a loop yarn consisting of 150/132 textured polyester. After exposure to heat, the air permeability of the finished fabric article was 70 ft3/ft2/min.
Another fabric article of the invention, designated E555P, was formed of a stitch yarn consisting of 50/36 textured polyester with 20 denier spandex on every other end plaited with the 50/36 textured polyester and a loop yarn consisting of 150/132 textured polyester. After exposure to heat, the air permeability of the finished fabric article was 59 ft3/ft2/min.
Yet another fabric article of the invention, designated E657Y, was formed of a stitch yarn consisting of 50/36 textured polyester commingled with 40/20 textured polypropylene and a loop yarn consisting of 100/96 textured polyester. After exposure to heat, the air permeability of the finished fabric article was 38-40 ft3/ft2/min.
Another fabric article of the invention, designated E667Q, was formed of a stitch yarn consisting of 100/34 POWERSTRETCH™ heat shrinkable textured polyester and a loop yarn consisting of 100/96 textured polyester. After exposure to heat, the air permeability of the finished fabric article was 60-70 ft3/ft2/min.
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, any suitable type of yarn may be employed. Also, other suitable methods of constructing a velour fabric article of the invention may be employed. For example, in the preferred embodiment described above, the construction provided by reverse plaiting is employed in order to expose the loop yarn 16 for finishing at both surfaces of the fabric body, with segments 22 of the loop yarn 16 overlaying the stitch yarn 14 at the technical face 18 and formed into loops 23 at the technical back 20. This is preferred, for reasons of dynamic insulation performance, over a construction in which only the loop yarn is finished. However, where improvement of dynamic insulation performance is not the primary or an overwhelming consideration, a construction exposing the stitch yarn and the loop yarn side by side for finishing at one or both surfaces of a fabric body may be preferred. In embodiments of fabric articles of the invention formed with heat sensitive materials, heat may be applied other than or in addition to during dyeing and/or finishing, e.g., before, after, or between these stages of manufacture. Also, referring again to
As mentioned above, a fabric article with stitch yarn and/or loop yarn comprising heat sensitive and/or elastomeric material may also be entangled or hydroentangled according to the invention.
Accordingly, other embodiments are within the scope of the following claims.
Rock, Moshe, Hunter, Jane, Lumb, Douglas, Lie, William K., Dionne, Edward P., Haryslak, Charles
Patent | Priority | Assignee | Title |
10753017, | Aug 04 2015 | Siny Corp. | Insulating fabric and method for making the same |
11655568, | Sep 13 2017 | MMI-IPCO, LLC | Insulating double-knit fabric |
11725310, | Sep 13 2017 | MMI-IPCO, LLC | Insulating double-knit fabric |
8129296, | Jul 02 1999 | MMI-IPCO, LLC | Velour fabric articles having improved dynamic insulation performance |
Patent | Priority | Assignee | Title |
3837943, | |||
4067209, | Jun 04 1975 | IWS Nominee Company Limited | Warp knit upholstery fabrics |
4103518, | Apr 21 1975 | Jumberca S.A. | Knitting machine for knitting fabrics having terry loops at least on the technical front face thereof |
4546026, | Dec 03 1982 | Guilford Kapwood Limited | Simulated cashmere fabric and method |
5520022, | Sep 27 1993 | Milliken Research Corporation | Tack or wiping cloth |
5557950, | Jun 02 1995 | GUILFORD MILLS, INC | Warp knitted plush fabric resistant to pile pull-through |
5598615, | Jul 07 1995 | TAKAMOTO SILK YUGEN KAISHA; YOSHIZAKI, TAKAO | Silk velvet textile and method of manufacturing the same |
5727401, | Aug 09 1996 | Southern Mills, Inc. | Fire resistant fleece fabric and garment |
6082147, | Jul 01 1998 | MMI-IPCO, LLC | Two face terry knit raised surface fabric with face to back color differentiation |
6164095, | Apr 29 1998 | MMI-IPCO, LLC | Two face terry knit raised surface fabric with face to back color differentiation |
20020124365, | |||
20040132367, | |||
EP111409, | |||
EP313261, | |||
EP445395, | |||
EP541206, | |||
EP1067226, | |||
FR2313486, | |||
FR2512081, | |||
FR2747133, | |||
GB2106153, | |||
WO200044969, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 15 2008 | MMI-IPCO, LLC | (assignment on the face of the patent) | / | |||
Oct 25 2011 | MMI-IPCO, LLC | PNC Bank, National Association | SECURITY AGREEMENT | 027158 | /0010 | |
Jun 14 2019 | PNC Bank, National Association | POLARTEC, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049496 | /0070 | |
Jun 14 2019 | PNC Bank, National Association | MMI-IPCO, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 049496 | /0070 |
Date | Maintenance Fee Events |
Jun 07 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 07 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 24 2013 | 4 years fee payment window open |
Feb 24 2014 | 6 months grace period start (w surcharge) |
Aug 24 2014 | patent expiry (for year 4) |
Aug 24 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 24 2017 | 8 years fee payment window open |
Feb 24 2018 | 6 months grace period start (w surcharge) |
Aug 24 2018 | patent expiry (for year 8) |
Aug 24 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 24 2021 | 12 years fee payment window open |
Feb 24 2022 | 6 months grace period start (w surcharge) |
Aug 24 2022 | patent expiry (for year 12) |
Aug 24 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |