A semiconductor device may include a channel region formed between a source and a drain region. One or more first pockets may be formed in the channel region adjacent to junctions. The first pockets may be doped with a dopant of the first conductivity type. At least one second pocket may be formed adjacent to each of the junctions and stacked against each of the first pockets. The second pocket may be doped with a dopant of a second conductivity type such that the dopant concentration in the second pocket is less than the dopant concentration in the first pockets. The second pocket may reduce a local substrate concentration without changing the conductivity type of the channel region.
|
0. 21. A semiconductor device, comprising:
a semiconductor substrate having a concentration, Ns, of a dopant of a first conductivity type;
a source region and a drain region doped with a dopant of a second conductivity type;
junctions that define a channel region of a length, LN, in the substrate, wherein the junctions are defined by the source region and the drain region;
first pockets including a pocket located adjacent to each of the junctions, wherein each of the first pockets is doped with a dopant of the first conductivity type with a dopant concentration, Np;
second pockets including one pocket stacked against each of the first pockets, wherein each of the second pockets is doped with a dopant of the second conductivity type with a dopant concentration, Nn; and
wherein an overall length of the first pockets and the second pockets is less than the length, LN, of the channel region.
20. A semiconductor device, comprising:
a semiconductor substrate having a concentration, Ns, of a dopant of a first conductivity type;
a source region and a drain region doped with a dopant of a second conductivity type;
junctions that define a channel region of a length, LN, in the substrate, wherein the junctions are defined by the source region and the drain region;
first pockets located adjacent to each of the junctions, wherein the first pockets have a length, Lp, and wherein the first pockets are doped with a dopant of the first conductivity type with a dopant concentration, Np;
second pockets stacked against each of the first pockets, wherein the second pockets have a length, Ln, such that Ln is greater than Lp, wherein the second pockets are doped with a dopant of the second conductivity type with a dopant concentration, Nn, such that Nn is less than Np; and
wherein an overall length of the first pockets and the second pockets is less than the length, LN, of the channel region.
0. 45. A semiconductor device, comprising:
a semiconductor substrate having a concentration, Ns, of a dopant of a first conductivity type;
a source region and a drain region doped with a dopant of a second conductivity type;
first and second junctions that define a channel region of a length, LN, in the substrate, wherein the first and seocnd junctions are defined by the source region and the drain region, respectively;
a first set of pockets that includes a first pocket and a second pocket, wherein the first and second pockets are located adjacent to the first and second junctions, respectively, and wherein each of the first set of pockets is doped with a dopant of the first conductivity type with a dopant concentration, Np;
a second set of pockets that includes at least one pocket in the channel region adjacent to the first pocket, and at least one pocket in the channel region adjacent to the second pocket, wherein each of the second set of pockets is doped with a dopant of the second conductivity type with a dopant concentration, Nn; and
wherein an overall length of the first set of pockets and the second set of pockets is less than the length, LN, of the channel region.
0. 30. A method for fabricating a semiconductor device, comprising:
forming a semiconductor substrate with a concentration, Ns, of a dopant of a first conductivity type;
forming a source region and a drain region by doping the source and drain regions with a dopant of a second conductivity type, wherein the second conductivity type is opposite the first conductivity type, wherein the source and drain regions form junctions that delimit a channel region between them, and wherein the channel region comprises a length, LN;
forming first pockets including a pocket adjacent to each of the junctions in the channel region, wherein each of the first pockets is formed by doping each of the first pockets with a concentration, Np, of a dopant of the first conductivity type; and
implanting in the channel region a dopant of the second conductivity type under a set of conditions such that second pockets are formed in the channel region, wherein the second pockets include a pocket stacked against each of the first pockets, wherein the second pockets have a concentration, Nn, of the dopant of the second conductivity type, and wherein the overall length of the first pockets and the second pockets is less than the length, LN, of the channel region.
1. A semiconductor device, comprising:
a semiconductor substrate having a predetermined concentration, Ns, of a dopant of a first conductivity type;
a source region and a drain region doped with a dopant of a second conductivity type;
junctions, wherein the junctions delimit a channel region of a predetermined length, LN, in the substrate, wherein the junctions are defined by the source region and the drain region;
first pockets located adjacent to each of the junctions, wherein the pockets have a predetermined length, Lp, wherein the first pockets are doped with a dopant of the first conductivity type with a dopant concentration, Np, which locally increases a net concentration in the substrate above Ns;
second pockets located adjacent to each of the junctions and stacked against each of the first pockets, wherein the second pockets have a length, Ln, such that Ln is greater than Lp, and wherein the second pockets are doped with a dopant of the second conductivity type with a dopant concentration, Nn, such that Nn is less than Np, which locally decreases a net concentration without changing a conductivity type, and wherein Nn is less than Ns; and
wherein an overall length of the first pockets and the second pockets is less than the length, LN, of the channel region.
8. A method for fabricating a semiconductor device, comprising:
forming a semiconductor substrate with a predetermined concentration, Ns, of a dopant of a first conductivity type;
forming a source region and a drain region by doping the source and drain regions with a dopant of a second conductivity type, wherein the second conductivity type is opposite the first conductivity type, wherein the source and drain regions form junctions that delimit a channel region between them, and wherein the channel region comprises a predetermined length, LN;
forming first pockets adjacent to each of the junctions in the channel region, wherein the first pockets are formed by doping each of the first pockets with a predetermined concentration, Np, of a dopant of the first conductivity type, which locally increases a net concentration in the substrate above Ns, and wherein each of the first pockets comprises a predetermined length, Lp; and
implanting in the channel region a dopant of the second conductivity type under a set of conditions such that second pockets are formed in the channel region, wherein the second pockets are stacked against each of the first pockets, wherein the second pockets have a length, Ln, such that Ln is greater than Lp, wherein the second pockets have a concentration, Nn, of the dopant of the second conductivity type such that Nn is less than Np, which locally decreases a net concentration without changing a conductivity type, wherein Nn is less than Ns, and wherein the overall length of the first pockets and the second pockets is less than the nominal length, LN, of the channel region.
2. The semiconductor device of
3. The semiconductor device of
Ln1>Lp;
Lni−1<Lni<Lni+1;
Nni−1>Nni>Nni+1; and
wherein the sum, ΣNni, of the concentrations of the dopant in the elementary pockets satisfies the relationship, ΣNni<Ns.
4. The semiconductor device of
5. The semiconductor device of
6. The semiconductor device of
7. The semiconductor device of
9. The method of
10. The method of
Ln1>Lp;
Lni−1<Lni<Lni+1;
Nni−1>Nni>Nni+1; and
wherein the sum, ΣNni of the concentrations of the dopant in the elementary pockets satisfies the relationship, ΣNni<Ns.
11. The method of
12. The method of
13. The method of
14. The method of
17. The method of
0. 22. The semiconductor device of
0. 23. The semiconductor device of
0. 24. The semiconductor device of
0. 25. The semiconductor device of
Ln1>Lp;
Lni−1<Lni<Lni+1;
Nni−1>Nni>Nni+1; and
wherein the sum, ΣNni, of the concentrations of the dopant in the elementary pockets in one of the second pockets satisfies the relationship, ΣNni<Ns.
0. 26. The semiconductor device of
0. 27. The semiconductor device of
0. 28. The semiconductor device of
0. 29. The semiconductor device of
0. 31. The method of
0. 32. The method of
0. 33. The method of
0. 34. The method of
0. 35. The method of
0. 36. The method of
Ln1>Lp;
Lni−1<Lni<Lni+1;
Nni−1>Nni>Nni+1; and
wherein the sum, ΣNni, of the concentrations of the dopant in the elementary pockets in each of the second pockets satisfies the relationship, ΣNni<Ns.
0. 37. The method of
0. 38. The method of
0. 39. The method of
0. 40. The method of
0. 41. The method of
0. 42. The method of
0. 43. The method of
0. 44. The method of
0. 46. The semiconductor device of
0. 47. The semiconductor device of
0. 48. The semiconductor device of
a first group of at least two pockets located adjacent to the first pocket in the channel region, wherein the first group of at least two pockets are stacked against one another;
a second group of at least two pockets located adjacent to the second pocket in the channel region, wherein the second group of at least two pockets are stacked against one andother;
0. 49. The semiconductor device of
Ln1>Lp;
Lni−1<Lni<Lni+1;
Nni−1>Nni>Nni+1; and
wherein the sum, ΣNni, of the concentrations of the dopant in the second set of pockets satisfies the relationship, ΣNni<Ns.
|
1. Field of the Invention
The present invention relates in general to a semiconductor device, such as an MOS transistor, in which there is compensation for the drop in the threshold voltage (Vth) due to the short-channel effects, and to a process for fabrication of such a semiconductor device.
2. Description of the Related Art
For a given nominal channel length (L) of a transistor, the threshold voltage (Vth) drops suddenly, in particular for short-channel transistors (i.e., those having a channel length of less than 0.25 μm and typically a channel length, L, of about 0.18 μm).
The threshold voltage of a semiconductor device such as an MOS transistor, in particular a short-channel device, is a critical parameter of the device. This is because the leakage current of the device (for example, of the transistor) depends strongly on the threshold voltage. Taking into consideration current supply voltages and those envisaged in the future (from 0.9 to 1.8 volts) for such devices and the permitted leakage currents (Ioff of approximately 1 nA/μm), the threshold voltage Vth must have values of approximately 0.2 to 0.25 volts.
The sudden voltage drop (or roll-off) in the zones of the channel region of the semiconductor device results in dispersion of the electrical characteristics of the device and makes it difficult to obtain the desired threshold voltages.
To remedy this threshold voltage roll-off in semiconductor devices such as MOS transistors, it has been proposed, as described in the article “Self-Aligned Control of Threshold Voltages in Sub-0.02-μm MOSFETs” by Hajima Kurata and Toshihiro Sugii, IEEE Transactions on Electron Devices, Vol. 45, No. Oct. 10, 1998, to form, in the channel region, pockets adjacent to the source and drain region junctions that have a conductivity of the same type as the substrate; but in which, the dopant concentration is greater than that of the substrate.
Although this solution reduces the threshold voltage roll-off gradient in the channel region, the short-channel effects lead to a more rapid roll-off of the threshold voltage, Vth, than the increase in the threshold voltage that can be obtained by incorporating the compensation pockets of the prior art.
Consequently, although these compensation pockets allow partial local compensation for the roll-off of the threshold voltage, Vth, it is not possible to obtain complete compensation for the roll-off over the entire channel region range desired.
Therefore a semiconductor device, such as an MOS transistor, that remedies the drawbacks of the devices of the prior art may be desired.
More particularly, a semiconductor device, such as an MOS transistor, whose voltage threshold roll-off due to the short-channel effects is almost fully compensated for may be desired. This makes it possible to achieve channel lengths which are arbitrarily small but non-zero.
Also a semiconductor device, such as an MOS transistor, may have a constant threshold voltage, Vth, when the channel length, L, decreases down to very small effective channel lengths, for example, 0.025 μm or less.
A process for fabricating a semiconductor device may apply to devices having channels of arbitrarily small length, these being, moreover, technologically realizable.
A semiconductor device is described that may have a semiconductor substrate with a predetermined concentration, Ns, of a dopant of a first conductivity type. The device may have source and drain regions which are doped with a dopant of a second conductivity type, which is opposite of the first conductivity type. Junctions delimiting a channel region of predetermined nominal length, LN, may be defined in the substrate. A first pocket adjacent to each of the junctions and having a predetermined length, Lp, may be defined. The first pockets may be doped with a dopant of the first conductivity type but with a local concentration, Np, which locally increases the net concentration in the substrate. The device may include at least one second pocket located adjacent to each of the junctions and stacked against each of the first pockets. These second pockets may have a length, Ln, such that Ln>Lp. The second pockets may be doped with a dopant of the second conductivity type and have a concentration, Nn, such that Nn<Np. This may locally decrease the net concentration of the substrate without changing the conductivity type.
In an embodiment, the second pockets include a plurality of elementary pockets stacked against one another. Each elementary pocket of a given rank, i, may have a predetermined length, Lni, and a predetermined concentration, Nni, of a dopant of the second conductivity type satisfying the following relationships:
In other words, the second pockets decrease the net concentration of dopant of the first conductivity type both in the first pockets and in the channel region. However, they do not change the conductivity type of the first pockets nor of the channel region.
A process for fabricating a semiconductor device as defined above is described. The process may include the formation of a source region and of a drain region in a semiconductor substrate having a predetermined concentration, Ns, of a dopant of a first conductivity type. The source region and the drain region may be doped with a dopant of a second conductivity type, which is opposite of the first conductivity type. The source and drain regions may form one or more junctions in the substrate such that the junctions delimit between them a channel region. The channel region may have a predetermined nominal length, LN. In the channel region in a zone adjacent to each of the junctions, one or more first pockets may be formed having a predetermined length, Lp, and a predetermined concentration, Np. This may locally increase the net concentration in the substrate above Ns. The process may furthermore include the implantation, in the channel region, of a dopant of the second conductivity type, which is opposite of the first conductivity type. This may be done under a set of conditions such that at least one second pocket is formed in the channel region. Each second pocket may be stacked against each of the first pockets, respectively. The second pocket may have a length, Ln, such that Ln>Lp, and a concentration, Nn, of a dopant of the first type such that Nn<Np. This may locally decrease the net concentration in the substrate, without changing the conductivity type.
In a preferred embodiment, the implantation of the dopant of the second conductivity type consists of a series of successive implantations under a set of conditions such that the second pockets formed each consist of a plurality of elementary pockets stacked against one another. Each elementary pocket of a given rank, i, may have a length, Lni, and a concentration, Nni, of a dopant of the second conductivity type satisfying the relationships:
The lengths Lp and Ln of the pockets are taken from the junctions.
Implantation of a dopant in a semiconductor substrate is a known process and it is possible, in the present process, to use any implantation process conventionally used in the technology of semiconductors.
As is known, the formation of doped pockets in a semiconductor substrate depends on the angle of incidence of the implantation with respect to the normal to the substrate, on the implantation dose, and on the implantation energy of the dopant. Thus, by varying the angle of incidence and the dopant dose, it is possible to increase the length of the implanted pocket and to vary the dopant concentration.
As a variant, in order to vary the length of the second implanted pockets and their dopant concentration, successive implantation steps may be carried out with the same angle of incidence with respect to the normal, the same dose, and the same implantation energy. However, subjecting the device to a different annealing heat treatment step after each successive implantation step may make the dopant implanted in the substrate diffuse differently for each implanted pocket.
The remainder of the description refers to the appended figures, which show respectively:
The channel region 6 may be covered with a gate oxide layer 11 (for example, a thin silicon oxide layer), which is itself surmounted by a gate 12 (for example, a gate made of silicon). The gate 12 may be flanked on two opposed sides by spacers 13, 14 made of a suitable dielectric.
To reduce the rate of roll-off of the threshold voltage, Vth, in the channel region 6, two first pockets 7, 8 are formed in the channel region. Each pocket may be adjacent to one of the junctions 4, 5, respectively. These pockets are doped by means of a dopant of the first conductivity type, p, but with a concentration, Np, of dopant which locally increases the concentration in the substrate to above Ns and has a length, Lp, as short as possible.
Two second pockets 9, 10 are formed in the channel region 6. The second pockets are each stacked against one of the first pockets, but with a length, Ln, greater than the length, Lp, of the first pockets. The second pockets are doped with a dopant of the second conductivity type. For example, the dopant may be an n-type dopant with a concentration, Nn, such that Nn is less than the concentration Np of dopant of the first conductivity type in the substrate.
Thus, in the zones of the second pockets, the net concentration of dopant of the first conductivity type (for example, the p-type dopant) is decreased but the nature of the conductivity in the channel region is not changed. The channel may still remain a region of p-type conductivity.
Each elementary pocket of a given rank, i, has a length, Lni, and a concentration, Nni, of dopant of the second conductivity type which satisfy the following relationships:
In other words, the elementary pockets stacked against the first pockets 7 and 8 are also stacked against one another. However, they have increasing lengths and, concurrently, concentrations of dopant of the first conductivity type which decrease as their lengths increase.
Moreover, the sum of the concentrations, ΣNni, of the stacked elementary pockets is such that it remains less than the concentration, Ns, of dopant of the first conductivity type in the substrate so that the conductivity type of the channel region 6 is not modified.
Thus, in the case shown in
Curve A corresponds to the stacking of a single second pocket and shows that a flat Vth is obtained for a channel length down to 0.15 μm.
Curve B corresponds to the stacking of two second pockets and shows that a flat Vth is obtained for a channel length down to 0.07 μm.
Finally, curve C corresponds to the stacking of seven second pockets and shows that a flat Vth can be obtained for a channel length down to 0.025 μm.
Thus, the above curves show that the necessary doping levels remain reasonable and make it possible to obtain flat curves of Vth as a function of the effective channel length down to effective lengths of 25 nm. This may be so even with gate oxide thicknesses of 4 nm.
Skotnicki, Thomas, Gwoziecki, Romain
Patent | Priority | Assignee | Title |
8900954, | Nov 04 2011 | ALSEPHINA INNOVATIONS INC | Blanket short channel roll-up implant with non-angled long channel compensating implant through patterned opening |
9478615, | Nov 04 2011 | ALSEPHINA INNOVATIONS INC | Blanket short channel roll-up implant with non-angled long channel compensating implant through patterned opening |
9548401, | Nov 20 2014 | Samsung Electronics Co., Ltd. | Semiconductor device |
Patent | Priority | Assignee | Title |
4154626, | Sep 22 1975 | International Business Machines Corporation | Process of making field effect transistor having improved threshold stability by ion-implantation |
4276095, | Aug 31 1977 | International Business Machines Corporation | Method of making a MOSFET device with reduced sensitivity of threshold voltage to source to substrate voltage variations |
4636822, | Aug 27 1984 | International Business Machines Corporation; INTERNATIONAL BUSINESS MACHINES CORPORATION, A NY CORP | GaAs short channel lightly doped drain MESFET structure and fabrication |
4683485, | Dec 27 1985 | Intersil Corporation | Technique for increasing gate-drain breakdown voltage of ion-implanted JFET |
4801555, | Jan 14 1987 | Freescale Semiconductor, Inc | Double-implant process for forming graded source/drain regions |
4851360, | Feb 01 1982 | Texas Instruments Incorporated | NMOS source/drain doping with both P and As |
4966859, | Mar 09 1982 | Siemens Aktiengesellschaft | Voltage-stable sub-μm MOS transistor for VLSI circuits |
4968639, | Dec 21 1987 | SGS-Thomson Microelectronics S.r.l. | Process for manufacturing CMOS integrated devices with reduced gate lengths |
4987088, | Jul 29 1988 | SGS-Thomson Microelectronics S.r.l. | Fabrication of CMOS devices with reduced gate length |
5006477, | Nov 25 1988 | Hughes Aircraft Company | Method of making a latch up free, high voltage, CMOS bulk process for sub-half micron devices |
5021851, | Feb 01 1982 | Texas Instruments Incorporated | NMOS source/drain doping with both P and As |
5045898, | Aug 30 1988 | CHASE MANHATTAN BANK, AS ADMINISTRATIVE AGENT, THE | CMOS integrated circuit having improved isolation |
5132753, | Mar 23 1990 | Siliconix Incorporated | Optimization of BV and RDS-on by graded doping in LDD and other high voltage ICs |
5143857, | Nov 07 1988 | TriQuint Semiconductor, Inc. | Method of fabricating an electronic device with reduced susceptiblity to backgating effects |
5270235, | Jan 06 1988 | Seiko Epson Corporation | Semiconductor device fabrication |
5371394, | Nov 15 1993 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Double implanted laterally diffused MOS device and method thereof |
5409848, | Mar 31 1994 | Invensas Corporation | Angled lateral pocket implants on p-type semiconductor devices |
5422510, | Oct 30 1992 | Analog Devices, Incorporated | MOS transistor with non-uniform channel dopant profile |
5449937, | Mar 19 1993 | Sharp Kabushiki Kaisha | Field effect transistor with short channel and manufacturing method therefor |
5548148, | Apr 15 1994 | International Business Machines Corporation | MOS channel device with counterdoping of ion implant for reduced substrate sensitivity |
5675166, | Jul 07 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | FET with stable threshold voltage and method of manufacturing the same |
5716861, | Mar 01 1993 | Texas Instruments Incorporated | Insulated-gate field-effect transistor structure and method |
5731611, | Jan 30 1996 | ALPHA AND OMEGA SEMICONDUCTOR, LTD | MOSFET transistor cell manufactured with selectively implanted punch through prevent and threshold reductoin zones |
5759901, | Apr 06 1995 | NXP B V | Fabrication method for sub-half micron CMOS transistor |
5767557, | Dec 01 1994 | Bell Semiconductor, LLC | PMOSFETS having indium or gallium doped buried channels and n+polysilicon gates and CMOS devices fabricated therefrom |
5770880, | Sep 03 1996 | INTERSIL AMERICAS LLC | P-collector H.V. PMOS switch VT adjusted source/drain |
5827763, | Jan 30 1997 | Advanced Micro Devices, Inc. | Method of forming a multiple transistor channel doping using a dual resist fabrication sequence |
5858827, | Sep 29 1994 | Sony Corporation | Method of manufacturing MOS transistor device with improved threshold value control and reduced reverse short channel effect |
5874329, | Dec 05 1996 | Bell Semiconductor, LLC | Method for artificially-inducing reverse short-channel effects in deep sub-micron CMOS devices |
5949105, | Jun 26 1991 | Texas Instruments Incorporated | Insulated-gate field-effect transistor structure and method |
6017798, | Jul 07 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | FET with stable threshold voltage and method of manufacturing the same |
6020244, | Dec 30 1996 | Intel Corporation | Channel dopant implantation with automatic compensation for variations in critical dimension |
6091111, | Jan 17 1995 | National Semiconductor Corporation | High voltage mos device having an extended drain region with different dopant species |
6150200, | Apr 03 1998 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Semiconductor device and method of making |
6172406, | Aug 26 1997 | Texas Instruments Incorporated | Breakdown drain extended NMOS |
6284579, | Oct 14 1999 | Taiwan Semiconductor Manufacturing Company | Drain leakage reduction by indium transient enchanced diffusion (TED) for low power applications |
6352912, | Mar 30 2000 | TWITTER, INC | Reduction of reverse short channel effects by deep implantation of neutral dopants |
6387763, | Nov 19 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Field-effect transistor and corresponding manufacturing method |
6410393, | Aug 18 1999 | Advanced Micro Devices, INC | Semiconductor device with asymmetric channel dopant profile |
6465332, | Apr 11 1997 | STMicroelectronics S.A. | Method of making MOS transistor with high doping gradient under the gate |
6486510, | Mar 03 2000 | International Business Machines Corporation | Reduction of reverse short channel effects by implantation of neutral dopants |
6507058, | Oct 17 2000 | Semiconductor Components Industries LLC | Low threshold compact MOS device with channel region formed by outdiffusion of two regions and method of making same |
6559019, | Aug 26 1998 | Texas Instruments Incorporated | Breakdown drain extended NMOS |
6593623, | Mar 30 1998 | GLOBALFOUNDRIES Inc | Reduced channel length lightly doped drain transistor using a sub-amorphous large tilt angle implant to provide enhanced lateral diffusion |
6667513, | Jun 11 1999 | LIBERTY PATENTS LLC | Semiconductor device with compensated threshold voltage and method for making same |
6700160, | Oct 17 2000 | Texas Instruments Incorporated | Double-diffused MOS (DMOS) power transistor with a channel compensating implant |
6737715, | Nov 19 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Field-effect transistor and corresponding manufacturing method |
6960499, | Feb 24 1998 | Texas Instruments Incorporated | Dual-counterdoped channel field effect transistor and method |
7112501, | Oct 20 2003 | LAPIS SEMICONDUCTOR CO , LTD | Method of fabrication a silicon-on-insulator device with a channel stop |
20020039819, | |||
20040061187, | |||
20040132260, | |||
20050151174, | |||
EP763855, | |||
JP6318698, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 02 2002 | GWOZIECKI, ROMAIN | France Telecom | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023243 | /0607 | |
Feb 07 2002 | SKOTNICKI, THOMAS | France Telecom | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023243 | /0607 | |
Nov 28 2005 | FRANCE TELECOM S A | Fahrenheit Thermoscope LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023147 | /0747 | |
Aug 11 2015 | Fahrenheit Thermoscope LLC | ZARBAÑA DIGITAL FUND LLC | MERGER SEE DOCUMENT FOR DETAILS | 037338 | /0316 | |
Dec 23 2019 | Zarbana Digital Fund LLC | INTELLECTUAL VENTURES ASSETS 157 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051413 | /0230 | |
Dec 30 2019 | INTELLECTUAL VENTURES ASSETS 157 LLC | LIBERTY PATENTS LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051630 | /0115 |
Date | Maintenance Fee Events |
May 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 26 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 28 2013 | 4 years fee payment window open |
Mar 28 2014 | 6 months grace period start (w surcharge) |
Sep 28 2014 | patent expiry (for year 4) |
Sep 28 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 28 2017 | 8 years fee payment window open |
Mar 28 2018 | 6 months grace period start (w surcharge) |
Sep 28 2018 | patent expiry (for year 8) |
Sep 28 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 28 2021 | 12 years fee payment window open |
Mar 28 2022 | 6 months grace period start (w surcharge) |
Sep 28 2022 | patent expiry (for year 12) |
Sep 28 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |