An electro-kinetic electro-static air conditioner includes a self-contained ion generator that provides electro-kinetically moved air with ions and safe amounts of ozone. The ion generator includes a high voltage pulse generator whose output pulses are coupled between first and second electrode arrays. Preferably the first array comprises one or more wire electrodes spaced staggeringly apart from a second array comprising hollow āUā-shaped electrodes. Preferably a ratio between effective area of an electrode in the second array compared to effective area of an electrode in the first array exceeds about 15:1 and preferably is about 20:1. An electric field produced by the high voltage pulses between the arrays produces an electrostatic flow of ionized air containing safe amounts of ozone. A bias electrode, electrically coupled to the second array electrodes, affects net polarity of ions generated. The outflow of ionized air and ozone is thus conditioned.
|
18. An ion producing air conditioning system, comprising:
an upstanding, vertically elongated housing having at least one air vent;
an ion generating unit positioned in said housing, including:
an emitter electrode;
a removable collector electrode, elongated along a direction of elongation of said vertically elongated housing, and vertically removable through an opening through a top portion of said housing such that a user can vertically lift said removable collector electrode out of said housing from a resting position within said housing; and
wherein said removable electrode is vertically returnable through said opening such that gravity will assist with return of said removable collector electrode to the resting position within said housing.
15. An ion producing system, comprising:
an upstanding, elongated housing having a top surface, an inlet and an outlet; and
an ion generating unit positioned in said housing, including:
a first electrode;
a second electrode; and
a high voltage generator that provides a potential difference between said first electrode and said second electrode;
wherein said second electrode is removable, through said top surface of said housing, from a resting position within said housing to a location external to the housing, to thereby allow said second electrode to be cleaned; and
wherein said second electrode is returnable through said top surface of the housing such that gravity will assist with return of the second electrode to the resting position within said housing.
1. An air conditioner system, comprising:
an upstanding, elongated housing having a top surface, an inlet and an outlet; and
an ion generating unit positioned in said housing, including:
a first electrode;
a second electrode; and
a high voltage generator that provides a potential difference between said first electrode and said second electrode;
wherein said second electrode is removable, through said top surface of said housing, from a resting position within said housing to a location external to the housing, to thereby allow said second electrode to be cleaned; and
wherein said second electrode is returnable through said top surface of the housing such that gravity will assist with return of the second electrode to the resting position within said housing.
16. An ion producing system, comprising:
an upstanding, elongated housing having an inlet and an outlet; and
an ion generating unit positioned in said housing, including:
a first electrode;
a second electrode; and
a high voltage generator that provides a potential difference between said first electrode and said second electrode;
wherein said second electrode is vertically removable, through an opening in an upper portion of said housing, from a resting position within said housing to a location external to the housing, to thereby allow said second electrode to be cleaned; and
wherein said second electrode is vertically returnable through said opening such that gravity will assist with return of the second electrode to the resting position within said housing.
11. An ion producing system, comprising:
a housing that is vertically elongated, said housing including at least one vent;
an emitter electrode within said housing;
a collector electrode that is vertically elongated when in a resting position within said housing;
a high voltage generator to provide a potential difference between said emitter electrode and said collector electrode when said collector electrode is in the resting position within said housing; and
a handle secured to said collector electrode, said handle to assist a user with vertically lifting said collector electrode out of said housing;
wherein said collector electrode is vertically returnable with the assistance of gravity, through an opening in an upper portion of said housing, to the resting position within said housing.
17. An ion producing system, comprising:
an upstanding, vertically elongated housing having at least one air vent;
an ion generating unit positioned in said housing, including:
a first emitter electrode;
a second removable collector electrode, elongated along a direction of elongation of said vertically elongated housing, and vertically removable through an opening through a top portion of said housing; and
a handle secured to said second removable collector electrode, said handle accessible through said opening to assist a user with vertically lifting said second removable collector electrode out of said housing from a resting position within said housing; and
wherein said second removable electrode is vertically returnable through said opening such that gravity will assist with return of said second removable collector electrode to the resting position within said housing.
0. 22. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
the ion generating unit including a removable electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said removable electrode such that said handle extends in an upward direction from said electrode and isolates said ion generating unit from a user, when said removable electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable electrode out of said housing from the resting position within said housing; and
wherein said removable electrode is vertically returnable into said housing such that gravity will assist with return of the second electrode to the resting position within the housing.
0. 20. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
at least one air vent in said housing;
the ion generating unit including a removable electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said removable electrode such that said handle extends in an upward direction from said electrode and isolates said ion generating unit from a user when said removable electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable electrode out of said housing from the resting position within said housing; and
wherein said removable electrode is vertically returnable into said housing such that gravity will assist with return of said removable electrode to the resting position within said housing.
0. 23. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
a high voltage generator that provides a potential difference in the ion generating unit;
the ion generating unit including a removable electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle fixedly attached to said removable electrode such that said handle extends in an upward direction from said electrode and isolates said ion generating unit from a user, when said removable electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable electrode out of said housing from the resting position within said housing; and
wherein said removable electrode is vertically returnable into said housing such that gravity will assist with return of the second electrode to the resting position within the housing.
6. An air conditioner system, comprising:
an upstanding, elongated housing having a top surface, an air inlet vent, and an air outlet vent;
an ion generating unit positioned in said housing, for creating an airflow from said inlet vent to said outlet vent, including:
a first emitter electrode;
a second removable collector electrode, elongated along the direction of elongation of said housing, and removable through an opening in the top surface of said housing; and
a user-liftable handle secured to said second removable collector electrode, said handle accessible through said opening in said top surface of said housing, to assist a user with lifting said second removable collector electrode out of said housing from a resting position within said housing; and
wherein said second removable electrode is returnable through said opening in said top surface of said housing such that gravity will assist with return of said second removable collector electrode to the resting position within said housing.
0. 21. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
at least one air vent in said housing;
the ion generating unit including:
an emitter electrode;
a removable collector electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said collector electrode such that said handle extends in an upward direction from said collector electrode and isolates said ion generating unit from a user, when said collector electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable collector electrode out of said housing from the resting position within said housing; and
wherein said removable collector electrode is vertically returnable into said housing such that gravity will assist with return of the second electrode to the resting position within the housing.
0. 19. An ion producing system, comprising:
an upstanding, vertically elongated housing containing an ion generating unit;
at least one air vent in said housing;
the ion generating unit including:
an emitter electrode;
a removable collector electrode elongated along a direction of elongation of said vertically elongated housing when in a resting position within said housing; and
a handle attached to said removable collector electrode such that said handle extends in an upward direction from said collector electrode and isolates said ion generating unit from a user when said removable collector electrode is in the resting position within said housing;
wherein said handle is adapted to assist a user with vertically lifting said removable collector electrode out of said housing from the resting position within said housing; and
wherein said removable collector electrode is vertically returnable into said housing such that gravity will assist with return of said removable collector electrode to the resting position within said housing.
2. The system as recited in
3. The system as recited in
4. The system as recited in
5. The system as recited in
8. The system as recited in
9. The system as recited in
10. The system of
12. The system of
an opening in a top of said housing; and
wherein said handle assists a user with vertically lifting said collector electrode out through said opening in said top of said housing.
13. The system of
14. The system of
|
This is a continuation of application Ser. No. 09/186,471 filed Nov. 5, 1998 now U.S. Pat. No. 6,176,977.
This invention relates to electro-kinetic conversion of electrical energy into fluid flow of an ionizable dielectric medium, and more specifically to methods and devices for electro-kinetically producing a flow of air from which particulate matter has been substantially removed. Preferably the air flow should contain safe amounts of ozone (O3).
The use of an electric motor to rotate a fan blade to create an air flow has long been known in the art. Unfortunately, such fans produce substantial noise, and can present a hazard to children who may be tempted to poke a finger or a pencil into the moving fan blade. Although such fans can produce substantial air flow, e.g., 1,000 ft3/minute or more, substantial electrical power is required to operate the motor, and essentially no conditioning of the flowing air occurs.
It is known to provide such fans with a HEPA-compliant filter element to remove particulate matter larger than perhaps 0.3 μm. Unfortunately, the resistance to air flow presented by the filter element may require doubling the electric motor size to maintain a desired level of airflow. Further, HEPA-compliant filter elements are expensive, and can represent a substantial portion of the sale price of a HEPA-compliant filter-fan unit. While such filter-fan units can condition the air by removing large particles, particulate matter small enough to pass through the filter element is not removed, including bacteria, for example.
It is also known in the art to produce an air flow using electro-kinetic techniques, by which electrical power is directly converted into a flow of air without mechanically moving components. One such system is described in U.S. Pat. No. 4,789,801 to Lee (1988), depicted herein in simplified form as
The high voltage pulses ionize the air between the arrays, and an air flow 50 from the minisectional array toward the maxisectional array results, without requiring any moving parts. Particulate matter 60 in the air is entrained within the airflow 50 and also moves towards the maxisectional electrodes 30. Much of the particulate matter is electrostatically attracted to the surface of the maxisectional electrode array, where it remains, thus conditioning the flow of air exiting system 10. Further, the high voltage field present between the electrode arrays can release ozone into the ambient environment, which appears to destroy or at least alter whatever is entrained in the airflow, including for example, bacteria.
In the embodiment of
In another embodiment shown herein as
While the electrostatic techniques disclosed by Lee are advantageous to conventional electric fan-filter units, Lee's maxisectional electrodes are relatively expensive to fabricate. Further, increased filter efficiency beyond what Lee's embodiments can produce would be advantageous, especially without including a third array of electrodes.
Thus, there is a need for an electro-kinetic air transporter-conditioner that provides improved efficiency over Lee-type systems, without requiring expensive production techniques to fabricate the electrodes. Preferably such a conditioner should function efficiently without requiring a third array of electrodes. Further, such a conditioner should permit user-selection of safe amounts of ozone to be generated, for example to remove odor from the ambient environment.
The present invention provides a method and apparatus for electro-kinetically transporting and conditioning air.
The present invention provides an electro-kinetic system for transporting and conditioning air without moving parts. The air is conditioned in the sense that it is ionized and contains safe amounts of ozone.
Applicants' electro-kinetic air transporter-conditioner includes a louvered or grilled body that houses an ionizer unit. The ionizer unit includes a high voltage DC inverter that boosts common 110 VAC to high voltage, and a generator that receives the high voltage DC and outputs high voltage pulses of perhaps 10 KV peak-to-peak, although an essentially 100% duty cycle (e.g., high voltage DC) output could be used instead of pulses. The unit also includes an electrode assembly unit comprising first and second spaced-apart arrays of conducting electrodes, the first array and second array being coupled, respectively, preferably to the positive and negative output ports of the high voltage generator.
The electrode assembly preferably is formed using first and second arrays of readily manufacturable electrode types. In one embodiment, the first array comprises wire-like electrodes and the second array comprises “U”-shaped electrodes having one or two trailing surfaces. In an even more efficient embodiment, the first array includes at least one pin or cone-like electrode and the second array is an annular washer-like electrode. The electrode assembly may comprise various combinations of the described first and second array electrodes. In the various embodiments, the ratio between effective area of the second array electrodes to the first array electrodes is at least about 20:1.
The high voltage pulses create an electric field between the first and second electrode arrays. This field produces an electro-kinetic airflow going from the first array toward the second array, the airflow being rich in preferably a net surplus of negative ions and in ozone. Ambient air including dust particles and other undesired components (germs, perhaps) enter the housing through the grill or louver openings, and ionized clean air (with ozone) exits through openings on the downstream side of the housing.
The dust and other particulate matter attaches electrostatically to the second array (or collector) electrodes, and the output air is substantially clean of such particulate matter. Further, ozone generated by the present invention can kill certain types of germs and the like, and also eliminates odors in the output air. Preferably the transporter operates in periodic bursts, and a control permits the user to temporarily increase the high voltage pulse generator output, e.g., to more rapidly eliminate odors in the environment.
Other features and advantages of the invention will appear from the following description in which the preferred embodiments have been set forth in detail, in conjunction with the accompanying drawings.
The upper surface of housing 102 includes a user-liftable handle 112 to which is affixed an electrode assembly 220 that comprises a first array 230 of electrodes 232 and a second array 240 of electrodes 242. The first and second arrays of electrodes are coupled in series between the output terminals of ion generating unit 160, as best seen in FIG. 3. The ability to lift handle 112 provides ready access to the electrodes comprising the electrode assembly, for purposes of cleaning and, if necessary, replacement.
The general shape of the invention shown in
As will be described, when unit 100 is energized with S1, high voltage output by ion generator 160 produces ions at the first electrode array, which ions are attracted to the second electrode array. The movement of the ions in an “IN” to “OUT” direction carries with them air molecules, thus electrokinetically producing an outflow of ionized air. The “IN” notion in
As best seen in
As shown in
Output pulses from high voltage generator 170 preferably are at least 10 KV peak-to-peak with an effective DC offset of perhaps half the peak-to-peak voltage, and have a frequency of perhaps 20 KHz. The pulse train output preferably has a duty cycle of perhaps 10%, which will promote battery lifetime. Of course, different peak-peak amplitudes, DC offsets, pulse train waveshapes, duty cycle, and/or repetition frequencies may instead be used. Indeed, a 100% pulse train (e.g., an essentially DC high voltage) may be used, albeit with shorter battery life-time. Thus, generator unit 170 may (but need not) be referred to as a high voltage pulse generator.
Frequency of oscillation is not especially critical but frequency of at least about 20 KHz is preferred as being inaudible to humans. If pets will be in the same room as the present invention, it may be desired to utilize an even higher operating frequency, to prevent pet discomfort and/or howling by the pet.
The output from high voltage pulse generator unit 170 is coupled to an electrode assembly 220 that comprises a first electrode array 230 and a second electrode array 240. Unit 170 functions as a DC:DC high voltage generator, and could be implemented using other circuitry and/or techniques to output high voltage pulses that are input to electrode assembly 220.
In the embodiment of
When voltage or pulses from high voltage pulse generator 170 are coupled across first and second electrode arrays 230 and 240, it is believed that a plasma-like field is created surrounding electrodes 232 in first array 230. This electric field ionizes the ambient air between the first and second electrode arrays and establishes an “OUT” airflow that moves towards the second array. It is understood that the IN flow enters via vent(s) 104, and that the OUT flow exits via vent(s) 106.
It is believed that ozone and ions are generated simultaneously by the first array electrode(s) 232, essentially as a function of the potential from generator 170 coupled to the first array. Ozone generation may be increased or decreased by increasing or decreasing the potential at the first array. Coupling an opposite polarity potential to the second array electrode(s) 242 essentially accelerates the motion of ions generated at the first array, producing the air flow denoted as “OUT” in the figures. As the ions move toward the second array, it is believed that they push or move air molecules toward the second array. The relative velocity of this motion may be increased by decreasing the potential at the second array relative to the potential at the first array.
For example, if +10 KV were applied to the first array electrode(s), and no potential were applied to the second array electrode(s), a cloud of ions (whose net charge is positive) would form adjacent the first electrode array. Further, the relatively high 10 KV potential would generate substantial ozone. By coupling a relatively negative potential to the second array electrode(s), the velocity of the air mass moved by the net emitted ions increases, as momentum of the moving ions is conserved.
On the other hand, if it were desired to maintain the same effective outflow (OUT) velocity but to generate less ozone, the exemplary 10 KV potential could be divided between the electrode arrays. For example, generator 170 could provide +4 KV (or some other fraction) to the first array electrode(s) and −6 KV (or some other fraction) to the second array electrode(s). In this example, it is understood that the +4 KV and the −6 KV are measured relative to ground. Understandably it is desired that the present invention operate to output safe amounts of ozone. Accordingly, the high voltage is preferably fractionalized with about +4 KV applied to the first array electrode(s) and about −6 KV applied to the second array electrodes.
As noted, outflow (OUT) preferably includes safe amounts of O3 that can destroy or at least substantially alter bacteria, germs, and other living (or quasi-living) matter subjected to the outflow. Thus, when switch S1 is closed and B1 has sufficient operating potential, pulses from high voltage pulse generator unit 170 create an outflow (OUT) of ionized air and O3. When S1 is closed, LED will visually signal when ionization is occurring.
Preferably operating parameters of the present invention are set during manufacture and are not user-adjustable. For example, increasing the peak-to-peak output voltage and/or duty cycle in the high voltage pulses generated by unit 170 can increase air flowrate, ion content, and ozone content. In the preferred embodiment, output flowrate is about 200 feet/minute, ion content is about 2,000,000/cc and ozone content is about 40 ppb (over ambient) to perhaps 2,000 ppb (over ambient). Decreasing the R2/R1 ratio below about 20:1 will decrease flow rate, as will decreasing the peak-to-peak voltage and/or duty cycle of the high voltage pulses coupled between the first and second electrode arrays.
In practice, unit 100 is placed in a room and connected to an appropriate source of operating potential, typically 117 VAC. With S1 energized, ionization unit 160 emits ionized air and preferably some ozone (O3) via outlet vents 150. The air flow, coupled with the ions and ozone freshens the air in the room, and the ozone can beneficially destroy or at least diminish the undesired effects of certain odors, bacteria, germs, and the like. The air flow is indeed electro-kinetically produced, in that there are no intentionally moving parts within the present invention. (As noted, some mechanical vibration may occur within the electrodes.) As will be described with respect to
Having described various aspects of the invention in general, preferred embodiments of electrode assembly 220 will now be described. In the various embodiments, electrode assembly 220 will comprise a first array 230 of at least one electrode 232, and will further comprise a second array 240 of preferably at least one electrode 242. Understandably material(s) for electrodes 232 and 242 should conduct electricity, be resilient to corrosive effects from the application of high voltage, yet be strong enough to be cleaned.
In the various electrode assemblies to be described herein, electrode(s) 232 in the first electrode array 230 are preferably fabricated from tungsten. Tungsten is sufficiently robust to withstand cleaning, has a high melting point to retard breakdown due to ionization, and has a rough exterior surface that seems to promote efficient ionization. On the other hand, electrodes 242 preferably will have a highly polished exterior surface to minimize unwanted point-to-point radiation. As such, electrodes 242 preferably are fabricated from stainless steel, brass, among other materials. The polished surface of electrodes 232 also promotes ease of electrode cleaning.
In contrast to the prior art electrodes disclosed by Lee, electrodes 232 and 242 according to the present invention are lightweight, easy to fabricate, and lend themselves to mass production. Further, electrodes 232 and 242 described herein promote more efficient generation of ionized air, and production of safe amounts of ozone, O3.
In the present invention, a high voltage pulse generator 170 is coupled between the first electrode array 230 and the second electrode array 240. The high voltage pulses produce a flow of ionized air that travels in the direction from the first array towards the second array (indicated herein by hollow arrows denoted “OUT”). As such, electrode(s) 232 may be referred to as an emitting electrode, and electrodes 242 may be referred to as collector electrodes. This outflow advantageously contains safe amounts of O3, and exits the present invention from vent(s) 106.
According to the present invention, it is preferred that the positive output terminal or port of the high voltage pulse generator be coupled to electrodes 232, and that the negative output terminal or port be coupled to electrodes 242. It is believed that the net polarity of the emitted ions is positive, e.g., more positive ions than negative ions are emitted. In any event, the preferred electrode assembly electrical coupling minimizes audible hum from electrodes 232 contrasted with reverse polarity (e.g., interchanging the positive and negative output port connections).
However, while generation of positive ions is conductive to a relatively silent air flow, from a health standpoint, it is desired that the output air flow be richer in negative ions, not positive ions. It is noted that in some embodiments, however, one port (preferably the negative port) of the high voltage pulse generator may in fact be the ambient air. Thus, electrodes in the second array need not be connected to the high voltage pulse generator using wire. Nonetheless, there will be an “effective connection” between the second array electrodes and one output port of the high voltage pulse generator, in this instance, via ambient air.
Turning now to the embodiments of
Electrodes 232 are preferably lengths of tungsten wire, whereas electrodes 242 are formed from sheet metal, preferably stainless steel, although brass or other sheet metal could be used. The sheet metal is readily formed to define side regions 244 and bulbous nose region 246 for hollow elongated “U” shaped electrodes 242. While
As best seen in
In
Electrodes 232 in first array 230 are coupled by a conductor 234 to a first (preferably positive) output port of high voltage pulse generator 170, and electrodes 242 in second array 240 are coupled by a conductor 244 to a second (preferably negative) output port of generator 170. It is relatively unimportant where on the various electrodes electrical connection is made to conductors 234 or 244. Thus, by way of example
To facilitate removing the electrode assembly from unit 100 (as shown in FIG. 2B), it is preferred that the lower end of the various electrodes fit against mating portions of wire or other conductors 234 or 244. For example, “cup-like” members can be affixed to wires 234 and 244 into which the free ends of the various electrodes fit when electrode array 220 is inserted completely into housing 102 of unit 100.
The ratio of the effective electric field emanating area of electrode 232 to the nearest effective area of electrodes 242 is at least about 15:1, and preferably is at least 20:1. Thus, in the embodiment of FIG. 4A and
In this and the other embodiments to be described herein, ionization appears to occur at the smaller electrode(s) 232 in the first electrode array 230, with ozone production occurring as a function of high voltage arcing. For example, increasing the peak-to-peak voltage amplitude and/or duty cycle of the pulses from the high voltage pulse generator 170 can increase ozone content in the output flow of ionized air. If desired, user-control S2 can be used to somewhat vary ozone content by varying (in a safe manner) amplitude and/or duty cycle. Specific circuitry for achieving such control is known in the art and need not be described in detail herein.
Note the inclusion in
Another advantage of including pointed electrodes 243 is that they may be stationarily mounted within the housing of unit 100, and thus are not readily reached by human hands when cleaning the unit. Were it otherwise, the sharp point on electrode(s) 243 could easily cause cuts. The inclusion of one electrode 243 has been found sufficient to provide a sufficient number of output negative ions, but more such electrodes may be included.
In the embodiment of
Note that the embodiments of
In the embodiment of
An especially preferred embodiment is shown in FIG. 4I and FIG. 4J. In these figures, the first electrode assembly comprises a single pin-like element 232 disposed coaxially with a second electrode array that comprises a single ring-like electrode 242 having a rounded inner opening 246. However, as indicated by phantom elements 232′, 242′, electrode assembly 220 may comprise a plurality of such pin-like and ring-like elements. Preferably electrode 232 is tungsten, and electrode 242 is stainless steel.
Typical dimensions for the embodiment of FIG. 4I and
One advantage of the ring-pin electrode assembly configuration shown in
Further, the ring-pin configuration advantageously generates more ozone than prior art configurations, or the configurations of
Nonetheless it will be appreciated that applicants' first array pin electrodes may be utilized with the second array electrodes of
In
In
As described, the net output of ions is influenced by placing a bias element (e.g., element 243) near the output stream and preferably near the downstream side of the second array electrodes. If no ion output were desired, such an element could achieve substantial neutralization. It will also be appreciated that the present invention could be adjusted to produce ions without producing ozone, if desired.
Modifications and variations may be made to the disclosed embodiments without departing from the subject and spirit of the invention as defined by the following claims.
Taylor, Charles E., Lau, Shek Fai
Patent | Priority | Assignee | Title |
10512873, | Feb 14 2014 | Access Business Group International LLC | Air treatment system |
11167291, | Feb 27 2020 | OFFICE ANGUNSA CO., LTD. | Hybrid partition with function of removing fine dust |
9700823, | Feb 14 2014 | Access Business Group International LLC | Air treatment system |
9737895, | Jun 08 2014 | Headwaters Inc | Personal rechargeable portable ionic air purifier |
D683006, | Aug 15 2011 | Boneco AG | Air purifier |
D683007, | Aug 15 2011 | Boneco AG | Air purifier |
Patent | Priority | Assignee | Title |
1791338, | |||
1869335, | |||
1882949, | |||
2129783, | |||
2327588, | |||
2359057, | |||
2509548, | |||
2590447, | |||
2949550, | |||
3018394, | |||
3026964, | |||
3374941, | |||
3518462, | |||
3540191, | |||
3581470, | |||
3638058, | |||
3744216, | |||
3803808, | |||
3806763, | |||
3892927, | |||
3945813, | Apr 05 1971 | Dust collector | |
3958960, | Feb 02 1973 | United States Filter Corporation | Wet electrostatic precipitators |
3958961, | Feb 02 1973 | United States Filter Corporation | Wet electrostatic precipitators |
3958962, | Apr 03 1973 | Nafco Giken, Ltd. | Electrostatic precipitator |
3981695, | Nov 02 1972 | Electronic dust separator system | |
3984215, | Jan 08 1975 | Georgia-Pacific Corporation | Electrostatic precipitator and method |
3988131, | Jul 09 1975 | Alpha Denshi Kabushiki Kaisha; Hitachi Jidoshabuhinhanbai Kabushiki Kaisha | Electronic air cleaner |
4007024, | Jun 09 1975 | TRION, INC , A CORP OF PA | Portable electrostatic air cleaner |
4052177, | Mar 03 1975 | Nea-Lindberg A/S | Electrostatic precipitator arrangements |
4056372, | Dec 30 1972 | Nafco Giken, Ltd. | Electrostatic precipitator |
4070163, | Aug 29 1974 | Maxwell Laboratories, Inc. | Method and apparatus for electrostatic precipitating particles from a gaseous effluent |
4074983, | Feb 02 1973 | United States Filter Corporation | Wet electrostatic precipitators |
4092134, | Jun 03 1976 | Nipponkai Heavy Industries Co., Ltd. | Electric dust precipitator and scraper |
4097252, | Apr 05 1975 | Apparatebau Rothemuhle Brandt & Kritzler | Electrostatic precipitator |
4102654, | Jul 27 1976 | Raymond, Bommer | Negative ionizer |
4104042, | Apr 29 1977 | BANK OF NOVA SCOTIA, THE | Multi-storied electrostatic precipitator |
4110086, | Aug 19 1974 | GEOENERGY INTERNATIONAL CORPORATION | Method for ionizing gases, electrostatically charging particles, and electrostatically charging particles or ionizing gases for removing contaminants from gas streams |
4119415, | Jun 22 1977 | Nissan Motor Company, Ltd. | Electrostatic dust precipitator |
4126434, | Sep 13 1975 | OHNO CHEMICAL MACHINERY CO LTD | Electrostatic dust precipitators |
4138233, | Jun 21 1976 | Pulse-charging type electric dust collecting apparatus | |
4147522, | Apr 23 1976 | AMERICAN PRECISION INDUSTRIES INC , A DE CORP | Electrostatic dust collector |
4155792, | Sep 13 1976 | Metallgesellschaft Aktiengesellschaft | Process for producing a honeycomb of synthetic-resin material for use in an electrostatic precipitator |
4171975, | Feb 10 1977 | Konishiroku Photo Industry Co., Ltd. | Light-sensitive silver halide color photographic materials |
4185971, | Jul 14 1977 | Koyo Iron Works & Construction Co., Ltd. | Electrostatic precipitator |
4189308, | Oct 31 1978 | HAMON D HONDT S A | High voltage wetted parallel plate collecting electrode arrangement for an electrostatic precipitator |
4205969, | Mar 21 1977 | Masahiko, Fukino | Electrostatic air filter having honeycomb filter elements |
4209306, | Nov 13 1978 | HAMON D HONDT S A | Pulsed electrostatic precipitator |
4218225, | May 20 1974 | Apparatebau Rothemuhle Brandt & Kritzler | Electrostatic precipitators |
4225323, | May 31 1979 | General Electric Company | Ionization effected removal of alkali composition from a hot gas |
4227894, | Oct 10 1978 | Ion generator or electrostatic environmental conditioner | |
4231766, | Dec 11 1978 | United Air Specialists, Inc. | Two stage electrostatic precipitator with electric field induced airflow |
4232355, | Jan 08 1979 | Santek, Inc. | Ionization voltage source |
4244710, | May 12 1977 | Air purification electrostatic charcoal filter and method | |
4244712, | Mar 05 1979 | Cleansing system using treated recirculating air | |
4251234, | Sep 21 1979 | Union Carbide Corporation | High intensity ionization-electrostatic precipitation system for particle removal |
4253852, | Nov 08 1979 | YOUNG, PETER | Air purifier and ionizer |
4259093, | Apr 09 1976 | Elfi Elektrofilter AB | Electrostatic precipitator for air cleaning |
4259452, | May 15 1978 | Bridgestone Tire Company Limited | Method of producing flexible reticulated polyether polyurethane foams |
4259707, | Jan 12 1979 | System for charging particles entrained in a gas stream | |
4266948, | Jan 04 1980 | FLAKTAIR, INC | Fiber-rejecting corona discharge electrode and a filtering system employing the discharge electrode |
4282014, | Sep 09 1975 | Siemens Aktiengesellschaft | Detector for detecting voltage breakdowns on the high-voltage side of an electric precipitator |
4284420, | Aug 27 1979 | Electrostatic air cleaner with scraper cleaning of collector plates | |
4289504, | Jun 12 1978 | Ball Corporation | Modular gas cleaner and method |
4293319, | Sep 28 1977 | The United States of America as represented by the Secretary of | Electrostatic precipitator apparatus using liquid collection electrodes |
4308036, | Aug 23 1979 | INTERNAL REVENUE SERVICE | Filter apparatus and method for collecting fly ash and fine dust |
4315188, | Feb 19 1980 | Ball Corporation | Wire electrode assemblage having arc suppression means and extended fatigue life |
4318718, | Jul 19 1979 | Ichikawa Woolen Textile Co., Ltd. | Discharge wire cleaning device for an electric dust collector |
4338560, | Oct 12 1979 | The United States of America as represented by the Secretary of the Navy | Albedd radiation power converter |
4342571, | May 18 1974 | United McGill Corporation | Electrostatic precipitator |
4349359, | Dec 27 1976 | MAXWELL TECHNOLOGIES, INC | Electrostatic precipitator apparatus having an improved ion generating means |
4351648, | Sep 24 1979 | United Air Specialists, Inc. | Electrostatic precipitator having dual polarity ionizing cell |
4354861, | Mar 26 1981 | Particle collector and method of manufacturing same | |
4357150, | Jun 05 1980 | Midori Anzen Co., Ltd. | High-efficiency electrostatic air filter device |
4362632, | Aug 02 1974 | LFE INDUSTRIAL SYSTEMS CORPORATION | Gas discharge apparatus |
4363072, | Jul 22 1980 | ZECO INCORPORATED, A CORP OF CA | Ion emitter-indicator |
4366525, | Mar 13 1980 | Elcar Zurich AG | Air ionizer for rooms |
4369776, | Jan 05 1977 | DERMASCAN, INC | Dermatological ionizing vaporizer |
4375364, | May 08 1978 | HAMON D HONDT S A | Rigid discharge electrode for electrical precipitators |
4380900, | May 24 1980 | Robert Bosch GmbH | Apparatus for removing solid components from the exhaust gas of internal combustion engines, in particular soot components |
4386395, | Dec 19 1980 | Webster Electric Company, Inc. | Power supply for electrostatic apparatus |
4391614, | Nov 16 1981 | DOW CHEMICAL COMPANY, THE | Method and apparatus for preventing lubricant flow from a vacuum source to a vacuum chamber |
4394239, | Sep 09 1980 | Bayer Aktiengesellschaft | Electro-chemical sensor for the detection of reducing gases, in particular carbon monoxide, hydrazine and hydrogen in air |
4405342, | Feb 23 1982 | ENERGY, UNITED STATES OF AMERICA AS REPRESENTED BY THE UNITED STATES DEPARTMENT OF | Electric filter with movable belt electrode |
4406671, | Nov 16 1981 | DOW CHEMICAL COMPANY, THE | Assembly and method for electrically degassing particulate material |
4412850, | Jul 11 1981 | Neat Shujinki Kogyo Kabushiki Kaisha | Electric dust collector |
4413225, | Jul 17 1980 | Metallgesellschaft Aktiengesellschaft; Siemens Aktiengesellschaft | Method of operating an electrostatic precipitator |
4414603, | Mar 27 1980 | Particle charging apparatus | |
4435190, | Mar 14 1981 | OFFICE NATIONAL D'ETUDES ET DE RECHERCHES AEROSPATIALES | Method for separating particles in suspension in a gas |
4440552, | Mar 06 1980 | Hitachi Plant Engineering & Construction Co., Ltd. | Electrostatic particle precipitator |
4443234, | Mar 04 1982 | Flakt Aktiebolag | Device at a dust filter |
4445911, | Dec 17 1980 | F. L. Smidth & Co. | Method of controlling operation of an electrostatic precipitator |
4477263, | Jun 28 1982 | ADKINS, CLAUDE GORDON | Apparatus and method for neutralizing static electric charges in sensitive manufacturing areas |
4477268, | Mar 26 1981 | Multi-layered electrostatic particle collector electrodes | |
4481017, | Jan 14 1983 | ETS, Inc. | Electrical precipitation apparatus and method |
4496375, | Jul 13 1981 | An electrostatic air cleaning device having ionization apparatus which causes the air to flow therethrough | |
4502002, | Sep 02 1982 | Mitsubishi Jukogyo Kabushiki Kaisha | Electrostatically operated dust collector |
4505724, | Apr 24 1982 | Metallgesellschaft Aktiengesellschaft | Wet-process dust-collecting apparatus especially for converter exhaust gases |
4509958, | Oct 12 1981 | SENICHI MASUDA | High-efficiency electrostatic filter device |
4514780, | Jan 07 1983 | WM NEUNDORFER & CO , INC | Discharge electrode assembly for electrostatic precipitators |
4515982, | Dec 28 1981 | BASF Aktiengesellschaft | Aminoreductones |
4516991, | Dec 30 1982 | MAZDA KABUSHIKI KAISHA | Air cleaning apparatus |
4521229, | Nov 01 1983 | Combustion Engineering, Inc. | Tubular discharge electrode for electrostatic precipitator |
4522634, | Jan 20 1983 | WALTHER & CIE AG, A COMPANY OF GERMANY | Method and apparatus for automatic regulation of the operation of an electrostatic filter |
4534776, | Aug 16 1982 | AT&T Bell Laboratories | Air cleaner |
4536698, | Aug 25 1983 | VSESOJUZNY NACHNO ISSLEDOVATELSKY I PROEKTNY INSTITUT PO OCHISTKE TEKHNOLOGICHESKY GAZOV, STOCHNYKH VOD I ISPOLZOVANIJU VTORICHNYKH ENERGORESURSOV PREDPRIYATY CHERNOI METALLURGII VNIPICHERMETENER; GOOCHIST-KA, USSR, KHARKOV, PROSPEKT LENINA 9 | Method and apparatus for supplying voltage to high-ohmic dust electrostatic precipitator |
4544382, | May 19 1980 | Office National d'Etudes et de Recherches Aerospatiales (ONERA) | Apparatus for separating particles in suspension in a gas |
4555252, | Jun 04 1983 | Dragerwerk Aktiengesellschaft | Electrostatic filter construction |
4569684, | Jul 31 1981 | Electrostatic air cleaner | |
4582961, | Nov 13 1981 | Aktieselskabet Bruel & Kjar | Capacitive transducer |
4587475, | Jul 25 1983 | FMDK TECHNOLOGIES, INC | Modulated power supply for an electrostatic precipitator |
4588423, | Jun 30 1982 | Donaldson Company, Inc. | Electrostatic separator |
4590042, | Dec 24 1984 | MOTOROLA, INC , A DE CORP | Plasma reactor having slotted manifold |
4597780, | Apr 21 1978 | Santek, Inc. | Electro-inertial precipitator unit |
4597781, | Nov 21 1984 | Compact air purifier unit | |
4600411, | Apr 06 1984 | Lucidyne, Inc. | Pulsed power supply for an electrostatic precipitator |
4601733, | Sep 29 1983 | BACOT, DOMINIQUE; DETROYAT, JEAN-MICHEL | High voltage generator for an electrostatic dust precipitator |
4604174, | Apr 30 1985 | Dorr-Oliver Incorporated; DORR-OLIVER INCORPORATED, A CORP OF DE | High flow electrofiltration |
4614573, | May 09 1984 | NGK SPARKPLUG CO , LTD | Method for producing an ozone gas and apparatus for producing the same |
4623365, | Jan 09 1985 | The United States of America as represented by the Department of Energy | Recirculating electric air filter |
4626261, | Dec 12 1984 | F. L. Smidth & Co. A/S | Method of controlling intermittent voltage supply to an electrostatic precipitator |
4632135, | Jan 17 1984 | U S PHILIPS CORPORATION, A CORP OF DE | Hair-grooming means |
4632746, | Dec 06 1984 | British Technology Group Limited | Electrochemical cell with thin wire electrode |
4636981, | Jul 19 1982 | Tokyo Shibaura Denki Kabushiki Kaisha | Semiconductor memory device having a voltage push-up circuit |
4643744, | Feb 13 1984 | Triactor Holdings Limited | Apparatus for ionizing air |
4643745, | Dec 17 1984 | Nippon Soken, Inc. | Air cleaner using ionic wind |
4647836, | Mar 02 1984 | Pyroelectric energy converter and method | |
4650648, | Oct 25 1984 | OZONIA AG, A CORP OF SWITZERLAND | Ozone generator with a ceramic-based dielectric |
4656010, | Jun 22 1984 | Messer Griesheim GmbH | Device for producing ozone |
4657738, | Apr 30 1984 | Westinghouse Electric Corp. | Stack gas emissions control system |
4659342, | Dec 17 1980 | F.L. Smidth & Co. | Method of controlling operation of an electrostatic precipitator |
4662903, | Jun 02 1986 | Denki Kogyo Company Limited | Electrostatic dust collector |
4666474, | Aug 11 1986 | Big River Zinc Corporation | Electrostatic precipitators |
4668479, | Jun 12 1984 | Toyoda Gosei Co., Ltd. | Plasma processing apparatus |
4670026, | Feb 18 1986 | Desert Technology, Inc. | Method and apparatus for electrostatic extraction of droplets from gaseous medium |
4674003, | Apr 03 1984 | J. Wagner AG | Electronic high-voltage generator for electrostatic sprayer devices |
4680496, | Jul 31 1985 | Centre National de la Recherche Scintifique | Apparatus for conveying electrostatic charges, in particular for very high voltage electrostatic generators |
4686370, | Feb 13 1984 | BIOMED ELECTRONIC GMBH AND CO , A CORP OF GERMANY | Ionizing chamber for gaseous oxygen |
4689056, | Nov 23 1983 | Nippon Soken, Inc.; Nippondenso Co., Ltd. | Air cleaner using ionic wind |
4691829, | Nov 03 1980 | Coulter Corporation | Method of and apparatus for detecting change in the breakoff point in a droplet generation system |
4692174, | Jun 26 1980 | ELECTRIC POWER RESEARCH INSTITUTE, INC A CORP OF DC | Ionizer assembly having a bell-mouth outlet |
4693869, | Mar 20 1986 | Electrode arrangement for creating corona | |
4694376, | Mar 12 1982 | Circuit for the pulsed operation of one or more high-frequency ozonizers | |
4702752, | May 30 1985 | Research Development Corporation of Japan; Ishimori & Co., Ltd. | Electrostatic dust collector |
4713092, | Aug 14 1984 | Corona Engineering Co., Ltd. | Electrostatic precipitator |
4713093, | Jul 15 1985 | KRAFTELEKTRONIK AB, P O BOX 2102, S-445 02 SURTE, SWEDEN | Electrostatic dust precipitator |
4713724, | Jul 20 1985 | HV Hofmann and Volkel | Portable ion generator |
4715870, | Feb 18 1984 | SENICHI MASUDA | Electrostatic filter dust collector |
4725289, | Nov 28 1986 | High conversion electrostatic precipitator | |
4726812, | Mar 26 1986 | BBC BROWN, BOVERI AG, CH-5401 BADEN, SWITZERLAND | Method for electrostatically charging up solid or liquid particles suspended in a gas stream by means of ions |
4726814, | Jul 01 1985 | Method and apparatus for simultaneously recovering heat and removing gaseous and sticky pollutants from a heated, polluted gas flow | |
4736127, | Apr 08 1983 | Sarcos, Inc. | Electric field machine |
4743275, | Aug 25 1986 | Electron field generator | |
4749390, | Feb 26 1987 | Air Purification Products, International | Four-sided air filter |
4750921, | Jun 22 1984 | Midori Anzen Industry Co., Ltd. | Electrostatic filter dust collector |
4760302, | Dec 11 1986 | Sarcos, Inc. | Electric field machine |
4760303, | Jun 11 1985 | TOKYO SEIMITSU CO , LTD , A CORP OF JAPAN | Electrostatic high-voltage generator |
4765802, | Jul 15 1987 | WHEELABRATOR AIR POLLUTION CONTROL INC , A MARYLAND CORPORATION | Electrostatic precipitator plate spacer and method of installing same |
4771361, | Sep 16 1985 | Dr. Engelter & Nitsch, Wirtschaftsberatung | Electrode arrangement for corona discharges |
4772297, | Sep 20 1985 | Kyowa Seiko Co., Ltd. | Air cleaner |
4779182, | Jun 24 1985 | Metallgesellschaft AG; Siemens AG | Power supply for an electrostatic filter |
4781736, | Nov 20 1986 | United Air Specialists, Inc. | Electrostatically enhanced HEPA filter |
4786844, | Mar 30 1987 | RPC INDUSTRIES, A CA CORP | Wire ion plasma gun |
4789801, | Mar 06 1980 | Zenion Industries, Inc. | Electrokinetic transducing methods and apparatus and systems comprising or utilizing the same |
4808200, | Nov 24 1986 | Siemens Aktiengesellschaft | Electrostatic precipitator power supply |
4811159, | Mar 01 1988 | POLLENEX CORPORATION A MISSOURI CORPORATION | Ionizer |
4822381, | May 09 1988 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE ADMINISTRATOR OF THE U S ENVIRONMENTAL PROTECTION AGENCY | Electroprecipitator with suppression of rapping reentrainment |
4853005, | Oct 09 1985 | American Filtrona Corporation | Electrically stimulated filter method and apparatus |
4869736, | Feb 02 1989 | ALSTOM POWER INC | Collecting electrode panel assembly with coupling means |
4892713, | Jun 01 1988 | ENVIRONMENTAL PROTECTIVE SYSTEMS, INC | Ozone generator |
4929139, | Jul 26 1989 | Applied Materials, Inc | Passive electrostatic vacuum particle collector |
4940470, | Mar 23 1988 | IT S ALL ABOUT CLEAN AIR, INC | Single field ionizing electrically stimulated filter |
4940894, | Dec 10 1987 | Enercon Industries Corporation; ENERCON INDUSTRIES CORPORATION, W140 N9572 FOUNTAIN BOULEVARD A WI CORP | Electrode for a corona discharge apparatus |
4941068, | Mar 10 1988 | Hofmann & Voelkel GmbH | Portable ion generator |
4941224, | Aug 01 1988 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD ; Hajime Ishimaru | Electrostatic dust collector for use in vacuum system |
4944778, | May 30 1985 | Research Development Corporation of Japan | Electrostatic dust collector |
4954320, | Apr 22 1988 | The United States of America as represented by the Secretary of the Army | Reactive bed plasma air purification |
4955991, | Apr 21 1986 | Astra-Vent AB | Arrangement for generating an electric corona discharge in air |
4966666, | Nov 24 1986 | Waltonen Laboratories | Fluid energizing method and apparatus |
4967119, | Dec 20 1985 | Astra-Vent AB | Air transporting arrangement |
4976752, | Sep 26 1988 | Astra Vent AB | Arrangement for generating an electric corona discharge in air |
4978372, | Mar 11 1988 | Engineering Dynamics LTD | Pleated charged media air filter |
5003774, | Oct 09 1987 | Kerr-McGee Coal Corporation | Apparatus for soot removal from exhaust gas |
5006761, | Dec 20 1985 | Astra-Vent AB | Air transporting arrangement |
5010869, | Aug 11 1989 | ZENION INDUSTRIES, INC | Air ionization system for internal combustion engines |
5012093, | Aug 29 1988 | Minolta Camera Co., Ltd. | Cleaning device for wire electrode of corona discharger |
5012094, | Feb 05 1990 | Electrostatic charging apparatus and method | |
5012159, | Jul 03 1987 | Eurus Air Design AB | Arrangement for transporting air |
5022979, | Oct 26 1987 | Tokyo Ohka Kogyo Co., Ltd. | Electrode for use in the treatment of an object in a plasma |
5024685, | Dec 19 1986 | Astra-Vent AB | Electrostatic air treatment and movement system |
5030254, | Jan 11 1989 | BG APPARATEBAU GOSLAR GMBH & CO KG, A LIMITED PARTNERSHIP OF GERMANY | Lead-plate electric precipitator |
5034033, | Jul 13 1990 | U.S. Natural Resources, Inc. | Modular electronic air cleaning device |
5037456, | Sep 30 1989 | Samsung Electronics Co., Ltd. | Electrostatic precipitator |
5045095, | Jun 15 1989 | Samsung Electronics Co., Ltd. | Dust collector for an air cleaner |
5053912, | Mar 10 1988 | Astra-Vent AB | Air transporting arrangement |
5059219, | Sep 26 1990 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE U S ENVIRONMENTAL PROTECTION AGENCY | Electroprecipitator with alternating charging and short collector sections |
5061462, | Nov 12 1987 | Apparatus for producing a streamer corona | |
5066313, | Sep 20 1990 | Southern Environmental, Inc. | Wire electrode replacement for electrostatic precipitators |
5072746, | Apr 04 1990 | EPIP LLC | Hair grooming device |
5076820, | Dec 29 1989 | Collector electrode structure and electrostatic precipitator including same | |
5077468, | Feb 05 1990 | Electrostatic charging apparatus and method | |
5077500, | Feb 05 1987 | Astra-Vent AB | Air transporting arrangement |
5100440, | Jan 17 1990 | Elex AG | Emission electrode in an electrostatic dust separator |
5118942, | Feb 05 1990 | Electrostatic charging apparatus and method | |
5125936, | Jun 03 1988 | Boliden Contech AB | Emission electrode |
5136461, | Jun 07 1988 | Apparatus for sterilizing and deodorizing rooms having a grounded electrode cover | |
5137546, | Aug 31 1989 | METALLGESELLSCHAFT AKTIENGESELLSCHAFT, FEDERAL REPUBLIC OF GERMANY | Process and apparatus for electrostatic purification of dust- and pollutant-containing exhaust gases in multiple-field precipitators |
5141529, | Jun 19 1990 | NICORP CLEAN ROOM SYSTEMS INC | Dust precipitation from air by negative ionization |
5141715, | Apr 09 1991 | SACKINGER, WILLIAM M | Electrical device for conversion of molecular weights using dynodes |
5147429, | Apr 09 1990 | Mobile airborne air cleaning station | |
5154733, | Mar 06 1990 | EBARA RESEARCH CO , LTD | Photoelectron emitting member and method of electrically charging fine particles with photoelectrons |
5158580, | Dec 15 1989 | Electric Power Research Institute | Compact hybrid particulate collector (COHPAC) |
5180404, | Dec 08 1988 | Astra-Vent AB | Corona discharge arrangements for the removal of harmful substances generated by the corona discharge |
5183480, | Oct 28 1991 | Mobil Oil Corporation | Apparatus and method for collecting particulates by electrostatic precipitation |
5196171, | Mar 11 1991 | BRANDAROMA HOLDINGS LIMITED | Electrostatic vapor/aerosol/air ion generator |
5198003, | Jul 02 1991 | Carrier Corporation | Spiral wound electrostatic air cleaner and method of assembling |
5199257, | Feb 10 1989 | Centro Sviluppo Materiali S.p.A. | Device for removal of particulates from exhaust and flue gases |
5210678, | Dec 16 1991 | Industrial Technology Research Institute | Chain-type discharge wire for use in an electrostatic precipitator |
5215558, | Jun 12 1990 | Samsung Electronics Co., Ltd. | Electrical dust collector |
5217504, | Mar 28 1989 | ABB Flakt Aktiebolag | Method for controlling the current pulse supply to an electrostatic precipitator |
5217511, | Jan 24 1992 | The United States of America as represented by the Administrator of the | Enhancement of electrostatic precipitation with electrostatically augmented fabric filtration |
5234555, | Feb 05 1991 | Method and apparatus for ionizing fluids utilizing a capacitive effect | |
5248324, | Aug 02 1991 | ERDEC CO , LTD | Electrostatic precipitator |
5250267, | Jun 24 1992 | The Babcock & Wilcox Company | Particulate collection device with integral wet scrubber |
5254155, | Apr 27 1992 | Wet electrostatic ionizing element and cooperating honeycomb passage ways | |
5266004, | Mar 19 1990 | Hitachi, Ltd.; Hitachi Taga Technology Ltd. | Blower |
5271763, | Dec 31 1991 | Samsung Electronics Co., Ltd. | Electrical dust collector |
5282891, | May 01 1992 | ADA Technologies, Inc. | Hot-side, single-stage electrostatic precipitator having reduced back corona discharge |
5290343, | Jul 19 1991 | Kabushiki Kaisha Toshiba | Electrostatic precipitator machine for charging dust particles contained in air and capturing dust particles with coulomb force |
5296019, | Jun 19 1990 | NICORP CLEAN ROOM SYSTEMS INC | Dust precipitation from air by negative ionization |
5302190, | Jun 08 1992 | Trion, Inc. | Electrostatic air cleaner with negative polarity power and method of using same |
5308586, | May 01 1992 | GENERAL ATOMICS, A CORP OF CA | Electrostatic separator using a bead bed |
5315838, | Aug 16 1993 | Whirlpool Corporation | Air conditioner filter monitor |
5316741, | May 30 1991 | NEWAIRE, INC | Ozone generator |
5330559, | Aug 11 1992 | United Air Specialists, Inc. | Method and apparatus for electrostatically cleaning particulates from air |
5348571, | Jan 09 1992 | Metallgesellschaft Aktiengesellschaft | Apparatus for dedusting a gas at high temperature |
5376168, | Feb 20 1990 | The L. D. Kichler Co. | Electrostatic particle filtration |
5378978, | Apr 02 1993 | FMDK TECHNOLOGIES, INC | System for controlling an electrostatic precipitator using digital signal processing |
5386839, | Dec 24 1992 | Comb | |
5395430, | Feb 11 1993 | Wet Electrostatic Technology, Inc. | Electrostatic precipitator assembly |
5401301, | Jul 17 1991 | Metallgesellschaft Aktiengesellschaft | Device for the transport of materials and electrostatic precipitation |
5401302, | Dec 19 1991 | Metallgesellschaft Aktiegesellschaft | Electrostatic separator comprising honeycomb collecting electrodes |
5403383, | Aug 26 1992 | PRODUCT DEVELOPMENT ASSISTANCE INC , A VA CORP | Safe ionizing field electrically enhanced filter and process for safely ionizing a field of an electrically enhanced filter |
5405434, | Jun 05 1992 | SCOTT FETZER COMPANY, THE | Electrostatic particle filtration |
5407469, | Dec 20 1993 | Sunova Company | Improved air ionizing apparatus |
5407639, | Oct 14 1991 | Toto, Ltd. | Method of manufacturing a corona discharge device |
5417936, | Jun 08 1992 | Nippon Ozone Co., Ltd. | Plate-type ozone generator |
5419953, | May 20 1993 | Multilayer composite air filtration media | |
5433772, | Oct 15 1993 | Electrostatic air filter for mobile equipment | |
5435817, | Dec 23 1992 | Honeywell Inc. | Portable room air purifier |
5435978, | Aug 08 1991 | SUMITOMO PRECISION CO , LTD | Plate-type ozonizer |
5437713, | Dec 01 1994 | Removal device for electrostatic precipitators | |
5437843, | Jul 08 1993 | Ozonizer | |
5445798, | Nov 24 1992 | Mitsubishi Denki Kabushiki Kaisha | Microbe propagation preventing apparatus and microbe propagation preventing method |
5466279, | Nov 30 1990 | Kabushiki Kaisha Toshiba | Electric dust collector system |
5468454, | Apr 06 1994 | Samsung Electronics Co., Ltd. | Compact sterilizing deodorizing and freshness-preserving apparatus for use in a refrigerator |
5474599, | Aug 11 1992 | UNITED AIR SPECIALISTS, INC | Apparatus for electrostatically cleaning particulates from air |
5484472, | Feb 06 1995 | WEIN PRODUCTS INC | Miniature air purifier |
5484473, | Jul 28 1993 | Two-stage electrostatic filter with extruded modular components particularly for air recirculation units | |
5492678, | Jul 23 1993 | HOKUSHIN INDUSTRIES, INC ; Fujitsu Limited | Gas-cleaning equipment and its use |
5501844, | Jun 01 1994 | OxiDyn, Incorporated | Air treating apparatus and method therefor |
5503808, | Dec 27 1993 | Ozact, Inc. | Portable integrated ozone generator |
5503809, | Apr 19 1993 | John T., Towles | Compact ozone generator |
5505914, | Jan 20 1994 | Device for ozonizing small areas or surfaces for therapeutic purposes | |
5508008, | Oct 27 1994 | ENVIROZONE INDUSTRIES, INC | Apparatus for producing ozone with local and remote application |
5514345, | Mar 11 1994 | OZACT, INC | Method and apparatus for disinfecting an enclosed space |
5516493, | Feb 21 1991 | CLEARWATER ENGINEERING PTY LTD | Method and apparatus for producing ozone by corona discharge |
5518531, | May 05 1994 | Ion injector for air handling systems | |
5520887, | Nov 22 1993 | ISHIKAWAJIMA-HARIMA HEAVY INDUSTRIES CO , LTD | Apparatus for generating and condensing ozone |
5525310, | Aug 02 1995 | ENVIROZONE SYSTEMS CORPORATION | Continuous corona discharge ozone generation device |
5529613, | May 18 1993 | Amron Ltd. | Air ionization device |
5529760, | Dec 13 1994 | Ozone generator | |
5532798, | May 26 1993 | Minolta Camera Kabushiki Kaisha | Charging device having a plate electrode and a cleaning device for cleaning edges of the plate electrode |
5535089, | Oct 17 1994 | Jing Mei Industrial Holdings Limited | Ionizer |
5536477, | Mar 15 1995 | Chang Yul Cha | Pollution arrestor |
5538695, | Jul 03 1992 | Ebara Corporation | Ozonizer |
5540761, | Dec 11 1991 | Y2 ULTRA-FILTER, INC | Filter for particulate materials in gaseous fluids |
5542967, | Oct 06 1994 | High voltage electrical apparatus for removing ecologically noxious substances from gases | |
5545379, | Feb 05 1993 | Teledyne Industries, Inc. | Corona discharge system with insulated wire |
5545380, | Feb 05 1993 | Teledyne Industries, Inc. | Corona discharge system with conduit structure |
5547643, | Aug 16 1994 | Ebara Corporation | Apparatus for treating flue gases by irradiation with electron beams |
5549874, | Apr 23 1992 | Ebara Corporation | Discharge reactor |
5554344, | May 11 1994 | Gas ionization device | |
5554345, | Oct 13 1993 | NOVOZONE LIMITED | Ozone generation apparatus and method |
5569368, | Jan 06 1995 | Electrophoretic apparatus and method for applying therapeutic, cosmetic and dyeing solutions to hair | |
5569437, | Jan 07 1994 | SORBIOS VERFAHRENSTECHNISCHE GERAUTE UND SYSTEME GMBH | Ozone generating apparatus |
5571483, | Jan 26 1990 | Elektroschmelzwerk Kempten GmbH | System of converting environmentally pollutant waste gases to a useful product |
5573577, | Jan 17 1995 | Ionizing and polarizing electronic air filter | |
5573730, | May 09 1995 | Method and apparatus for treating airborne residues | |
5578112, | Jun 01 1995 | 999520 Ontario Limited | Modular and low power ionizer |
5578280, | Apr 28 1995 | Americal Environmental Technologies, Inc. | Ozone generator with a generally spherical corona chamber |
5582632, | May 11 1994 | Kimberly-Clark Worldwide, Inc | Corona-assisted electrostatic filtration apparatus and method |
5587131, | Mar 25 1993 | OZONETECH LTD | System for an efficient manufacture of ozone |
5591253, | Mar 07 1995 | Electric Power Research Institute, Inc. | Electrostatically enhanced separator (EES) |
5591334, | Oct 19 1993 | MATSUSHITA SEIKO CO , LTD | Apparatus for generating negative ions |
5591412, | Apr 26 1995 | HYPERTEK, INC | Electrostatic gun for injection of an electrostatically charged sorbent into a polluted gas stream |
5593476, | Jun 09 1994 | STRIONAIR, INC | Method and apparatus for use in electronically enhanced air filtration |
5601636, | May 30 1995 | Appliance Development Corp. | Wall mounted air cleaner assembly |
5603752, | Jun 07 1994 | ERDEC CO , LTD | Electrostatic precipitator |
5603893, | Aug 08 1995 | SOUTHERN CALIFORNIA, UNIVERSITY OF | Pollution treatment cells energized by short pulses |
5614002, | Oct 24 1995 | High voltage dust collecting panel | |
5624476, | Aug 21 1991 | Ecoprocess | Method and device for purifying gaseous effluents |
5630866, | Jul 28 1995 | Static electricity exhaust treatment device | |
5630990, | Nov 07 1994 | T I PROPERTIES, INC | Ozone generator with releasable connector and grounded current collector |
5637198, | Jul 19 1990 | L-3 COMMUNICATIONS SECURITY AND DETECTION SYSTEMS, INC | Volatile organic compound and chlorinated volatile organic compound reduction methods and high efficiency apparatus |
5637279, | Aug 31 1994 | MKS Instruments, Inc | Ozone and other reactive gas generator cell and system |
5641342, | Dec 26 1995 | Carrier Corporation | Interlock between cells of an electronic air cleaner |
5641461, | Jan 26 1996 | Ozone generating apparatus and cell therefor | |
5647890, | Dec 11 1991 | Y2 ULTRA-FILTER, INC | Filter apparatus with induced voltage electrode and method |
5648049, | Nov 29 1995 | HYPERTEK, INC | Purging electrostatic gun for a charged dry sorbent injection and control system for the remediation of pollutants in a gas stream |
5655210, | Aug 25 1994 | Hughes Electronics Corporation | Corona source for producing corona discharge and fluid waste treatment with corona discharge |
5656063, | Jan 29 1996 | Airlux Electrical Co., Ltd. | Air cleaner with separate ozone and ionizer outputs and method of purifying air |
5665147, | Apr 27 1993 | The Babcock & Wilcox Company | Collector plate for electrostatic precipitator |
5667563, | Jul 13 1995 | Air ionization system | |
5667564, | Aug 14 1996 | WEIN PRODUCTS, INC | Portable personal corona discharge device for destruction of airborne microbes and chemical toxins |
5667565, | Mar 21 1995 | Sikorsky Aircraft Corporation | Aerodynamic-electrostatic particulate collection system |
5667756, | Dec 18 1996 | YIN DA SLIDE CO , LTD | Structure of ozonizer |
5669963, | Dec 26 1995 | Carrier Corporation | Electronic air cleaner |
5678237, | Jun 24 1996 | KURION, INC | In-situ vitrification of waste materials |
5681434, | Mar 07 1996 | Method and apparatus for ionizing all the elements in a complex substance such as radioactive waste and separating some of the elements from the other elements | |
5681533, | Mar 15 1993 | Yushin Engineering | Environment decontaminating system having air cleaning and deodorizing function |
5698164, | Dec 27 1994 | OHNIT CO , LTD | Low-temperature plasma generator |
5702507, | Sep 17 1996 | Yih Change Enterprise Co., Ltd. | Automatic air cleaner |
5766318, | Nov 24 1993 | TL-Vent Aktiebolag | Precipitator for an electrostatic filter |
5779769, | Oct 24 1995 | Integrated multi-function lamp for providing light and purification of indoor air | |
5814135, | Aug 14 1996 | Portable personal corona discharge device for destruction of airborne microbes and chemical toxins | |
5879435, | Jan 06 1997 | Carrier Corporation | Electronic air cleaner with germicidal lamp |
5893977, | May 12 1997 | PINNACLE HOLDINGS & INVESTMENTS, INC | Water ionizer having vibration sensor to sense flow in electrode housing |
5911957, | Oct 23 1997 | Ozone generator | |
5972076, | Aug 11 1997 | Method of charging an electrostatic precipitator | |
5975090, | Sep 29 1998 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Ion emitting grooming brush |
5980614, | Jan 17 1994 | TL-Vent AB | Air cleaning apparatus |
5993521, | Feb 20 1992 | Eurus Air Design AB | Two-stage electrostatic filter |
5997619, | Sep 04 1997 | NQ Environmental, Inc. | Air purification system |
6019815, | Jan 06 1997 | Carrier Corporation | Method for preventing microbial growth in an electronic air cleaner |
6042637, | Aug 14 1996 | Corona discharge device for destruction of airborne microbes and chemical toxins | |
6063168, | Aug 11 1997 | Southern Company Services | Electrostatic precipitator |
6086657, | Feb 16 1999 | Exhaust emissions filtering system | |
6117216, | Sep 08 1995 | Eurus Air Design AB | Precipitator for cleaning of air from electrically charged aerosols |
6118645, | Aug 15 1990 | Ion Systems, Inc. | Self-balancing bipolar air ionizer |
6126722, | Jul 28 1998 | AGRICULTURE, UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY, THE | Electrostatic reduction system for reducing airborne dust and microorganisms |
6126727, | Jan 28 1999 | Electrode panel-drawing device of a static ion discharger | |
6149717, | Jan 06 1997 | Carrier Corporation | Electronic air cleaner with germicidal lamp |
6149815, | Nov 23 1999 | Precise electrokinetic delivery of minute volumes of liquid(s) | |
6152146, | Sep 29 1998 | Sharper Image Corporation | Ion emitting grooming brush |
6163098, | Jan 14 1999 | THREESIXTY BRANDS GROUP LLC | Electro-kinetic air refreshener-conditioner with optional night light |
6176977, | Nov 05 1998 | THREESIXTY BRANDS GROUP LLC | Electro-kinetic air transporter-conditioner |
6182461, | Jul 16 1999 | Carrier Corporation | Photocatalytic oxidation enhanced evaporator coil surface for fly-by control |
6182671, | Sep 29 1998 | Sharper Image Corporation | Ion emitting grooming brush |
6193852, | May 28 1997 | The BOC Group, Inc | Ozone generator and method of producing ozone |
6203600, | Jun 04 1996 | Eurus Air Design AB | Device for air cleaning |
6212883, | Mar 03 2000 | Moon-Ki Cho | Method and apparatus for treating exhaust gas from vehicles |
6228149, | Jan 20 1999 | Patterson Technique, Inc. | Method and apparatus for moving, filtering and ionizing air |
6252012, | Jun 27 1996 | International Business Machines Corporation | Method for producing a diffusion barrier and polymeric article having a diffusion barrier |
6270733, | Apr 09 1998 | HEIDRICH, WILLIAM P | Ozone generator |
6277248, | Jul 02 1996 | Fuji Electric Co., Ltd. | Ozone production facilities and method of their operation |
6282106, | Dec 23 1999 | Siemens Aktiengesellschaft | Power supply for an electrostatic precipitator |
6296692, | May 08 1995 | Air purifier | |
6302944, | Apr 18 2000 | GND Engineering, PLLC | Apparatus for extracting water vapor from air |
6309514, | Nov 07 1994 | T I PROPERTIES, INC | Process for breaking chemical bonds |
6312507, | Feb 12 1999 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Electro-kinetic ionic air refreshener-conditioner for pet shelter and litter box |
6315821, | May 03 2000 | Hamilton Beach Brands, Inc | Air filtration device including filter change indicator |
6328791, | May 03 2000 | Hamilton Beach Brands, Inc | Air filtration device |
6348103, | May 19 1998 | HENGST GMBH & CO KG | Method for cleaning electrofilters and electrofilters with a cleaning device |
6350417, | Nov 05 1998 | Tessera, Inc | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
6362604, | Sep 28 1998 | Alpha-Omega Power Technologies, L.L.C.; ALPHA-OMEGA POWER TECHNOLOGIES, L L C ; ALPHA-OMEGA POWER TECHNOLOGIES, LTD CO | Electrostatic precipitator slow pulse generating circuit |
6372097, | Nov 12 1999 | Chen Laboratories; CHEN LABORATORIES, L P | Method and apparatus for efficient surface generation of pure O3 |
6373723, | Jun 18 1998 | Kraftelektronik AB | Method and device for generating voltage peaks in an electrostatic precipitator |
6379427, | Dec 06 1999 | Method for protecting exposed surfaces | |
6391259, | Jun 26 1996 | Ozontech Ltd. | Ozone applications for disinfection, purification and deodorization |
6398852, | Mar 05 1997 | Eurus Air Design AB | Device for air cleaning |
6447587, | May 03 2000 | Hamilton Beach/Proctor-Silex, Inc. | Air filtration device |
6451266, | Nov 05 1998 | Sharper Image Corporation | Foot deodorizer and massager system |
6464754, | Oct 07 1999 | Kairos, L.L.C.; KAIROS, L L C | Self-cleaning air purification system and process |
6471753, | Oct 26 1999 | The Procter & Gamble Company | Device for collecting dust using highly charged hyperfine liquid droplets |
6494940, | Sep 29 2000 | Hamilton Beach Brands, Inc | Air purifier |
6504308, | Oct 16 1998 | Tessera, Inc | Electrostatic fluid accelerator |
6508982, | Apr 27 1998 | Kabushiki Kaisha Seisui | Air-cleaning apparatus and air-cleaning method |
653421, | |||
6544485, | Jan 29 2001 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Electro-kinetic device with enhanced anti-microorganism capability |
6585935, | Nov 20 1998 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Electro-kinetic ion emitting footwear sanitizer |
6588434, | Sep 29 1998 | Sharper Image Corporation | Ion emitting grooming brush |
6603268, | Dec 24 1999 | PANASONIC PRECISION DEVICES CO , LTD , | Method and apparatus for reducing ozone output from ion wind devices |
6613277, | Jun 18 1999 | TRW INVESTMENT HOLDINGS LTD | Air purifier |
6632407, | Nov 05 1998 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Personal electro-kinetic air transporter-conditioner |
6635105, | Jun 30 2001 | HENGST GMBH & CO , KG | Electrostatic precipitator |
6672315, | Sep 29 1998 | Sharper Image Corporation | Ion emitting grooming brush |
6709484, | Nov 05 1998 | Tessera, Inc | Electrode self-cleaning mechanism for electro-kinetic air transporter conditioner devices |
6713026, | Nov 05 1998 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Electro-kinetic air transporter-conditioner |
6735830, | May 31 1999 | Genie ET Environnement | Ion generating device |
6749667, | Jun 20 2002 | SHARPER IMAGE ACQUISITION LLC, A DELAWARE LIMITED LIABILITY COMPANY | Electrode self-cleaning mechanism for electro-kinetic air transporter-conditioner devices |
6753652, | May 30 2001 | Samsung Electronics Co., Ltd. | Ion implanter |
6761796, | Apr 06 2001 | Lam Research Corporation | Method and apparatus for micro-jet enabled, low-energy ion generation transport in plasma processing |
6768108, | Jul 02 2002 | Anelva Corporation | Ion attachment mass spectrometry apparatus, ionization apparatus, and ionization method |
6768110, | Jun 21 2000 | GATAN, INC | Ion beam milling system and method for electron microscopy specimen preparation |
6768120, | Aug 31 2001 | Regents of the University of California, The | Focused electron and ion beam systems |
6768121, | Aug 07 2000 | Axcelis Technologies, Inc. | Ion source having replaceable and sputterable solid source material |
6770878, | Apr 26 2000 | CEOS Corrected Electron Optical Systems GmbH | Electron/ion gun for electron or ion beams with high monochromasy or high current density |
6774359, | Aug 06 1998 | Hitachi, Ltd. | Sample-introduction tool, and an ion source and a mass spectrometer using the sample-introduction tool |
6777686, | May 17 2000 | Varian Semiconductor Equipment Associates, Inc. | Control system for indirectly heated cathode ion source |
6777699, | Mar 25 2002 | NPL Associates | Methods, apparatus, and systems involving ion beam generation |
6777882, | Jan 11 2002 | Applied Materials, Inc | Ion beam generator |
6781136, | Jun 11 1999 | Lambda Co., Ltd. | Negative ion emitting method and apparatus therefor |
6785912, | Jan 24 2003 | Ion toilet seat | |
6791814, | Nov 26 2001 | Nihon Pachinko Parts Co., Ltd. | Ion generating apparatus |
6794661, | May 29 2001 | Sumitomo Eaton Nova Corporation | Ion implantation apparatus capable of increasing beam current |
6797339, | Sep 06 1994 | Research Development Corporation of Japan; Sanyo Electric Co., Ltd. | Method for forming thin film with a gas cluster ion beam |
6797964, | Feb 25 2000 | NISSIN ION EQUIPMENT CO , LTD | Ion source and operation method thereof |
6799068, | Feb 19 1999 | Gesellschaft fuer Schwerionenforschung mbH | Method for verifying the calculated radiation dose of an ion beam therapy system |
6800862, | Dec 10 2001 | NISSIN ION EQUIPMENT CO , LTD | Ion implanting apparatus and ion implanting method |
6803585, | Jan 03 2000 | Electron-cyclotron resonance type ion beam source for ion implanter | |
6805916, | Jan 17 2001 | Research Foundation of the City University of New York | Method for making films utilizing a pulsed laser for ion injection and deposition |
6806035, | Jun 25 2002 | Western Digital Technologies, INC | Wafer serialization manufacturing process for read/write heads using photolithography and selective reactive ion etching |
6806163, | Jul 05 2002 | Taiwan Semiconductor Manufacturing Co., Ltd | Ion implant method for topographic feature corner rounding |
6806468, | Mar 01 2001 | SCIENCE & ENGINEERING SERVICES, INC | Capillary ion delivery device and method for mass spectroscopy |
6808606, | May 03 1999 | GUARDIAN GLASS, LLC | Method of manufacturing window using ion beam milling of glass substrate(s) |
6809310, | May 20 1999 | Accelerated ion beam generator | |
6809312, | May 12 2000 | BRUKER SCIENTIFIC LLC | Ionization source chamber and ion beam delivery system for mass spectrometry |
6809325, | Feb 05 2001 | Gesellschaft fuer Schwerionenforschung mbH | Apparatus for generating and selecting ions used in a heavy ion cancer therapy facility |
6812647, | Apr 03 2003 | Plasma generator useful for ion beam generation | |
6815690, | Jul 23 2002 | GUARDIAN GLASS, LLC | Ion beam source with coated electrode(s) |
6818257, | Apr 17 1999 | GENERAL PLASMA, INC | Method of providing a material processing ion beam |
6818909, | Dec 03 2001 | Applied Materials, Inc. | Ion sources for ion implantation apparatus |
6819053, | Nov 03 2000 | Tokyo Electron Limited | Hall effect ion source at high current density |
895729, | |||
995958, | |||
20010048906, | |||
20020069760, | |||
20020079212, | |||
20020098131, | |||
20020122751, | |||
20020122752, | |||
20020127156, | |||
20020134664, | |||
20020134665, | |||
20020141914, | |||
20020144601, | |||
20020146356, | |||
20020150520, | |||
20020152890, | |||
20020155041, | |||
20020170435, | |||
20020190658, | |||
20020195951, | |||
20030005824, | |||
20030206837, | |||
20030206839, | |||
20030206840, | |||
20040033176, | |||
20040052700, | |||
20040065202, | |||
20040136863, | |||
20040166037, | |||
20040226447, | |||
20040234431, | |||
20040237787, | |||
20040251124, | |||
20040251909, | |||
20050000793, | |||
CN2111112, | |||
CN2138764, | |||
CN2153231, | |||
CN87210843, | |||
D315598, | Feb 15 1989 | Hitachi, Ltd. | Electric fan |
D326514, | Feb 27 1990 | U.S. Natural Resources, Inc. | Electronic air cleaner |
D329284, | Apr 15 1991 | THE HOLMES GROUP, INC | Portable electric fan |
D332655, | Oct 04 1991 | THE HOLMES GROUP, INC | Portable electric fan |
D375546, | Jun 29 1995 | Myoung Woull Electronics Co., Ltd. | Air purifier |
D377523, | Aug 15 1995 | HONEYWELL CONSUMER PRODUCTS, INC | Air cleaner |
D389567, | May 14 1996 | CALOR S A | Combined fan and cover therefor |
D449097, | May 01 2000 | Hamilton Beach Brands, Inc | Air cleaner |
D449679, | May 01 2000 | Hamilton Beach Brands, Inc | Air cleaner filter |
DE19741621, | |||
DE2206057, | |||
EP332624, | |||
EP433152, | |||
FR2690509, | |||
GB643363, | |||
JP10137007, | |||
JP11104223, | |||
JP2000236914, | |||
JP5190077, | |||
JP6220653, | |||
JP63164948, | |||
RE33927, | Nov 08 1985 | Kankyo Company Limited | Air cleaner |
WO10713, | |||
WO147803, | |||
WO148781, | |||
WO164349, | |||
WO185348, | |||
WO2066167, | |||
WO220162, | |||
WO220163, | |||
WO230574, | |||
WO232578, | |||
WO242003, | |||
WO3009944, | |||
WO3013620, | |||
WO3013734, | |||
WO9205875, | |||
WO9604703, | |||
WO9907474, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 21 2005 | Sharper Image Acquisition LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 19 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 06 2015 | REM: Maintenance Fee Reminder Mailed. |
Mar 30 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 12 2013 | 4 years fee payment window open |
Apr 12 2014 | 6 months grace period start (w surcharge) |
Oct 12 2014 | patent expiry (for year 4) |
Oct 12 2016 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 12 2017 | 8 years fee payment window open |
Apr 12 2018 | 6 months grace period start (w surcharge) |
Oct 12 2018 | patent expiry (for year 8) |
Oct 12 2020 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 12 2021 | 12 years fee payment window open |
Apr 12 2022 | 6 months grace period start (w surcharge) |
Oct 12 2022 | patent expiry (for year 12) |
Oct 12 2024 | 2 years to revive unintentionally abandoned end. (for year 12) |