There is provided a tool at least partly coated with at least two refractory layers of which one of the said layers is a fine-grained α-Al2O3-layer which is the top layer along the cutting edge-line and the other a TiCxNyOz- or a ZrCxNy-layer being the top layer on the clearance face. The coated tool exhibits excellent flank and crater wear and high resistance to flaking, particularly when used for machining of low carbon steel and stainless steel. Used cutting edges can easily be identified by the naked eye.

Patent
   RE41972
Priority
Jul 20 1994
Filed
Jan 16 2007
Issued
Nov 30 2010
Expiry
Jul 05 2015
Assg.orig
Entity
unknown
55
34
EXPIRED
7. A method of making a cutting tool insert comprising a body of generally polygonal or round shape having an upper face, an opposite face and at least one clearance face intersecting said upper and lower faces to define a cutting edge, said body made of cemented carbide, titanium based carbonitride or ceramics comprising coating said insert at least partially with at least two refractory layers of which the next outermost is a fine-grained α-Al2O3-layer and a top mecxNyOz-layer where Me is a metal selected from the group consisting of metals in the groups IVB, VB, VIB of the Periodic Table and (x+y+z)=1 and removing said top mecxNyOz-layer at least along the cutting edge-line and on the upper face, leaving said layer essentially untouched on the clearance face.
1. A cutting tool insert made of cemented carbide, titanium based carbonitride or ceramics having an improved resistance to smearing of the workpiece material on the cutting edge comprising a body of generally polygonal or round shape having an upper face, an opposite face and at least one clearance face intersecting said upper and lower faces to define a cutting edge, said insert being at least partly coated with at least two refractory layers of which one is a fine-grained α-Al2O3-layer and the other is an mecxNyOz-layer where Me is a metal selected from the group consisting of the metals in the groups IVB, VB and VIB of the Periodic Table and (x+y+z)=1, said Al2O3-layer being the top layer along the cutting edge-line and on the upper face and said mecxNyOz-layer being the top layer on the clearance face.
2. The cutting tool insert of claim 1 wherein said α-Al2O3-layer has a texture in the (012)-direction or (104)-direction.
3. The cutting tool insert of claim 1 wherein Me is Ti or Zr.
4. The cutting tool insert of claim 3 wherein the layer on the clearance face is TiN, ZrN, TiCN or TiC.
5. The cutting tool insert of claim 1 wherein a fine-grained α-Al2O3 layer is present between the body and the mecxNyOz layer on the clearance face.
6. The cutting tool insert of claim 1 wherein the Al2O3 thickness is 2-12 μm.
8. The method of claim 7 wherein said top layer is removed by brushing with a brush containing SiC or by blasting with Al2O3-grits.
9. The method of claim 7 wherein said α-Al2O3-layer has a texture in the (012)-direction or (104)-direction.
10. The method of claim 7 wherein Me is Ti or Zr.
11. The method of claim 10 wherein said mecxNyOz-layer comprises TiN, ZrN, TiCN or TiC.
12. The method of claim 7 wherein said α-Al2O3-layer thickness is 2-12 μm.
0. 13. The method of claim 7 wherein said α-Al2O3-layer has a texture in the (012)-direction or (104)-direction and wherein Me is Ti or Zr.
0. 14. The method of claim 13 wherein the mecxNyOz layer is TiN, ZrN, TiCN or TiC.
0. 15. The method of claim 14 wherein the Al2O3 thickness is 2-12 μm.
0. 16. The method of claim 14 wherein said upper layer is removed by blasting with Al2O3- grits.
0. 17. The cutting tool insert of claim 1 wherein said α-Al2O3-layer has a texture in the (012)-direction or (104)-direction and wherein Me is Ti or Zr.
0. 18. The cutting tool insert of claim 17 wherein the layer on the clearance face is TiN, ZrN, TiCN or TiC.
0. 19. The cutting tool insert of claim 18 wherein a fine-grained α-Al2O3-layer is present between the body and the mecxNyOz layer on the clearance face.
0. 20. The cutting tool insert of claim 19 wherein the Al2O3 thickness is 2-12 μm.
0. 21. The cutting tool insert of claim 1 wherein the Al2O3-layer is the top layer on substantially the whole upper face.
0. 22. The method of claim 7 wherein the mecxNyOz-layer is removed from substantially the whole upper face.

This application is a reissue of U.S. Pat. No. 5,861,210, which claims the benefit of priority to Swedish Application No. 9402543-4 filed Jul. 20, 1994.

The presently claimed invention relates to an Al2O3-coated cutting tool suitable for machining of metals by turning, milling, drilling or by similar chipforming machining methods.

Modern high productivity chipforming machining of metals requires reliable tools with excellent wear properties. This has so far been achieved by employing a cemented carbide tool body coated with a wear resistant coating. The cemented carbide tool body is generally in the shape of an indexable insert clamped in a tool holder.

The most commonly used wear resistant layers are TiC, TiN, and Al2O3. Both single layer and multilayer coatings are employed. CVD, PVD or similar coating techniques are used for depositing the different layers onto the cemented carbide body.

During the past five to ten years, coated cemented carbide tools have been improved considerably with respect to reliability and tool life.

During, e.g., a turning and cutting operation, the coated tool is worn continuously on its rake face by the formed metal chip which causes crater wear. The machined workpiece also slides along the clearance face of the tool causing flank wear.

During high speed cutting, the tool edge may reach a very high temperature at the rake face. This leads to a diffusion type crater wear on the rake face of the tool. On the clearance face of the tool, the temperature is significantly lower mainly so that abrasive type wear occurs.

It is generally accepted that an Al2O3-layer performs best on the rake face due to its excellent ability to withstand diffusion type wear. Layers of the type MeCxNyOz, where Me is a metal selected from the group consisting of the Groups IVB, VB, and VIB of the Periodic Table, generally Ti and where (x+y+z)=1, which type is hereafter denoted by TiCxNyOz, generally performs better on the clearance face. Al2O3-layers on the other hand, wear relatively fast on the clearance face and develop flank wear relatively quickly on that face. The flank wear will be particularly large for thick, >4 μm, Al2O3-layers. Flank wear influences the machined surface and may therefore limit tool life. For TiCxNyOz-type layers, the situation is almost the reverse, that is, they exhibit low flank wear and faster crater wear than Al2O3.

It is desirable to have a tool with high wear resistance on both the clearance face and on the rake face at the same time.

Other factors influencing cutting performance of a coated tool include spalling or flaking of the coatings. Flaking accelerates tool wear, in particular the flank wear. Flaking may be the result of inferior coating adhesion or it may be due to the smearing or welding of workpiece material onto the cutting edge and a successive withdrawal of the coating. This may occur when the adhesion strength between the chip formed and the coating material is sufficiently high.

Some steels are more difficult to machine than others due to smearing and resulting flaking, for example, stainless steel and low carbon steel.

Nowadays, less machining per each component is needed. The requirements for high surface finish of the machined component only allow tools with a clean smooth cutting edge-line with very little developed wear to be used. It is becoming more and more difficult for the machine operator by the naked eye to differentiate between a little used and an unused cutting edge (“edge identification”). This is particularly difficult if the top layer is Al2O3 which color is dark grey or black. By mistake, using a used tool cutting edge, e.g., during an unmanned night shift run may cause component rejection or even unwanted production stops. Edge identification can more easily be done if the insert has a top layer of TiCxNyOz or in particular if the top layer is a goldish TiN-, ZrN- or HfN-layer.

In U.S. Pat. No. 4,643,620, the coating thickness is reduced along the edge by a mechanical treatment such as brushing, lapping or barrel polishing. The object is mainly to reduce the coating thickness along the cutting edge which is claimed to improve the toughness behavior of the cutting tool.

U.S. Pat. No. 4,966,501 discloses a method of reducing edge damages during cutting by reducing the coated surface roughness by employing a mechanical polishing, lapping or brush honing. This method is according to the findings of the present inventors not sufficient to minimize smearing.

It is an object of this invention to avoid or alleviate the problems of the prior art.

It is further an object of this invention to provide improvements in coated bodies with respect to the tendency of smearing/welding of workpiece material onto the cutting edge, cutting edge flaking resistance, simultaneous high resistance to crater and flank wear and to make “used edge identification” possible.

In one aspect of the invention there is provided a cutting tool insert made of cemented carbide, titanium based carbonitride or ceramics comprising a body of generally polygonal or round shape having an upper face, an opposite face and at least one clearance face intersecting said upper and lower faces to define a cutting edge, said insert being at least partly coated with at least two refractory layers of which one is a fine-grained α-Al2O3-layer and the other is an MeCxNyOz-layer where Me is a metal selected from the group consisting of metals in the Groups IVB, VB and VIB of the Periodic Table and (x+y+z)=1, said Al2O3-layer being the top layer along the cutting edge-line and said MeCxNyOz-layer being the top layer on the clearance face.

In another aspect of the invention there is provided a method of making a cutting tool insert comprising a body of generally polygonal or round shape having an upper face, an opposite face and at least one clearance face intersecting said upper and lower faces to define a cutting edge, said body made of cemented carbide, titanium based carbonitride or ceramics comprising coating said insert at least partially with at least two refractory layers of which the next outermost is a fine-grained α-Al2O3-layer and a top MeCxNyOz-layer where Me is a metal selected from the group consisting of metals in the Groups IVB, VB, VIB of the Periodic Table and (x+y+z)=1 removing said top MeCxNyOz-layer at least along the cutting edge-line leaving said layer essentially untouched on the clearance face.

The invention is illustrated by FIGS. 1A-1G which show the surface condition after different post treatments.

The inventors have made great efforts to find means to reduce the smearing of workpiece material onto the cutting edge in order to improve edge flaking and flank wear resistance. It has been found by comparative cutting tests with different top layers that Al2O3 is less prone to smearing than layers of the type TiCxNy0z. In particular, fine-grained smooth α-Al2O3 is very suitable as a coating material along the cutting edge in order minimize smearings and thereby reduce the risk of edge-line flaking.

The fine-grained α-Al2O3 layers may, e.g., be any of the types disclosed in U.S. patent Ser. Nos. 08/159,217 (our reference: 024000-993) and 08/366,107 (our reference: 024444-093) or most likely also any other fine-grained α-Al2O3-layer with other preferred growth direction.

Although tools with a top layer of a fine-grained α-Al2O3, such as described in the above patent applications have excellent cutting properties they do not always comply with today's requirements since they, e.g., suffer from the following drawbacks:

As mentioned above, edge identification and improved flank wear can be obtained by applying a top layer of TiCxNyOz. However, such a top layer will severely increase smearing along the edge-line when machining the difficult materials mentioned above.

The inventors have solved this problem by mechanically removing the TiCxNyOz-layer either from only the cutting edge-line or from both the rake face and the cutting edge-line.

By employing this method and keeping the TiCxNyOz-layer intact on the clearance face, several requirements have been fulfilled simultaneously:

According to the presently claimed invention, there now exists a cutting tool insert comprising a body of generally polygonal or round shape having an upper face, an opposite face and at least one clearance face intersecting said upper and lower faces to define cutting edges made of cemented carbide, titanium based carbonitride or ceramics. The insert is at least partly coated with at least two refractory layers. One is a fine-grained, grain size 0.5-4.0 μm, preferably 0.5-2.0 μm, α-Al2O3-layer being the top layer along the cutting edge-line and the other is a TiCxNyOz- or a ZrCxNy-cutting-layer, preferably a TiN-, ZrN-, TiCN- and/or TiC-layer being the top layer on the clearance face. The α-Al2O3-layer preferably has a texture in the (012)-direction or (104)-direction. A Texture Coefficient, TC, can be defined as: TC ( hkl ) = I ( hkl ) I o ( hkl ) { 3 n I ( hkl ) I o ( hkl ) } - 1
where

According to the invention, TC for the set of (012) crystal planes is larger than 1.3, preferably larger than 1.5, and for the set of (104) crystal planes TC is larger than 1.5, preferably larger than 2.5, and most preferably larger than 3.0.

The α-Al2O3-layer has a thickness of 2-12 μm, preferably 4-8 μm. The other layer has a thickness of 0.1-5 μm, preferably 1-4 μm. The total thickness of the coating including also other layers is <20 μm.

According to the method of the presently claimed invention, a cutting tool insert made of cemented carbide, titanium based carbonitride or ceramics is at least partly coated with at least two refractory layers of which the next outermost layer is a fine-grained α-Al2O3-layer and the outermost is a MeCxNy0z-layer, where Me is a metal selected from the group consisting of metals in the groups IVB, VB, VIB of the Periodic Table, preferably Ti or Zr. This top MeCxNyOz-layer is removed along the cutting edge-line or on the cutting edge-line as well as the rake face leaving said layer essentially untouched on the clearance face.

The methods used to remove the layer can be: brushing with a brush with straws containing, e.g., SiC or other grinding media, polishing with diamond paste, controlled directed blasting with, e.g., Al2O3-powders with or without masking off the clearance face. Also combinations of these methods are possible.

The aim of the mechanical treatment in the presently claimed invention is as mentioned to remove the top TiCxNyOz-layer and expose the fine-grained α-Al2O3 layer along the edge or also the entire rake face. A reduction of coating thickness along the edge-line is not desired. The used mechanical method should be so gentle that only the top TiCxNyOz-layer is removed leaving the Al2O3 at the edge-line as untouched as possible.

The invention is additionally illustrated in connection with the following Examples which are to be considered as illustrative of the presently claimed invention. It should be understood, however, that the invention is not limited to the specific details of the Examples.

Cemented carbide cutting inserts CNMG 120408-QM with the composition 5.5% Co, 8.6% cubic carbides (TiC-TaC-NbC) and balance WC were coated with CVD-technique according to the following sequence: 0.7 μm TiC, 0.5 μm Ti(CO), 8.0 μm Ti(CN), 3.0 μm Al2O3 and 2.8 μm TiN.

The Al2O3-layer was deposited with a method that gives a fine-grained α-Al2O3 layer according to U.S. Ser. No. 08/159,217 (our reference: 024000-993). The TiN-layer was deposited at 400 mbar and the other layers according to prior art techniques.

The coated inserts were post treated with different methods according to below:

Variant 1A: No post treatment.

Variant 1B: Wet blasting with 150 mesh Al2O3-grits at 1.0 bar.

Variant 1C: Wet blasting with 150 mesh Al2O3-grits at 1.5 bar.

Variant 1D: Wet blasting with 150 mesh Al2O3-grits at 2.0 bar.

Variant 1E: Wet blasting with 325 mesh Al2O3-grits at 2.0 bar.

Variant 1F: Brushing with a cylindrical nylon brush containing SiC.

Variant 1G: As 1F but with the center of the brush closer to the insert in order to get more efficient treatment.

The different treatments resulted in different degrees of thinning and smoothness of the outer TiN-layer:

Variant 1B: A much smoother surface than 1A. The TiN-layer covering the whole surface of the insert.

Variant 1C: A much smoother surface than 1A. The TiN-layer covering the whole surface of the insert.

Variant 1D: A much smoother surface than 1A. The TiN-layer is removed along the whole edge-line exposing the Al2O3-layer.

Variant 1E: As 1B.

Variant 1F: A much smoother surface than 1A. The TiN-layer covering the whole surface of the insert.

Variant 1G: A much smoother surface than 1A. The TiN layer is removed along the whole edge-line exposing the Al2O3-layer.

The surface condition of the variants is illustrated by FIGS. 1A-1G.

Cemented carbide cutting inserts CNMG 120408-QM with the composition 5.5% Co, 8.6% cubic carbides (TiC-TaC-NbC) and balance WC were coated with CVD-technique according to the following sequence: 0.6 μm TiC, 0.4 μm Ti(CO), 8.1 μm Ti(CN), 8.1 μm on Al2O3 and 0.9 μm TiN.

The Al2O3-layer was deposited with a method that gives a fine-grained α-Al2O3 layer according to U.S. Ser. No. 08/159,217 (our reference: 024000-993). The TiN-layer was deposited at 400 mbar and the other layers according to prior art techniques.

The coated inserts were post treated with different methods according to below:

Variant 2A: No post treatment.

Variant 2B: Wet blasting with 150 mesh Al2O3-grits resulting in a smoother surface. Here the top TiN-layer was removed along the edge-line as well as on the whole rake face exposing the black Al2O3-layer.

Variant 2C: Brushing with a cylindrical SiC-containing nylon brush. This treatment resulted in a smooth surface with only the top TiN-layer removed along the edge-line exposing the Al2O3.

Cemented carbide cutting inserts CNMG 120408-QM with the composition 5.5% Co, 8.6% cubic carbides (TiC-TaC-NbC) and balance WC were coated with CVD-technique according to the following sequence: 1.0 μm TiC, 0.4 μm Ti(CO), 7.9 μm Ti(CN) and 5.5 μm Al2O3.

The Al2O3-layer was deposited with a method that gives a fine-grained α-Al2O3 layer according to U.S. Ser. No. 08/159,217 (our reference: 024000-993).

The inserts were treated by wet blasting with 150 mesh Al2O3-grits (Variant 3).

Cemented carbide cutting inserts CNMG 120408-QM with the composition 6.5% Co, 8.7% cubic carbides (TiC-TaC-NbC) and balance WC and with a 25 μm thick binder phase enriched zone were coated with CVD-technique according to the following sequence: 7.9 μm TiC, 4.2 μm Al2O3 and 3.5 μm TiC.

The Al2O3-layer was deposited with a method that gives a fine-grained α-Al2O3-layer according to U.S. Ser. No. 08/159,217 (our reference: 024000-993).

Variant 4A: No post treatment.

Variant 4B: The inserts were brushed with a cylindrical SiC-containing nylon brush, resulting in a smooth surface exposing the Al2O3-layer along the whole edge-line.

Cemented carbide cutting inserts CNMG 120408-QM with the composition 6.5% Co, 8.7% cubic carbides (TiC-TaC-NbC) and balance WC and with a 25 μm thick binder phase enriched surface zone were coated with CVD-technique according to the following sequence: 7.0 μm TiC and 5.1 μm Al2O3.

The Al2O3-layer was deposited with a method that gives a fine-grained α-Al2O3 layer according to U.S. Ser. No. 08/159,217 (our reference: 024000-993).

The inserts were treated by wet blasting with 150 mesh Al2O3-grits (Variant 5).

Cemented carbide cutting inserts CNMG 120408-QM with the composition 6.5% Co, 8.7% cubic carbides (TiC-TaC-NbC) and balance WC and with a 25 μm thick binder phase enriched surface zone were coated with CVD-technique according to the following sequence: 5.4 μm Ti(CN), 5.3 μm Al2O3 and 1.3 μm TiN.

The Al2O3-layer was deposited according to prior art technique resulting in a layer of mixed α- and κ-polymorphs. The TiN-layer was deposited at 400 mbar and the other layers according to prior art techniques.

Variant 6A: Not post treated.

Variant 6B: Wet blasting with 150 mesh Al2O3-grits resulting in a smoother surface and the top TiN-layer removed along the edge-line as well as on the whole rake face exposing the Al2O3.

Variant 6C: Brushing with a cylindrical SiC-containing nylon brush resulting in a smooth surface and exposing the Al2O3-layer along the whole edge-line.

Tool inserts from examples 1-6 were tested with respect of edge-line flaking in a facing operation in an alloyed steel (AISI 1518, W-no. 1,0580). The shape of the workpiece was such that the cutting edge was intermitted three times during each revolution. Cutting data:

The inserts were run one cut over the workpiece. The results below are expressed as percentage of the edge-line in cut that obtained flaking of the coating.

% Edge Line Flaking
Variant Post Treatment Al2O3 Exposed at edge
1A None No 63
1B Blasted No 80
1C Blasted No 84
1D Blasted Yes 18
1E Blasted No 70
1F Brushed No 66
1G Brushed Yes 0
2A None No 57
2B Blasted Yes 0
2C Brushed Yes 0
3 Blasted Yes 0
4A None No 87
4B Brushed Yes 0
5 Blasted Yes 0
6A None No 83
6B Blasted Yes 27
6C Brushed Yes 33

As can be seen from above, the best results have been obtained when the fine-grained α-Al2O3-layer has been exposed at the edge-line. Post treatment resulting in a smoother coating surface but not exposure of the α-Al2O3 does not result in any improvement of the flaking resistance. Variants 6B and 6C with the α/κ-polymorphs exposed at the edge-line do not obtain as good flaking resistance as the Variants with α-Al2O3-layer exposed at the edge-line.

Cutting inserts from Examples 4 and 5 were run in longitudinal turning of a ball bearing steel SKF 25B.

The flank wear was measured after 2.5 min in order to study the initial wear.

Variant Flank Wear, mm
4B 0.13
5 0.20

This Example illustrates the improved flank wear resistance due to the top TiC layer on the flank face.

The principles, preferred embodiments and modes of operation of the presently claimed invention have been described in the foregoing specification. The invention which is intended to be protected herein, however, is not to be construed as limited to the particular forms disclosed, since these are to be regarded as illustrative rather than restrictive. Variations and changes may be made by those skilled in the art without departing from the spirit of the invention.

Lenander, Anders, Ljungberg, Bjorn

Patent Priority Assignee Title
10026467, Nov 09 2015 Invensas Corporation High-bandwidth memory application with controlled impedance loading
10032752, Oct 03 2011 Invensas Corporation Microelectronic package having stub minimization using symmetrically-positioned duplicate sets of terminals for wirebond assemblies without windows
10090280, Oct 03 2011 Invensas Corporation Microelectronic package including microelectronic elements having stub minimization for wirebond assemblies without windows
10643977, Oct 03 2011 Invensas Corporation Microelectronic package having stub minimization using symmetrically-positioned duplicate sets of terminals for wirebond assemblies without windows
10692842, Oct 03 2011 Invensas Corporation Microelectronic package including microelectronic elements having stub minimization for wirebond assemblies without windows
11213893, Jun 29 2016 Sandvik Intellectual Property AB CVD coated cutting tool
8345441, Oct 03 2011 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
8405207, Oct 03 2011 Invensas Corporation Stub minimization for wirebond assemblies without windows
8436457, Oct 03 2011 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
8436477, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of signal terminals in assemblies without wirebonds to package substrate
8441111, Oct 03 2011 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
8502390, Jul 12 2011 Tessera, Inc De-skewed multi-die packages
8513813, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of terminals for wirebond assemblies without windows
8513817, Jul 12 2011 Invensas Corporation Memory module in a package
8525327, Oct 03 2011 Invensas Corporation Stub minimization for assemblies without wirebonds to package substrate
8610260, Oct 03 2011 Invensas Corporation Stub minimization for assemblies without wirebonds to package substrate
8629545, Oct 03 2011 Invensas Corporation Stub minimization for assemblies without wirebonds to package substrate
8653646, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of terminals for wirebond assemblies without windows
8659139, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of signal terminals in assemblies without wirebonds to package substrate
8659140, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of signal terminals in assemblies without wirebonds to package substrate
8659141, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of terminals for wirebond assemblies without windows
8659142, Oct 03 2011 Invensas Corporation Stub minimization for wirebond assemblies without windows
8659143, Oct 03 2011 Invensas Corporation Stub minimization for wirebond assemblies without windows
8670261, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of signal terminals
8759982, Jul 12 2011 Tessera, Inc. Deskewed multi-die packages
8787034, Aug 27 2012 Invensas Corporation Co-support system and microelectronic assembly
8823165, Jul 12 2011 Invensas Corporation Memory module in a package
8848391, Aug 27 2012 Invensas Corporation Co-support component and microelectronic assembly
8848392, Aug 27 2012 Invensas Corporation Co-support module and microelectronic assembly
8917532, Oct 03 2011 Invensas Corporation Stub minimization with terminal grids offset from center of package
8981547, Oct 03 2011 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
9070423, Jun 11 2013 Invensas Corporation Single package dual channel memory with co-support
9123555, Oct 25 2013 Invensas Corporation Co-support for XFD packaging
9214455, Oct 03 2011 Invensas Corporation Stub minimization with terminal grids offset from center of package
9224431, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of signal terminals
9281271, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of signal terminals having modulo-x symmetry in assemblies without wirebonds to package substrate
9281296, Jul 31 2014 Invensas Corporation Die stacking techniques in BGA memory package for small footprint CPU and memory motherboard design
9287195, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of terminals having modulo-x symmetry for wirebond assemblies without windows
9287216, Jul 12 2011 Invensas Corporation Memory module in a package
9293444, Oct 25 2013 Invensas Corporation Co-support for XFD packaging
9368477, Aug 27 2012 Invensas Corporation Co-support circuit panel and microelectronic packages
9373565, Oct 03 2011 Invensas Corporation Stub minimization for assemblies without wirebonds to package substrate
9377824, Oct 03 2011 Invensas Corporation Microelectronic assembly including memory packages connected to circuit panel, the memory packages having stub minimization for wirebond assemblies without windows
9423824, Oct 03 2011 Invensas Corporation Stub minimization for multi-die wirebond assemblies with parallel windows
9460758, Jun 11 2013 Invensas Corporation Single package dual channel memory with co-support
9484080, Nov 09 2015 Invensas Corporation High-bandwidth memory application with controlled impedance loading
9496243, Oct 03 2011 Invensas Corporation Microelectronic assembly with opposing microelectronic packages each having terminals with signal assignments that mirror each other with respect to a central axis
9508629, Jul 12 2011 Invensas Corporation Memory module in a package
9515053, Oct 03 2011 Invensas Corporation Microelectronic packaging without wirebonds to package substrate having terminals with signal assignments that mirror each other with respect to a central axis
9530458, Oct 03 2011 Invensas Corporation Stub minimization using duplicate sets of signal terminals
9679613, May 06 2016 Invensas Corporation TFD I/O partition for high-speed, high-density applications
9679838, Oct 03 2011 Invensas Corporation Stub minimization for assemblies without wirebonds to package substrate
9679876, Oct 03 2011 Invensas Corporation Microelectronic package having at least two microelectronic elements that are horizontally spaced apart from each other
9691437, Sep 25 2014 Invensas Corporation Compact microelectronic assembly having reduced spacing between controller and memory packages
9928883, May 06 2016 Invensas Corporation TFD I/O partition for high-speed, high-density applications
Patent Priority Assignee Title
4180400, Jun 09 1977 SANTRADE LTD , A CORP OF SWITZERLAND Coated cemented carbide body and method of making such a body
4357382, Nov 06 1980 FANSTEEL INC , A CORP OF DELAWARE Coated cemented carbide bodies
4399168, Jan 21 1980 SANTRADE LTD , A CORP OF SWITZERLAND Method of preparing coated cemented carbide product
4525415, Sep 11 1981 NEW ISCAR LTD ; Iscar Ltd Sintered hard metal products having a multi-layer wear-resistant coating
4608098, Dec 16 1981 CARBOLOY INC , A DE CORP Coated product and process
4619866, Jul 28 1980 Santrade Limited Method of making a coated cemented carbide body and resulting body
4643620, May 27 1983 Sumitomo Electric Industries, Ltd. Coated hard metal tool
4966501, Jul 10 1987 Sumitomo Electric Industries, Ltd. Coated cemented carbide tool
5071696, Jun 16 1989 Sandvik Intellectual Property Aktiebolag Coated cutting insert
5137774, Jul 13 1989 SECO TOOLS AB Multi-oxide coated carbide body and method of producing the same
5487625, Dec 18 1992 Sandvik Intellectual Property Aktiebolag Oxide coated cutting tool
EP603144,
EP693574,
GB1389140,
JP1180980,
JP2218522,
JP2825693,
JP4966513,
JP5009743,
JP5057507,
JP5128966,
JP5142030,
JP557507,
JP58177267,
JP5867861,
JP60048211,
JP6045727,
JP62084903,
JP6316758,
JP64031972,
JP6416302,
JP655311,
RE29420, Nov 12 1971 SANTRADE LTD , A CORP OF SWITZERLAND Sintered cemented carbide body coated with two layers
RE32110, May 15 1975 CARBOLOY INC , A DE CORP Aluminum oxide coated cemented carbide product
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 16 2007Sandvik Intellectual Property AB(assignment on the face of the patent)
Date Maintenance Fee Events


Date Maintenance Schedule
Nov 30 20134 years fee payment window open
May 30 20146 months grace period start (w surcharge)
Nov 30 2014patent expiry (for year 4)
Nov 30 20162 years to revive unintentionally abandoned end. (for year 4)
Nov 30 20178 years fee payment window open
May 30 20186 months grace period start (w surcharge)
Nov 30 2018patent expiry (for year 8)
Nov 30 20202 years to revive unintentionally abandoned end. (for year 8)
Nov 30 202112 years fee payment window open
May 30 20226 months grace period start (w surcharge)
Nov 30 2022patent expiry (for year 12)
Nov 30 20242 years to revive unintentionally abandoned end. (for year 12)