Sympathetically maintained pain is treated topically by administering to the site where sympathetically maintained pain is present an α-1-adrenergic antagonist, α-2-adrenergic agonist, or other drug that depletes or blocks synthesis of sympathetic norepinephrine, known collectively as sympatholytic agents. Chemical formulas for several sympatholytic agents are given.

Patent
   RE41998
Priority
Feb 26 1990
Filed
May 05 2005
Issued
Dec 14 2010
Expiry
Feb 26 2010
Assg.orig
Entity
Large
3
21
all paid
0. 13. A method of treating sympathetically maintained pain in peripheral tissues comprising topically administering to a patient a compound other than guanethidine or clonidine effective to treat peripheral sympathetically maintained pain at the site of treatment by blocking the effect of norepinephrine on nociceptor terminals, without systemic side effects of postural hypotension, headache, tachycardia, or nasal stuffiness.
1. A method of treating sympathetically maintained pain in peripheral tissues comprising topically administering to a patient having sympathetically maintained pain at a peripheral site where the pain originates, wherein the sympathetically maintained pain can be diagnosed by local anesthetic blockade of the appropriate sympathetic ganglion or adrenergic blockade via intravenous administration of phentolamine, and rekindled by intradermal injection of norepinephrine, an effective amount of a compound other than guanethidine or clonidine that depletes norepinephrine or blocks synthesis or release of norepinephrine at the sympathetic terminals in a pharmaceutically acceptable carrier for topical application selected from the group consisting of a lotion, ointment, solution, and transdermal patch to cause measurable relief from the sympathetically maintained pain.
2. The method of claim 1 wherein the compound is administered in a transdermal patch.
3. The method of claim 1 wherein the compound is selected from the group consisting of bethanidine, guanclofine, guanoxan, guanazodine, guanoxyfen, guanocline, guanoctine, and guanadrel.
4. The method of claim 1 wherein the compound is selected from the group consisting of guanoxabenz, and guanoclor.
5. The method of claim 1 wherein the compound is selected from the group consisting of debrisoquin and guanisoquin.
6. The method of claim 1 wherein the compound is selected from the group consisting of solypertine, naftopidil, saterinone, trazodone, nefazodone, tiospirone, 3-[2-[4-(o-methoxyphenyl)-1-piperazinyl]ethyl]-2,4(1H,3H)quinazolinedione monohydrochloride, and 1-[2-ethoxy-2-(3′-pyridyl)ethyl]-4-(2′-methoxy-phenyl)piperazine.
7. The method of claim 1 wherein the compound is a Rauwolfia alkaloid.
8. The method of claim 1 wherein the compound is an ergot alkaloid.
9. The method of claim 1 wherein the compound is the compound 5-n-butylpicolinic acid hydrazide.
10. The method of claim 1 wherein the compound is selected from the group consisting of 1-(3-mercapto-2-methyl-1-oxopropyl)-L-proline and 1-(2-mercaptacetyl)-L-proline.
11. The method of claim 1 wherein the compound is bretylium.
12. The method of claim 1 wherein the compound is methylapogalanthamine.
0. 14. The method of claim 13 wherein the compound is a sympatholytic agent.
0. 15. The method of claim 13 wherein the compound has the structure represented by Formula I: ##STR00020##
wherein A is selected from the group consisting of aryl, aryloxy, anilino, arylamino, diarylamino, heteroaryl, heteroaryloxy, and heteroarylamino, which may be substituted with one or more radicals selected from the group consisting of alkyl, branched alkyl, cycloalkyl, hydroxyl, alkoxy, cycloalkylalkyl, alkoxyalkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyano, oxo, halogen, thioalkyl, dialkylamino, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; B is independently selected from the group consisting of linear alkylene containing from 1 to 4 methylene units, branched alkylene, imino, and thio; and n is either 2 or 3; or a pharmaceutically acceptable salt thereof.
0. 16. The method of claim 15 wherein A is selected from the group consisting of phenyl, substituted phenyl, phenoxy, substituted phenoxy, naphthyl, tetrahydronaphthyl, and diarylamino; B is methylene or 1-ethylene; and n is 2.
0. 17. The method of claim 15 wherein A is substituted phenyl, in which positions 2 and 6 of the phenyl ring are substituted by radicals independently selected from the group consisting of hydrido, chloro, methyl, ethyl, cyclopropyl, and thiomethyl and positions 3, 4, and 5 are substituted by radicals independently selected from the group consisting of hydrido, 2-propyl, tertbutyl, hydroxyl, trifluoromethyl, chloro, and fluoro; B is methylene or 1-ethylene when A is substituted phenoxy; and n is 2.
0. 18. The method of claim 15 wherein A is diarylamino, in which case each aryl group is optionally independently substituted by hydroxyl; B is methylene; and n is 2.
0. 19. The method of claim 15 wherein A is 1-naphthyl or tetrahydronaphthyl; B is either zero or one methylene unit; and n is 2.
0. 20. The method of claim 15 wherein the compound is selected from the group consisting of tetrahydrozoline, naphazoline, phentolamine, dexlofexidine, oxymetazoline, cirazoline, xylometazoline, and tolazidine.
0. 21. The method of claim 13 wherein the compound has the structure represented by Formula II: ##STR00021##
wherein A2 is selected from the group consisting of alkyl, branched alkyl, aryl, aryloxy, heteroaryl, and heterocyclyl, which is optionally substituted with one or more substituents selected from the group consisting of halogen, lower alkyl, aryl, alkoxy, hydroxyl, amino, alkylamino, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl or arylsulfonyl; R1 and R2 are independently selected from the group consisting of hydrido, lower alkyl, hydroxyl and cyano; R3 and R4 are independently selected from the group consisting of hydrido and lower alkyl, or together form a carbonyl moiety; R5 is selected from the group consisting of hydrido and lower alkyl; and n is any value between 0 and 4 inclusive; or a pharmaceutically acceptable salt thereof.
0. 22. The method of claim 21 wherein A2 is selected from the group consisting of lower alkyl, phenyl, substituted phenyl, phenoxy, substituted phenoxy, anilino, substituted anilino, azacyclic, benzodioxan, and substituted dioxolane; R1 is selected from the group consisting of hydrido, methyl, and hydroxyl, R2 is selected from the group consisting of hydrido and cyano; R3 and R4 are independently selected from the group consisting of hydrido or methyl, or together form a carbonyl; R5 is hydrogen; and n is any value from 0 to 3 inclusive.
0. 23. The method of claim 21 wherein A2 is selected from the group consisting of lower alkyl, 2,6-dichlorophenyl, phenoxy, (2,6-dichloro)phenoxy, (2,6-dichloro)anilino, 4-phenyl-1,2,3,6-tetrahydropyridinyl, octahydro-1-azocinyl, octahydro-2-azocinyl, benzodioxan-2-yl, and 1,4-dioxaspiro[4,5]dec-2-yl; R1 is selected from the group consisting of hydrido, methyl, and hydroxyl, R2 is selected from the group consisting of hydrido and cyano; R3 and R4 are independently selected from the group consisting of hydrido and methyl, or together form a carbonyl; R5 is hydrogen; and n is any value from 0 to 3 inclusive.
0. 24. The method of claim 21 wherein the compound is selected from the group consisting of bethanidine, guanfacine, guanclofine, guanoxan, guanazodine, guanoxyfen, guanocline, guanoctine, and guanadrel.
0. 25. The method of claim 13 wherein the compound has the structure represented by Formula III: ##STR00022##
wherein A3 is selected from the group consisting of alkyl, branched alkyl, aryl, aryloxy, heteroaryl, and heterocyclic moiety, which optionally are substituted with one or more substituents selected from the group consisting of halogen, lower alkyl, aryl, alkoxy, hydroxyl, amino, alkylamino, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; B2 is carbon, wherein it forms an unsaturated imino linkage with the adjacent nitrogen, or linear or branched alkylene moiety of 1-4 methylene units in length; R1 and R2 are as defined for Formula II; and R6 is selected from the group consisting of hydrogen and lower alkyl, when the attached nitrogen is not incorporated into an unsaturated imino bond; or a pharmaceutically acceptable salt thereof.
0. 26. The method of claim 25 wherein A3 is selected from the group consisting of phenyl and substituted phenyl; B2 is a carbon attached by a double bond to the adjacent nitrogen to form an imino moiety, or B2 is a saturated linear alkyl chain of 2 methylene units; and R1, R2, and R6 are hydrogen.
0. 27. The method of claim 25 wherein A3 is a 2,6-disubstituted phenyl moiety, wherein the substituents are selected from the group consisting of chloro and methyl.
0. 28. The method of claim 25 wherein the compound is selected from the group consisting of guanabenz, guanoxabenz, and guanoclor.
0. 29. The method of claim 13 wherein the compound has the structure of Formula IV: ##STR00023##
wherein A4 is selected from the group consisting of aryl and heteroaryl, which is optionally substituted by one or more radicals selected from the group consisting of alkyl, branched alkyl, cycloalkyl, hydroxyl, alkoxy, cycloalkylalkyl, alkoxyalkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyano, halogen, thioalkyl, dialkylamino, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; X is selected from the group consisting of thio, imino, and methylene; R7 is selected from the group consisting of hydrogen, lower alkyl, and oxygen-containing heterocycle; and n is either 2 or 3; or a pharmaceutically acceptable salt thereof.
0. 30. The method of claim 29 wherein A4 is selected from the group consisting of phenyl; substituted phenyl, on which positions 2 and 6 of the phenyl ring are independently substituted by a radical selected from the group consisting of hydrogen, chloro, methyl, ethyl, and cycloalkyl, and positions 3, 4, and 5 are independently substituted by a radical selected from the group consisting of hydrogen, methyl, trifluoromethyl, fluoro, and cyano; 3-thienyl, on which positions 2 and 4 are independently substituted by a radical selected from the group consisting of hydrogen, chloro, methyl, ethyl, and cycloalkyl; 1-naphthyl; 5,6,7,8-tetrahydronaphthyl-1-yl; pyrrolyl; oxazolyl; isoxazolyl; indol-3-yl; indazol-3-yl; quinolinyl; quinazolinyl; quinoxazolinyl; benzoxazolyl; benzothiophen-3-yl; and pyrimidin-4-yl, on which positions 3 and 5 are independently substituted by hydrogen, chloro, methyl, ethyl, cycloalkyl, or methoxy; R7 is hydrogen or tetrahydropyran-2-yl; X is thio or imino; and n is 2.
0. 31. The method of claim 29 wherein A4 is selected from the group consisting of phenyl, 2,6-dichlorophenyl, 2,6-dimethylphenyl, 2,6-diethylphenyl, 3,4-dihydroxyphenyl, 3-fluoro-6-methylphenyl, 2-chloro-5-trifluoromethylphenyl, 2-chloro-4-methylphenyl, 3-chloro-4-methylthien-3-yl, 5,6,7,8-tetrahydronaphth-1-yl, and 4-chloro-5-methoxy-2-methylpyrimidin-4-yl; R7 is hydrogen or tetrahydropyran-2-yl; X is thio or imino; and n is 2.
0. 32. The method of claim 29 wherein the compound is selected from the group consisting of xylazine, flutonidine, moxonidine, tramazoline, tolonidine, piclonidine, and tiamenidine.
0. 33. The method of claim 13 wherein the compound has the structure of Formula V: ##STR00024##
wherein Y represents the remainder of a cyclic structure selected from the group consisting of 1,2,3,4-tetrahydroisoquinoline and 2,3-dihydroisoindole, which is optionally substituted by one or more radicals selected from the group consisting of halogen, lower alkyl, alkoxy, hydroxyl, oxo, amino, dialkylamino, aryl, aryloxy, cyano, alkoxycarbonyl, aminocarbonyl, alkylsulfinyl, alkylsulfonyl, alkanoyl, and alkylthio; and R1 and R2 are defined as in Formula II; or a pharmaceutically acceptable salt thereof.
0. 34. The method of claim 33 wherein Y is substituted tetrahydroisoquinoline, the substituents are either hydrogen or halogen on position 7 of the tetrahydroisoquinoline nucleus, and R1 and R2 are both hydrogen.
0. 35. The method of claim 33 wherein the compound is selected from the group consisting of debrisoquin and guanisoquin.
0. 36. The method of claim 13 wherein the compound has the structure of Formula VI: ##STR00025##
or Formula VII: ##STR00026##
wherein R8 is selected from the group consisting of hydrogen, alkyl, and cycloalkyl; R9 and R10 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, acyloxy, dialkylamino, and alkylthio; R11 is selected from the group consisting of hydrogen, alkyl, and alkoxy; R12 and R13 are independently selected from the group consisting of hydrogen and alkyl; n, n′ and n″ are independently 2 to 4 inclusive; and Z is selected from the group consisting of alkyl, alkoxy, alkylaryl, alkenylaryl, alkoxyalkyl, hydroxyalkyl, aryl, heteroaryl, and heteroalkyl; or a pharmaceutically acceptable salt thereof.
0. 37. The method of claim 36 wherein the compound is a compound of Formula VI wherein R8 is hydrogen, R9 and R10 are alkoxy; R11 is selected from the group consisting of hydrogen and alkoxy; and R12 is selected from the group consisting of hydrogen and alkyl.
0. 38. The method of claim 36 wherein the c compound is a compound of Formula VII wherein R8 is hydrogen, R9 and R10 are alkoxy; R11 is selected from the group consisting of hydrogen and alkoxy; and n′ and n″ are independently either 2 or 3.
0. 39. The method of claim 36 wherein the compound is a compound of Formula VI, wherein R9 and R10 are methoxy; R11 is selected from the group consisting of hydrogen and methoxy; R12 is selected from the group consisting of hydrogen and methyl; R13 is hydrogen; and Z is selected from the group consisting of ethyl, propyl, butyl, 2-methylpropyl, 1-methoxyethyl, 2-(2-furoyl)-ethenyl, 2-tetrahydrofuranoyl, 2-furoyl, 2-hydroxy-2-methylpropyloxy, 2-hydroxypropyl, and 2-thiomethyl-1,3,4-oxadiozol-4-yl.
0. 40. The method of claim 36 wherein the compound is a compound of Formula VII, wherein R9 and R10 are methoxy; R11 is selected from the group consisting of hydrogen and methoxy; Z is selected from the group consisting of ethyl, propyl, butyl, 2-methylpropyl, 1-methoxyethyl, 2-(2-furoyl)-ethenyl, 2-tetrahydrofuranoyl, 2-furoyl, 2-hydroxy-2-methylpropyloxy, 2-hydroxypropyl, and 2-thiomethyl-1,3,4-oxadiazol-4-yl; and n′ is 2 and n″ is 2 or 3.
0. 41. The method of claim 36 wherein the compound is selected from the group consisting of alfuzosin, bunazosin, doxazosin, metazosin, neldazosin, prazosin, terazosin, trimazosin, tiodazosin, and MY-5561.
0. 42. The method of claim 13 wherein the compound has the structure of Formula VIII: ##STR00027##
wherein N is selected from the group consisting of aryl and heteroaryl, which is optionally substituted with one or more radicals selected from the group consisting of alkyl, branched alkyl, cycloalkyl, hydroxyl, alkoxy, cycloalkylalkyl, alkoxyalkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyano, halogen, thioalkyl, dialkylamino, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and M is defined as: ##STR00028##
or ##STR00029##
wherein R14 and R15 are independently selected from the group consisting of hydrogen, alkyl, alkoxy, and hydroxy; P is selected from the group consisting of heteroaromatic and polycyclic heteroaromatic, which is optionally substituted with one or more radicals selected from the group consisting of halogen, alkyl alkoxy, oxo, cyano, alkoxycarbonyl, arylalkyl, trifluromethyl, and aryloxyalkyl; and Q is selected from the group consisting of oxygen and imino; or a pharmaceutically acceptable salt thereof.
0. 43. The method of claim 42 wherein N is selected from the group consisting of phenyl, pyridyl, thienopyridinyl, indolyl, and pyrimidin-2-yl; wherein, if N is phenyl, then the phenyl ring is optionally substituted with one or more radicals selected from the group consisting of: chloro, methoxy, cyano, thiomethyl, and trifluoromethyl; R14 is selected from the group consisting of hydroxy, ethoxy, and methoxy; R15 is hydrogen; and P is selected from the group consisting of 3-pyridyl, 1-naphthyl, 2-quinazolin-1,3-dione, 6,7-methylenedioxyindol-2-yl, 1,3-pyrimidin-2,4-dion-6-yl; 3H-1,2,4-triazol-3-on-2-yl; and 1,2,4-triazolo[4,3-a]pyridin-3(2H)-on-2-yl.
0. 44. The method of claim 42 wherein N is selected from the group consisting of phenyl, 3-chlorophenyl, 2-methoxyphenyl, 3-methoxyphenyl, 3-trifluoromethylphenyl, and 3-indolyl.
0. 45. The method of claim 42 wherein the compound is selected from the group consisting of urapidil, solypertine, naftopidil, saterinone, trazodone, nefazodone, tiospirone, SGB-15343-[2-[4-(o-methoxyphenyl)-1-piperazinyl]ethyl]-2,4(1H,3H-quinazoli nedione monohydrochloride), and IP-661-[2-ethoxy-2-(3′-pyridyl)ethyl]-4-(2′-methoxy-phenyl) piperazine.
0. 46. The method of claim 13 wherein the compound has the structure of Formula IX: ##STR00030##
wherein A5 is selected from the group consisting of aryl, aryloxy, arylalkyloxy, arylamino, cycloalkyl, cycloalkyloxy, arylcarbonyl, arylsulfonyl, heteroaryl, heteroarylcarbonyl, heteroaryloxy, heteroarylamino, and heteroarylsulfonyl, which are optionally substituted with one or more radicals selected from the group consisting of alkyl, branched alkyl, cycloalkyl, hydroxyl, alkoxy, cycloalkylalkyl, alkoxyalkyl, aryl, alkanoyl alkoxycarbonyl, carboxyl, amino, cyano, oxo, halogen, thioalkyl, dialkylamino, heterocyclic, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl, and arylsulfonyl; K is selected from the group consisting of linear alkylene of 0 to 6 methylene units in length, branched alkylene, alkenyl, cycloalkyl, and arylalkyl; R16 and R17 are independently selected from the group consisting of hydrogen, alkyl, aryl, arylalkyl, heteroaryl, arylcarbonyl, arylamino, arylcarbonylamino, arylsulfonylamino, carboxylate, aryloxycarbonyl, and heteroarylcarbonyl; R16 and R17 together represent a double bond linked to an adjacent substituted carbon; or R16 and R17 represent a spirocyclic ring juncture forming an alicyclic or heterocyclic ring; R18 is selected from the group consisting of hydrogen, alkyl, alkoxy, aryl, aryloxy, arylamino, and arylcarbonylamino; and n′″ represents a value of 1 to 3; or a pharmaceutically acceptable salt thereof.
0. 47. The method of claim 46 wherein A5 is selected from the group consisting of substituted phenyl, heteroaromatic, and heterocyclic structures; K is a linear alkylene chain of 1 to 4 methylene units in length; R16 is selected from the group consisting of hydrogen, phenyl, substituted phenyl, heteroaromatic, arylcarbonyl, and arylcarbonylamino; R17 is selected from the group consisting of hydrogen and methyl; or wherein R16 and R17 together represent a double bond attached to a diaryl substituted carbon; or R16 and R17 taken together represent attachment points for a spirocyclic ring moiety, preferably selected from the group consisting of 1,3-dioxalane and 5,5′-oxazolidin-3-one; and R18 is selected from the group consisting of hydrogen and arylcarbonylamino.
0. 48. The method of claim 46 wherein the compound is selected from the group consisting, of piperoxan, proroxan, fenspiride, indoramin, and lidanserin.
0. 49. The method of claim 13 wherein the compound has the structure of Formula X: ##STR00031##
wherein A6 is selected from the group consisting of aryl, aryloxy, heteroaryl, heteroaryloxy, arylthio, heteroarylthio, arylalkyl, and heteroarylalkyl, which are optionally substituted by one or more radicals selected from the group consisting of chloro, hydroxyl, alkoxy, alkyl, amino, aminoalkyl, arylsulfonamino, alkylsulfonamino, aminocarbonyl, aminosulfonyl, thiol, aryl, heteroaryl, and alkylthio; R19, R22, and R23 are independently selected from the group consisting of hydrogen and alkyl; R20 is selected from the group consisting of hydrogen and alkyl; and R21 is defined as: ##STR00032##
wherein R24 and R25 are independently selected from the group consisting of hydrogen and alkyl; A7 is phenyl or substituted phenyl; and n″″ represents a value of 0 to 4 methylene units; or R20 and R21 taken together represent contact points which form a pyrrolidine or piperidine, which may be further substituted; or a pharmaceutically acceptable salt thereof.
0. 50. The method of claim 49 wherein A6 is selected from the group consisting of phenyl, substituted phenyl, carbostyril, 2,3-dihydrobenzo[b]thiophen-5-yl, and thiazolyl-2-thio; R19 is hydrogen; R23 is hydrogen or methyl; R20 is hydrogen; R24 and R25 are independently hydrogen or methyl; and A7 is phenyl.
0. 51. The method of claim 49 wherein R20 and R21 together form a piperidine moiety, which is further substituted by a phenylmethyl substituent.
0. 52. The method of claim 49 wherein the compound is selected from the group consisting of labetalol, amosulalol, arotinolol, brefanolol, ifenprodil and tibalosin.
0. 53. The method of claim 13 wherein the compound has the structure of Formula XI: ##STR00033##
wherein R26 and R27 are independently selected from the group consisting of alkyl, arylalkyl, aryloxyalkyl, and heteroalkyl; or R26 and R27 taken together represent a ring structure; and G represents a suitable leaving group substituent selected from the group consisting of halogen, alkylsulfonyloxy, and arylsulfonyloxy; or a pharmaceutically acceptable salt thereof.
0. 54. The method of claim 53 wherein R26 and R27 are independently selected from the group consisting of phenylalkyl and phenyloxyalkyl, and G is chloro.
0. 55. The method of claim 53 wherein the compound is selected from the group consisting of phenoxybenzamine and dibenzamine.
0. 56. The method of claim 13 wherein the compound has the structure of Formula XII: ##STR00034##
wherein A8 is selected from the group consisting of aryl and heteroaryl, which may be substituted by one or more radicals independently selected from the group consisting of alkyl, halogen, alkoxy, alkylthio, hydroxyl, amino, arylsulfonylamino, and carboxamido; and R28 is selected from the group consisting of hydrogen and alkyl; or a pharmaceutically acceptable salt thereof.
0. 57. The method of claim 56 wherein A8 is phenyl or substituted phenyl, and R28 is hydrogen or methyl.
0. 58. The method of claim 56 wherein the compound is selected from the group consisting of detomidine and medetomidine.
0. 59. The method of claim 13 wherein the compound is selected from the structural class of compounds known generically as the Rauwolfia alkaloids.
0. 60. The method of claim 59 wherein the compound is selected from the group consisting of reserpine, mediodespidine, deserpidine, rauwulscine, and extracts of Rauwolfia serpentina; or a pharmaceutically acceptable salt thereof.
0. 61. The method of claim 13 wherein the compound is selected from the class of compounds known generally as the ergot alkaloids.
0. 62. The method of claim 60 wherein the compound is selected from the group consisting of nicergoline, dihydroergocornine, dihydroergocryptine, dihydroergocristine, amsulosin, BAM-1125, and a mixture of hydrogenated derivatives of the ergotoxine alkaloids.
0. 63. The method of claim 13 wherein the compound has the structure of Formula XIII: ##STR00035##
wherein each of R32 through R35 is independently selected from the group consisting of hydrido, alkyl, haloalkyl, mercapto, alkylthio, cyano, alkoxy, alkoxyalkyl and cycloalkyl; J is selected from oxygen and sulfur; R29 and R30 are independently selected from the group consisting of hydrido and alkyl; R31 is selected from the group consisting of hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, arylalkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, and alkylsulfinyl.
0. 64. The method of claim 13 wherein the compound has the structure of Formula XIV: ##STR00036##
wherein each of R36, R37 and R40 through R43 is independently selected from the group consisting of hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, arylalkyl, aryl, alkoxy, arylalkoxy, aryloxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monalkylamino, dialkylamino, carboxy, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl and alkynyl; or R36 and R37 together form oxo or thio; r is a number selected from zero through six, inclusive; and R38 and R39 are independently selected from the group consisting of hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl.
0. 65. The method of claim 64 wherein R36, R37 and R40 through R43 are independently selected from the group consisting of hydrido, hydroxy, alkyl, phenalkyl, phenyl, alkoxy, benzyloxy, phenoxy, alkoxyalkyl, hydroxyalkyl, halo, amino, monoalkylamino, dialkylamino, carboxy, carboxyalkyl and alkanoyl; r is a number selected from zero through four, inclusive; and R38 and R39 are independently selected from the group consisting of hydrido, alkyl, amino, monoalkylamino, dialkylamino, phenyl and phenalkyl.
0. 66. The method of claim 64 where in each of R36, R37 and R40 are independently selected from the group consisting of hydrido, hydroxy, alkyl, alkoxy, amino, monoalkylamino, carboxy, carboxyalkyl and alkanoyl; r is a number selected from zero through three, inclusive; R38 and R39 are selected from the group consisting of hydrido, alkyl, amino and monoalkylamino; and R41 through R43 are selected from the group consisting of hydrido and alkyl.
0. 67. The method of claim 64 wherein the compound is 5-n-butylpicolinic acid hydrazide (fusaric acid hydrazide).
0. 68. The method of claim 13 wherein the compound has the structure of Formula XV: ##STR00037##
wherein R44 through R48 are independently selected from the group consisting of hydrido, hydroxy, alkyl, cycloalkyl, cycloalkylalkyl, aralkyl, aryl, aryloxy, alkoxy, alkylthio, aralkoxy, alkoxyalkyl, haloalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, alkenyl, cycloalkenyl, alkynyl, cyanoamino, tetrazolyl, thiocarbamoyl, aminomethyl, alkylsulfanamido, nitro, alkylsulfonyloxy, formoyl and alkoxycarbonyl; with the proviso that at least one of R44 through R48 is ##STR00038##
wherein A′ is —CO—R49 or —NR51R52 wherein R49 is selected from the group consisting of hydrido, alkyl, hydroxy, alkoxy, alkylthio, phenyl, phenoxy, benzyl, benzyloxy, —OR50 and —NR53R54, wherein R50 is selected from the group consisting of hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenyl and benzyl; R51 through R54 are independently selected from the group consisting of hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; and t is a number selected from zero through four, inclusive; or a pharmaceutically-acceptable salt thereof.
0. 69. The method of claim 13 wherein the compound has the structure of Formula XVI: ##STR00039##
wherein R49 through R52 are independently selected from the group consisting of hydrido, hydroxy, alkyl, cycloalkyl, phenyl, benzyl, alkoxy, phenoxy, benzyloxy, alkoxyalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, thiocarbamoyl, aminomethyl, nitro, formoyl, formyl and alkoxycarbonyl; and R53 is selected from the group consisting of hydrido, alkyl, phenyl and benzyl.
0. 70. The method of claim 68 wherein the compound is selected from the group consisting of 5-n-butylpicolinic acid (fusaric acid); picolinic acid; 5-nitropicolinic acid; 5-aminopicolinic acid; 5-N-acetylaminopicolinic acid; 5-N-propionylaminopicolinic acid; 5-N-hydroxyaminopicolinic acid; 5-iodopicolinic acid; 5-bromopicolinic acid; 5-chloropicolinic acid; 5-hydroxypicolinic acid; 5-methoxypicolinic acid; 5-N-propoxypicolinic acid; 5-N-butoxypicolinic acid; 5-cyanopicolinic acid; 5-carboxyl-picolinic acid; 5-n-butyl-4-nitropicolinic acid; 5-n-butyl-4-methoxypicolinic acid; 5-n-butyl-4-ethoxypicolinic acid; 5-n-butyl-4-aminopicolinic acid; 5-n-butyl-4-hydroxyaminopicolinic acid; and 5-n-butyl-4-methylpicolinic acid.
0. 71. The method of claim 13 wherein the compound has the structure of Formula XVII: ##STR00040##
wherein R55 is selected from the group consisting of hydrido, hydroxy, alkyl, amino and alkoxy; R56 is selected from the group consisting of hydrido, hydroxy and alkyl; R57 and R58 are independently selected from the group consisting of hydrido, alkyl and phenalkyl; R59 is selected from the group consisting of hydrido and R60 C— with R60 selected from the group consisting of alkyl, phenyl and phenalkyl; u is a number from one to three, inclusive; and v is a number from zero to two, inclusive; or a pharmaceutically-acceptable salt thereof.
0. 72. The method of claim 71 wherein R55 is selected from the group consisting of hydroxy and lower alkoxy; R56 is hydrido; R57 is selected from the group consisting of hydrido and lower alkyl; R58 is hydrido; R59 is selected from the group consisting of hydrido and R60 C— with R60 selected from the group consisting of lower alkyl and phenyl; u is two; and v is a number from zero to two, inclusive.
0. 73. The method of claim 13 wherein the compound has the structure of Formula XVIII: ##STR00041##
wherein R61 is selected from the group consisting of hydroxy and lower alkyl; R57 is selected from the group consisting of hydrido and lower alkyl; R59 is selected from the group consisting of hydrido and R60C, where R60 is selected from the group consisting of lower alkyl and phenyl, v is a number from zero to two, inclusive, R61 is hydroxy or lower alkyl, and wherein the compound is selected from the group consisting of 1-(3-mercapto-2-methyl-1-oxopropyl)-L-proline and 1-(2-mercaptacetyl)-L-proline.
0. 74. The method of claim 13 wherein the compound is selected from the group consisting of bretylium and methylapogalanthamine.
0. 75. The method of claim 13 wherein the compound is applied in an ointment or lotion.
0. 76. The method of claim 13 wherein the compound is applied in a transdermal patch.
0. 77. The method of claim 66, wherein R36 and R37 are hydrido; r is selected from the group consisting of zero, one, and two; R38 is selected from the group consisting of hydrido, alkyl, and amino; and R39 is selected from the group consisting of hydrido and alkyl.

This is a continuation of application U.S. Ser. No. 07/747,635 entitled “Compositions and Methods of Treatment of Sympathetically Maintained Pain” filed Aug. 20, 1991 by James N. Campbell, now abandoned, which is a continuation-in-part of U.S. Ser. No. 07/661,554 entitled “Compositions and Methods of Treatment of Sympathetically,Maintained Pain” filed Feb. 26, 1991, now abandoned, which is a continuation-in-part of U.S. Ser. No. 07/485,156 entitled “Diagnosis and Treatment of Sympathetically Maintained Pain” filed Feb. 26, 1990, now U.S. Pat. No. 5,070,084.

The invention relates to the diagnosis and treatment of sympathetically maintained pain using sympatholytic agents which are defined herein as compounds that interfere with sympathetic function in the peripheral tissue or interfere with the action of drugs associated with sympathetic function.

Several chronic, non-malignant pain syndromes such as causalgia and reflex sympathetic dystrophy have one feature in common: blockade of the sympathetic innervation of the affected body region can lead to pain relief. The pain may result from skeletal, soft tissue, or nerve injury. Terms such as reflex sympathetic dystrophy, Sudek's atrophy, and causalgia have all been used to refer to such patients. The term “sympathetically maintained pain” (“SMP”) encompasses all pain syndromes that can be relieved by sympathetic blockade.

Patients with SMP typically have both stimulus-independent (ongoing) pain and stimulus-dependent pain (hyperalgesia). Hyperalgesia is defined as a leftward shift of the stimulus-response function, such that a lowering of pain threshold and/or an increase in pain to suprathreshold stimuli is observed. The decrease in pain threshold to mechanical stimuli may be such that lightly stroking the skin evokes pain, a phenomenon sometimes referred to as allodynia.

Conventional treatments for SMP include repeated local anesthetic sympathetic blocks, intravenous regional guanethidine/reserpine blocks, surgical sympathectomy, or oral sympatholytic therapy. However, each of these treatments carries with it a degree of risk, side effects and discomfort.

One method of diagnosis of SMP is by assessment of the results of a local anesthetic blockade of the sympathetic ganglia (LABSG) that innervate the painful part. Because of the technical expertise required in the performance of the LABSG and the potential complications associated with the LASB, alternate tests for the diagnosis of SMP have been studied. For example, intravenous regional blockage (IVRB) of sympathetic function with guanethidine has been used as a means for the diagnosis and treatment of SMP.

There are several potential disadvantages to the use of LABSG and IVRB. LABSG is subject to false negative results if the local anesthetic fails to anesthetize adequately the sympathetic ganglia. The anesthetic may reach the somatic afferents in the nearby nerve roots and produce pain relief because of concurrent somatic blockade, and certain afferents may in addition course with sympathetic efferents. Certain patients tolerate poorly the application of the tourniquet required with IVRB. LABSG involves strategic localization of the needle prior to injection, and thus fluoroscopy is often needed. With IVRB, the guanethidine may escape into the systemic circulation with resultant systemic untoward effects. A series of complications have been reported with LABSG, including pneumothorax, injury to the kidney, inadvertent systemic application, spinal anesthesia, hemorrhage, etc. It is difficult to evaluate placebo responses with both LABSG and IVRB.

It would therefore be advantageous to have a method of diagnosis and treatment that does not exhibit these difficulties.

Several lines of evidence suggest that peripheral adrenergic receptors are involved in SMP. Stimulation of the peripheral but not central cut end of the sympathetic chain reproduces pain in causalgia patients after sympathectomy. Local anesthetic blockade of the appropriate sympathetic ganglion or adrenergic blockade via intravenous administration of phentolamine, rapidly abolishes sympathetically-maintained pain and hyperalgesia. Depletion of peripheral catecholamines by regional intravenous guanethidine relieves pain and hyperalgesia. Intradermal injection of norepinephrine rekindles the pain and hyperalgesia that had been relieved in patients by sympathectomy or sympathetic block but does not cause pain or hyperalgesia in normal subjects. The non-specific α-adrenergic antagonist phenoxybenzamine and the specific α1-adrenergic antagonist prazosin can be effective in relieving pain in patients with SMP. The beta-adrenergic antagonist propranolol has little effect on SMP.

It is therefore possible that administration of an α-adrenergic blocking agent could be beneficial in the treatment of SMP patients. Therapeutic uses of the α-adrenergic compounds, for example, phentolamine and clonidine, are known in the art. For example, U.S. Pat. No. 4,801,587 discloses the use of phentolamine as a vasodilator to treat impotence. U.S. Pat. No. 4,310,535 discloses the use of phentolamine in combination with other drugs for use in the control of immune reactions. The use of phentolamine and clonidine for controlling hypertension is disclosed in U.S. Pat. No. 4,250,191. α-Adrenergic drugs have been found to be useful in the stabilization of intraocular lenses, as disclosed in U.S. Pat. No. 4,443,441. U.S. Pat. No. 4,201,211, discloses the use of a clonidine patch for therapeutic use as a stimulant for the central nervous system.

It is therefore an object of the present invention to provide a topical method of diagnosis for sympathetically maintained pain that has a low incidence of false positives and false negatives.

It is another object of the present invention to provide a topical method of diagnosis and treatment of sympathetically maintained pain that has a low incidence of adverse reactions with relatively minor complications.

Sympathetically maintained pain is treated topically by administering to the site where sympathetically maintained pain is present a sympatholytic agent, such as an α-adrenergic antagonist, α1-adrenergic antagonist, α2 adrenergic agonist, or other drug that depletes or blocks synthesis of norepinephrine from the sympathetic terminals. Specific chemical formulas of sympatholytic agents are disclosed

Examples demonstrate relief of pain by application of phentolamine or clonidine.

Sympathetic efferent fibers release norepinephrine which in turn activates α-adrenergic receptors. Activation of the α-adrenergic receptors by norepinephrine, either directly or indirectly, excites nociceptors. Activity in the nociceptors then evokes pain and further activity in the sympathetic efferent fibers. This, in turn, results in further discharge of the nociceptors. The goal in therapy is to block the effects of norepinephrine on nociceptors. Topical application to the site where sympathetically maintained pain is present of an α-adrenergic antagonist, α1 adrenergic antagonist, α2 adrenergic agonist, a combination thereof, or other drug that depletes or blocks synthesis of norepinephrine at the sympathetic terminals (collectively referred to herein as “sympatholytic agents”) relieves the pain.

Topical application of the sympatholytic agent is also used in the treatment of peripheral vascular diseases characterized by high alpha-adrenergic tone in cutaneous blood vessels, such as frostbite, Raynaud's disease, thrombophlebitis, and spastic peripheral vascular disorders.

The compounds used in the present method are known to those skilled in the art. For example, the various classes of compounds and examples thereof are described in The Pharmacological Basis of Therapeutics, 8th Edition, Gill, A. G., T. W. Rall, A. S. Nies, P. Taylor, editors (Pergamon Press, Co., Inc., NY 1990), the teachings of which are incorporated herein.

Several different structural classes of sympatholytic agents have been developed, from which a compound can be selected for use as a topical therapy for sympathetically maintained pain. For example, a class of cyclic amidine compounds from which a suitable sympatholytic agent with alpha-1 adrenoreceptor antagonist activity, alpha-2 adreno-receptor agonist activity, or both activities combined may be selected can be represented by Formula I: ##STR00001##
wherein A is selected from aryl, aryloxy, anilino, arylamino, diarylamino, heteroaryl, heteroaryloxy, or heteroarylamino, which may be substituted with one or more radicals selected from alkyl, branched alkyl, cycloalkyl, hydroxyl, alkoxy, cycloalkylalkyl, alkoxyalkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyano, oxo, halogen, thioalkyl, dialkylamino, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl or arylsulfonyl; B may be independently selected from linear alkylene containing from 1 to 4 methylene units, branched alkylene, imino, or thio; and n is either 2 or 3; or a pharmaceutically acceptable salt thereof.

A preferred class of compounds of formula I consists of those compounds wherein A is phenyl, substituted phenyl, phenoxy, substituted phenoxy, naphthyl, tetrahydronaphthyl, or diarylamino; wherein B is methylene or 1-ethylene; and n is 2.

An especially preferred class of compounds of Formula I consists of those compounds wherein A is substituted phenyl, in which positions 2 and 6 of the phenyl ring are substituted by radicals independently selected from hydrido, chloro, methyl, ethyl, cyclopropyl, or thiomethyl, and positions 3, 4, and 5 are substituted by radicals independently selected from hydrido, 2-propyl, tertbutyl; hydroxyl, trifluoromethyl, chloro, or fluoro; and B is methylene, or 1-ethylene when A is substituted phenoxy; and n is 2.

Another especially preferred class of compounds of formula I consists of those compounds wherein A is diarylamino, in which case each aryl group can be independently substituted by hydroxyl; and wherein B is methylene; and n is 2.

Yet another especially preferred class of compounds of Formula-I consists of those compounds wherein A is 1-naphthyl or tetrahydronaphthyl; and B is either zero or one methylene unit; and n is 2.

A family of specifically preferred compounds which are included in Formula I consists of the compounds tetrahydrozoline, naphazoline, phentolamine, dexlofexidine, oxymetazoline, cirazoline, xylometazoline, and tolazidine.

Another class of compounds from which a suitable sympatholytic agent with sympathetic neurotransmitter depleting activity or alpha-1 adrenoreceptor antagonist activity may be selected is that of substituted ureas, represented by Formula II: ##STR00002##
wherein A2 is selected from alkyl, branched alkyl, aryl, aryloxy, heteroaryl, or heterocyclic moiety, which may bear one or more substituents selected from halogen, lower alkyl, aryl, alkoxy, hydroxyl, amino, alkylamino, arylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl or arylsulfonyl; wherein R1 and R2 may be independently selected from hydrido, lower alkyl, hydroxyl or cyano; wherein R3 and R4 may be independently selected from hydrido or lower alkyl, or together to form a carbonyl moiety; wherein R5 is selected from hydrido or lower alkyl; and wherein n is any value between 0 and 4 inclusive; or a pharmaceutically acceptable salt thereof.

A preferred class of compounds of Formula II consists of those compounds wherein A2 is selected from lower alkyl, phenyl, substituted phenyl, phenoxy, substituted phenoxy, anilino, substituted anilino, azacyclic, benzodioxan, and substituted dioxolane; wherein R1 is selected from hydrido, methyl, or hydroxyl, and R2 is selected from hydrido or cyano; wherein R3 and
wherein A′ is —Co—R49 —CO—R49 or —NR51R52 wherein R49 is selected from hydrido, alkyl, hydroxy, alkoxy, alkylthio, phenyl, phenoxy, benzyl, benzyloxy, —OR50 and —NR53R54, wherein R50 is selected from hydrido, alkyl, cycloalkyl, cycloalkylalkyl, phenyl and benzyl; wherein each of R51 through R54 is independently selected from hydrido, alkyl, cycloalkyl, hydroxyalkyl, haloalkyl, cycloalkylalkyl, alkoxyalkyl, aralkyl, aryl, alkanoyl, alkoxycarbonyl, carboxyl, amino, cyanoamino, monoalkylamino, dialkylamino, alkylsulfinyl, alkylsulfonyl, arylsulfinyl and arylsulfonyl; wherein t is a number selected from zero through four, inclusive; or a pharmaceutically-acceptable salt thereof.

A preferred family of compounds within Formula XV consists of those compounds characterized as chelating-type inhibitors of Formula XVI: ##STR00017##
wherein each of R49 through R52 is independently selected from hydrido, hydroxy, alkyl, cycloalkyl, phenyl, benzyl, alkoxy, phenoxy, benzyloxy, alkoxyalkyl, hydroxyalkyl, halo, cyano, amino, monoalkylamino, dialkylamino, amido, alkylamido, hydroxyamino, carboxyl, carboxyalkyl, alkanoyl, cyanoamino, carboxyl, thiocarbamoyl, aminomethyl, nitro, formoyl, formyl and alkoxycarbonyl; and wherein R53 is selected from hydrido, alkyl, phenyl and benzyl.

A class of specifically-preferred compounds of Formula XVI consists of:

Especially preferred of the foregoing class of compounds of Formula XVI is the compound 5-n-butylpicolinic acid (fusaric acid).

Another class of compounds from which a suitable sympatholytic agent with dopamine beta-hydroxylase inhibiting activity is represented by Formula XVII: ##STR00018##
wherein R55 is hydrido, hydroxy, alkyl, amino and alkoxy; wherein R56 is selected from hydrido, hydroxy and alkyl; wherein each of R57 and R59 R58 is independently selected from hydrido, alkyl and phenalkyl; wherein R59 is selected from hydrido and R60C— with R60 selected from alkyl, phenyl and phenalkyl; wherein u is a number from one to three, inclusive; and wherein v is a number from zero to two, inclusive; or a pharmaceutically-acceptable salt thereof.

A preferred class of compounds within Formula XVII consists of those compounds wherein R55 is selected from hydroxy and lower alkoxy; wherein R56 is hydrido; wherein R57 is selected from hydrido and lower alkyl; wherein R58 is hydrido; wherein R59 is selected from hydrido and R60C— with R60 selected from lower alkyl and phenyl; wherein u is two; and wherein v is a number from zero to two, inclusive.

A more preferred class of compounds within Formula XVII consists of those compounds of Formula XVIII ##STR00019##
wherein R61 is selected from hydroxy and lower alkyl; wherein R57 is selected from hydrido and lower alkyl; wherein R59 is selected from hydrido and R60C— with R60 selected from lower alkyl and phenyl and v is a number from zero to two, inclusive.

A more preferred class of compounds within Formula XVIII consists of those compounds wherein R61 is hydroxy; wherein R57 is hydrido or methyl; wherein R59 is hydrido or acetyl; and wherein n is a number from zero to two, inclusive.

Most preferred within the class of compounds of Formula XVIII are the compounds 1-(3-mercapto-2-methyl-1-oxopropyl)-L-proline and 1-(2-mercaptacetyl)-L-proline (also known as captopril.)

Specifically preferred sympatholytic compounds which are not encompassed in Formulas I through XVIII from which a suitable agent may be selected include the sympathetic neurotransmitter depleting agents bretylium and MJ-10459, and the alpha-1 adrenergic antagonist methylapogalanthamine.

α-Adrenergic blocking agents bind selectively to the a class of adrenergic receptors and thereby interfere with the capacity of sympathomimetic amines to initiate actions at these sites. α-Adrenergic blockade is due to the direct action of these drugs on a receptors and is independent of any effects on adrenergic neurons or on the basic response mechanisms of effector cells. β-Adrenergic receptors are not affected by conventional doses of any α-blocking agent currently in use.

Examples of α-adrenergic antagonists include phenoxybenzamine, dibenzamine, phentolamine, tolazoline, and prazosin. Phenoxybenzamine and dibenzamine bind covalently to the a receptor and produce an irreversible type of blockade. Phentolamine, tolazoline, and prazosin bind reversibly and antagonize the actions of sympathomimetic amines competitively. There are differences in the relative abilities of α-adrenergic blocking agents to antagonize the effects of sympathomimetic amines at the two subtypes of a receptors, α1 and α2 receptors. Phenoxybenzamine is approximately 100-fold more potent in blocking α1 (postsynaptic) receptors than α2 receptors (that modulate neural release of transmitter). Prazosin is also a highly selective α1-blocking agent, while phentolamine is only three to five times more potent in inhibiting α1-than α2-adrenergic receptors. In contrast, yohimbine is a selective α2 blocker and has been shown to prevent the antihypertensive effect of systemic clonidine. Phentolamine is the preferred α-adrenergic antagonist at this time.

These compounds have previously been administered systemically, either orally or by injection. Systemic administration requires high doses and thus systemic side effects (e.g., postural hypotension, tachycardia, nasal stuffiness, headache) limit their usefulness. In the method described herein, the compounds are administered topically, in a suitable pharmaceutical carrier, many of which are known to those skilled in the art. The carrier can be in the form of a lotion, ointment, solution, or transdermal patch. Topical administration also includes iontophoresis wherein an electric current drives the drug, in the form of an ion such as a pharmaceutically acceptable salt, into the skin. The topical application allows the drug to reach high concentration at the desired target without appreciable systemic dosing. Thus the many of the side effects of these compounds, observed following systemic administration, are avoided by topical administration.

Another drug class, α2-agonists, the preferred example being clonidine, an antihypertensive agent stimulating both central and peripheral α1- and α2-adrenergic receptors, also antagonize the effects of norepinephrine. This is because sympathetic terminals possess α2-receptors which when activated block the release of norepinephrine. Thus the α2-agonists such as clonidine antagonize α1-receptors indirectly by preventing the release of norepinephrine.

A third class of effective drugs are those that deplete norepinephrine from the sympathetic terminals. The proto-type drug in this class is guanethidine. Other examples are bretyliut, bethanidine, debrisoquin, and reserpine.

Additional compounds are specific inhibitors of catecholamine synthesis and monoamine oxidase inhibitors.

These compounds are normally administered systemically (orally or by intravenous injection), although as described herein they are administered in a pharmaceutically acceptable topical carrier or by iontophoresis, as described above.

The effective dosage of these compounds is determined by applying dosages of the compound to the affected site and observing local vasodilatation. Vasodilatation can be determined by laser Doppler flow measurements or by measuring local increases in skin temperature.

If peripheral α-adrenergic receptors are blocked completely, skin temperature would approach core temperature. Such a blockage would produce profound hypotension and a reflex tachycardia. Therefore, a cumulative dose of phentolamine was selected such that the heart rate did not exceed 150 beats per minute and the effects on blood pressure were mild. This dose ranged from 35 mg to 45 mg over a 30 minute period. Preliminary studies suggested that this amount of phentolamine effectively relieved pain in patients with SMP.

The heart rate, systolic and diastolic blood pressure changes produced by phentolamine in a typical patient were relatively mild. In the first seven patients phentolamine alone was administered. The heart rate increased moderately. In subsequent sessions, patients pretreated with propranolol 1-2 mg showed minimal increase in pulse rate. Blood pressure was little effected regardless of whether propranolol was given as patients were maintained in a supine position.

One patient, an 18 year old woman, was treated for severe pain in the right foot. The patient had a thorough examination but no clear initiating cause of the pain was determined. The patient was disabled and could not walk due to the severity of the pain. A thorough neurological exam disclosed a restricted zone of hyperalgesia on the plantar surface of the foot that was consistent over several examinations. No psychiatric problems were present in an otherwise normal productive college student performing well in school.

The patient was diagnosed as having SMP and then underwent local LABSG, and the administration of phentolamine systemically by intravenous injection.

Placebo trials indicated that patient showed no change in pain when normal saline was injected IV.

Phentolamine given IV with an accumulated dose of 25 mg over 15 minutes led to an 80% reduction in pain as measured by visual analysis scores and LABSG led to 50% relief of pain in a separate study.

Ratings of stimulus-independent pain did not change for 10 minutes following the initial phentolamine administration. The first 4 boli of phentolamine (total dose=15 mg) resulted in a gradual decrease in pain of about 50%. After two further injections each of 10 mg, over 80% of the patient's pain was relieved. The slow time course of pain relief suggests that the total cumulative dose is the relevant dose parameter.

Five minutes after the last phentolamine dose, 0.5 mg propranolol was given intravenously to counteract the tachycardia that was starting to become uncomfortable to the patient. This did not add appreciably to the analgesia already achieved with the α-adrenergic blockade. Propranolol was shown not to affect pain in patients. The patient's pain remained at this low level for about two hours, despite a plasma half-life of approximately 20 minutes for phentolamine. Pain gradually returned over the course of about three hours.

The LABSG procedure failed to afford long-term relief and the patient subsequently underwent a surgical lumbar sympathectomy. The patient had complete pain relief from this procedure and continues to be pain free as of 15 months post operatively.

Seventeen patients received both phentolamine and LABSG. The time of maximum relief of stimulus evoked pain correlated highly with the time at which there was maximum relief of stimulus-independent pain. All pain scores were converted to percent pain relief. The peak relief of stimulus independent pain for the LABSG compares favorably to the peak relief obtained from the phentolamine block. The range of peak relief for both procedures extended from near zero to 100%. Patients with less than 50% pain relief from both procedures were considered to have pain independent of SMP. There was a high correlation of the results of the two procedures (r=0.78). This shows that patients who experience substantive pain relief from LABSG also obtain substantive pain relief from phentolamine.

In five patients in whom the phentolamine block afforded more than 50% pain relief, the duration of pain relief lasted for several hours. The pain returned to within 75% of baseline within 2 to 7 hours.

Only one patient reported 45% maximum relief of pain with the LABSG but no relief with the phentolamine block.

There was a suggestion of greater specificity of results with phentolamine compared to LABSG. Of those patients who had 50% or greater pain relief following LABSG, the mean pain relief with phentolamine was 75% vs. 60% for the LABSG.

Side effects associated with the phentolamine administration other than the hemodynamic changes discussed above were minimal. The principal side effects observed were nasal stuffiness (12 patients), headache (3 patients), and dizziness (2 patients). The complications of the LABSG included mild headache, mild dizziness, back and neck pain from the needles, temporary paresis, and concurrent somatic block (thus negating LABSG) and requiring another procedure. When patients were asked which of the two sympathetic blocks they preferred, the patients chose the phentolamine block.

A patient with a sciatic nerve injury was diagnosed as having SMP, based on lumbar sympathetic blockage. The patient had ongoing pain and intense hyperalgesia to both mechanical and cold stimuli in the painful zone. Clonidine was applied to the hyperalgesic zone transdermally via a 7.0 or 10.5 cm2 patch (Catapres-TTS; Boehringer). These patches deliver 0.2 mg or 0.3 mg of clonidine/day for 7 days. A series of 6 patches were applied consecutively to different sites and each left in place for 2-10 days. Prior to, during, and post drug application, the heart rate and blood pressure were taken and sensory testing performed. Pain evoked by mechanical and cold stimuli was rated on a scale from 0-10.

Complete relief of hyperalgesia in the skin underlying the patch was achieved from each clonidinepatch. There were no adverse side effects or changes in cardiovascular parameters. The skin surrounding the patch remained hyperalgesic even in the region adjacent to the edge of the patch. At each patch-site, the pain evoked by deep pressure, light brushing and cooling stimuli was reduced within 24-36 hours and was completely abolished within 48 hours following patch application. This effect persisted for more than 24 hours after removal of the patch. A local anesthetic effect is unlikely since the patch did not alter (1) the detection threshold to mechanical stimuli in the patient, or (2) the detection or the pain threshold to mechanical stimuli in a normal subject.

Methods

Patient Selection and Control Subjects: Six normotensive patients with chronic ongoing pain and cutaneous hyperalgesia to mechanical and cooling stimuli following soft tissue or nerve trauma were examined. All patients had previously undergone sympathetic blocks (i.e., local anesthetic blockade of the appropriate sympathetic ganglia) to assess the involvement of the sympathetic nerves in their pain state. Additionally, in all but one patient (case 2) a systemic α-adrenergic block was performed via intravenous administration of phentolamine. Four of the six patients (cases 1-4) experienced 70-100% pain relief following the blocks and were considered to have SMP. The remaining two patients, (cases 5, 6) were considered to have sympathetically-independent pain (SIP) since their pain was not affected by local anesthetic sympathetic ganglion block or the phentolamine block.

Five normal subjects were used as controls. One subject was used to investigate the effect of clonidine on normal skin (i.e., the top of the foot). The four remaining subjects were used to assess the effect of intradermal norepinephrine and phenylephrine in normal skin.

Topical Clonidine: Clonidine was administered to the hyperalgesic skin via a 7.0 or 10.5 cm2 patch (Catapres-TTSR-2 and TTSR-3, Boehringer Ingelheim). These patches deliver a systemic does of 0.2 mg and 0.3 mg respectively of clonidine/day (i.e., 30 μg/cm2/day) for a maximum of 7 days. A series of 2-7 patches were applied consecutively to different sites within the hyperalgesic zone. Each patch was left in place for 2-10 days within this affected zone. Prior to, during and immediately after drug application, the following parameters were monitored: heart rate, blood pressure, ongoing pain and pain to mechanical and cold stimuli.

Sensory Testing: To assess the local and systemic effects of clonidine, the following measures were used before application of the patch and immediately after removal of the patch: 1) Ongoing pain: stimulus-independent pain was assessed on a visual analog scale (VAS). The scale consisted of a 100 mm line where “no pain” and “most intense pain” were indicated on the left and right ends of the scale respectively. 2) Hyperalgesia to mechanical and cooling stimuli: Pain evoked by mechanical and cold stimuli was rated verbally on a scale from 0 (“no pain”) to 10 (“most intense pain”). The mechanical stimuli included innocuous brushing with a camel's hair brush and innocuous pressure from the 206 g weight of a 13 mm diameter (i.e., 2N) brass probe. Pain thresholds to mechanical stimuli were determined in the area within and surrounding the patch sites using calibrated von Frey filaments. The cooling stimulus consisted of small drops of acetone lightly placed onto the patient's skin. Patients with SMP typically find that the 1-2° C. decrease in temperature induced by such a stimulus is painful. 3) Tactile sensibility: To rule out local anesthetic effects, the detection (touch) thresholds were determined in the area within the surrounding selected patch sites using calibrated von Frey filaments. In addition, the patient's ability to distinguish the blunt from the sharp ends of a pin was also assessed. The patients were instructed to close their eyes during the hyperalgesia and von Frey threshold testing procedures.

Effects of Intradermal Norepinephrine and Phenylephrine: In two patients, intradermal injections of the non-specific α-adrenergic agonist norepinephrine (5 μg in 10 μl normal saline) or the α-adrenergic agonist phenylephrine (10 μg in 10 μl normal saline) were made at a patch site immediately after removing the patch. Norepinephrine and phenylephrine injections were also made at control sites on the patients' normal limb and into the normal skin of 4 healthy control subjects. Similar injection sites were chosen for the control subjects and patients. All injection were made in a single-blinded fashion. The patients and control subjects were instructed to rate the magnitude of any evoked pain and resultant hyperalgesia on a verbal scale from 0 to 10.

Results

The results of the clonidine applications in the control subject and six patient cases are summarized in Table 1. The first patient was studied extensively and is presented in detail as an illustrative example.

TABLE 1
Summary of Individual Case Results
Case Number
1 2 3 4 5 6
SMP SMP SMP SMP SIP SIP
Age/Sex:
30/F 45/F 35/M 52/F 52/M 42/F
Duration of Symptoms (Years):
3 1.5 18 2 7 0.5
Extremity Affected:
lower lower lower face upper lower
Mechanical Hyperalgesia:
pre-clonidine
+ + + + + +
post-clonidine
nt + +
Touch Detection Threshold:
pre-clonidine (bars)
4 1 1.5 0.5 1 2
post-clonidine (bars)
4 1 1.5 0.5 1 2
SMP = sympathetically maintained pain
SIP = sympathetically independent pain
+ = present, − = absent; nt = not tested

Case 1:

The patient was a 30 year old, normotensive, white female who sustained an injury to the sciatic nerve from hip replacement surgery three years prior to entering the study. Subsequently, the patient developed continuous pain and hyperalgesia in the antero-lateral aspect of her left leg from the knee to the foot. Thermography revealed that most of this area was 1-2° C. colder than corresponding parts of the contralateral leg. Within the affected region, the patient experienced intense ongoing pain and was exquisitely sensitive to mechanical stimuli. Mild mechanical stimuli (e.g., light brushing or pressure) evoked severe pain. Cooling stimuli (e.g., acetone) were not detected when applied to some parts of the affected area and were painful when applied to other parts. The results of local anesthetic sympathetic ganglion blocks and i.v. phentolamine blocks confirmed that her ongoing pain and hyperalgesia were sympathetically maintained. This patient received a series of 7 clonidine patches. The patch was applied for 36 hours to an area of skin which had previously been hyperalgesic to brushing, pressure and cooling stimuli. After removal of the patch, mechanical (brush, pressure) and cooling (a drop of acetone) stimuli applied to this region were detected but were not painful, although these stimuli still elicited pain when applied to the adjacent skin. The mechanical detection thresholds inside and outside the patch site were identical and were similar to the contralateral leg. Within the patch site, the pain threshold to von Frey filaments approximated the patient's ‘normal’ pain threshold at a corresponding contralateral site and far exceeded the mechanical detection threshold. The ability to distinguish sharp from blunt stimuli were not affected at this site after the patch was removed. Outside the patch site, the pain threshold was low and approached the detection threshold. The patient's ratings of her stimulus-independent pain were not affected by the patch.

Although the patient was pleased with the relief achieved from the patches, treatment was discontinued when the patches started to produce skin irritations. Six months following the termination of the clonidine trial, she underwent a lumbar sympathectomy that completely eliminated her pain and hyperalgesia.

Extent of Pain and Hyperalgesia Relief By Topical Clonidine:

A summary of the effect of four of the clonidine patches in which quantitative sensory testing was performed for case #1 is shown in FIG. 2. Each clonidine patch-greatly reduced and, in many cases, completely eliminated the patient's hyperalgesia to mechanical stimuli. A confounding local anesthetic effect did not occur since detection thresholds were unchanged. The time course of the effect of each patch was not evaluated quantitatively. However, the patient did note a reduction of her mechanical hyperalgesia within 36-48 hours after the patch was applied to the skin. After removing a patch, hyperalgesia was still absent for at least 12 hours. Typically, the patient's hyperalgesia returned within less than a week of the patch application.

The three remaining patients diagnosed as having SMP achieved relief of their hyperalgesia following topical application of clonidine without any accompanying change in touch detection threshold (see Table I; cases 2-4). The original zone of hyperalgesia in two of these patients (cases 2,3) encompassed greater than half of the lower extremity. For these patients, topical clonidine only eliminated hyperalgesia at or near the site of drug application and did not alter stimulus-evoked pain outside these sites. Furthermore, these patients did not report any reduction in their overall level of stimulus-independent pain. In case #4, the zone of pain and hyperalgesia radiated laterally from a small region above the vermillion border in the maxillary nerve distribution. Following clonidine application to the upper lip, complete relief of hyperalgesia was obtained throughout the entire affected zone. The patient's ongoing pain was reduced by 50-75% and was confined to a very small region above the lip.

One of the patients diagnosed as having SIP (see Table I; case 5) had pain and hyperalgesia in the median nerve distribution of the left hand. Neither the patient's hyperalgesia nor ongoing pain were improved by application of clonidine to the palmar aspect of the hand. The second patient diagnosed as having SIP (case 6) had pain and hyperalgesia in the foot. The clonidine patches were applied to the dorsum of the foot and resulted in only a slight reduction (by approximately 35%) in both ongoing pain and in the mechanical hyperalgesia to brush stimuli. The hyperalgesia to cold stimuli was not affected by the clonidine patches.

Side Effects:

The side effects from these clonidine patches were minor. The patients occasionally complained of feeling sleepy, thirsty and/or of having dry eyes. Following some of the patch applications, an erythematous rash was observed surrounding the patch site. This became a problem in two patients (cases 1, 4) and further treatment had to be discontinued despite good hyperalgesia relief. No appreciable alteration in the blood pressure or heart rate was apparent in any of the patients.

Sensory Effects of Topical Clonidine in Normal Skin:

To exclude further local anesthetic effects of clonidine, a clonidine patch was applied to the top of a normal subject's foot and sensory testing was performed prior to and 40 hours after the patch application. Neither the pain nor detection threshold to von Frey filaments were affected in this subject. Mechanical and cooling stimuli were detected but were not painful before or after the clonidine had been applied.

Effect of Norevinephrine and Phenylephrine:

To test the hypothesis that clonidine acts peripherally via reduction of norepinephrine release, an intradermal injection of norepinephrine (5 μg in 10 μl saline) was made at a previously hyperalgesic site that had been treated effectively with clonidine (case 1). Following removal of the clonidine patch and just prior to the injection, lightly brushing the skin at this site was only mildly hyperalgesic (rated 1 out of 10) whereas brushing the untreated skin evoked a pain sensation rated as 4 out of 10. The norepinephrine injection evoked an intense, burning pain sensation that subsided after four minutes. Twenty-five minutes after the injection, the patient's mechanical hyperalgesia at the patch site was rekindled and was rated as 3.5 out of 10. Injection of norepinephrine into the normal limb of this patient and the normal limb of another SMP patient (case 4), also evoked intense pain, but did not result in hyperalgesia. In contrast, intradermal injection of norepinephrine into the leg of four control subjects evoked a mild, short lasting pain and no hyperalgesia. Since topical application of an α2-adrenergic agonist relieved hyperalgesia and a non-specific agonist rekindled hyperalgesia, it was hypothesized that α1-adrenergic receptors play an important role in SMP. To test this hypothesis directly the specific α1-adrenergic agonist phenylephrine was injected intradermally (10 μg in 10 μl saline) at a clonidine patch site and a normal site (volar forearm) in a patient with SMP (case #4) following 3 days of clonidine treatment. This patient's pain and hyperalgesia, which was localized to a small region of the face, was relieved by clonidine. Injection of phenylephrine at the clonidine patch site evoked intense stinging pain that sub-sided approximately 3 minutes after the injection. Approximately 25 minutes after the injection, the patient's hyperalgesia to mechanical and cooling stimuli returned. At this time, her ongoing level of pain also increased substantially. Injection-of phenylephrine at the control site in this patient evoked moderate pain of shorter duration. Only brief, mild pain sensations and no hyperalgesia were evoked by the phenylephrine injections into the control subjects.

In summary, topical application of clonidine significantly reduced mechanical and cold hyperalgesia at the site of drug administration in patients with SMP. The decrease in hyperalgesia was not due to a local anesthetic effect since touch detection thresholds were not altered by the clonidine treatment in the patients and in the control subject. There was no change in the hyperalgesia outside the area of drug application in patients with a large zone of hyperalgesia. In addition, the ongoing, stimulus-independent pain was not affected by the clonidine patches in these patient. Clonidine had little effect on pain or hyperalgesia in the patients whose pain was independent of the sympathetics (cases 5 and 6). Local administration of adrenergic agonists into the affected skin in patients with SMP evoked unusually sustained, intense pain compared to the pain evoked in normal subjects. These observations indicate an important role of peripheral α1-adrenergic receptors in SMP.

Based on the above examples, it is clear that any α-adrenergic antagonist, α-1-adrenergic antagonist, α2 adrenergic agonist, or other drug that depletes sympathetic norepinephrine, for example, bretylium, reserpine, phenoxybenzamine, or guanethidine, will relieve SMP using the method according to the present invention. Further, due to the number of side-effects and short effective half-lives associated with these compounds, topical administration of these compounds is preferred.

Modifications and variations of the compositions and methods of use thereof of the present invention will be obvious to those skilled in the art from the foregoing detailed description. Such modifications and variations are intended to come within the scope of the appended claims.

Campbell, James N.

Patent Priority Assignee Title
11185532, May 01 2019 CLEXIO BIOSCIENCES LTD Methods of treating pruritus
11903928, May 01 2019 Clexio Biosciences Ltd. Methods of treating pruritus
8962668, Nov 08 2005 Arcion Therapeutics, Inc. Treatment of length dependent neuropathy
Patent Priority Assignee Title
4201211, Jul 12 1977 ALZA Corporation; Boehringer Ingelheim GmbH Therapeutic system for administering clonidine transdermally
4250191, Nov 30 1978 Preventing renal failure
4310535, Nov 30 1976 Combination of drugs and a method for the selective control of the immune reactions evoked in a host by the administration of antigens
4443441, Aug 07 1981 Fixation of intraocular lenses
4557934, Jun 21 1983 The Procter & Gamble Company Penetrating topical pharmaceutical compositions containing 1-dodecyl-azacycloheptan-2-one
4742054, Nov 23 1982 Treatment of mammals suffering from damage to the central nervous system
4746509, Mar 24 1983 Rhone-Poulenc Sante Transdermal medicament
4801587, Mar 02 1987 Impotence ointment
5070084, Feb 26 1990 ARCION THERAPEUTICS, INC Treatment of sympathetically maintained pain
5447947, Feb 26 1990 ARCION THERAPEUTICS, INC Compositions and methods of treatment of sympathetically maintained pain
6054461, Sep 16 1997 Solvay Pharmaceuticals GmbH Treatment of neuropathic pain
6147102, Oct 26 1999 ARCION THERAPEUTICS, INC Clonidine preparations
6534048, Oct 26 1999 ARCION THERAPEUTICS, INC Topical clonidine preparation
6559186, Feb 26 1990 ARCION THERAPEUTICS, INC Compositions and methods of treatment of sympathetically maintained pain
20040101582,
20040132824,
DE2920500,
EP241050,
JP1216928,
WO2007025613,
WO9214453,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 19 1993CAMPBELL, JAMES N ARC 1, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0174220989 pdf
May 05 2005Arclon Therapeutics, Inc.(assignment on the face of the patent)
May 15 2008ARC1, INC ARCION THERAPEUTICS, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0211470096 pdf
Date Maintenance Fee Events
Nov 05 2014STOL: Pat Hldr no Longer Claims Small Ent Stat
Nov 06 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 14 20134 years fee payment window open
Jun 14 20146 months grace period start (w surcharge)
Dec 14 2014patent expiry (for year 4)
Dec 14 20162 years to revive unintentionally abandoned end. (for year 4)
Dec 14 20178 years fee payment window open
Jun 14 20186 months grace period start (w surcharge)
Dec 14 2018patent expiry (for year 8)
Dec 14 20202 years to revive unintentionally abandoned end. (for year 8)
Dec 14 202112 years fee payment window open
Jun 14 20226 months grace period start (w surcharge)
Dec 14 2022patent expiry (for year 12)
Dec 14 20242 years to revive unintentionally abandoned end. (for year 12)