compositions and methods for improving cellular internalization of one or more compounds are disclosed. The compositions include a compound to be delivered and a biocompatible viscous material, such as a hydrogel, lipogel, or highly viscous sol. The composition also include, or are administered in conjunction with, an enhancer in an amount effective to maximize expression of or binding to receptors and enhance RME of the compound into the cells. This leads to high transport rates of compounds to be delivered across cell membranes, facilitating more efficient delivery of drugs and diagnostic agents. compositions are applied topically orally, nasally, vaginally, rectally, and ocularly. The enhancer is administered with the composition or separately, either systemically or preferably locally. The compound to be delivered can also be the enhancer.

Patent
   RE42072
Priority
Mar 04 1996
Filed
Jun 21 2007
Issued
Jan 25 2011
Expiry
Mar 03 2017
Assg.orig
Entity
Large
52
30
EXPIRED
0. 17. A composition for delivering a hormone to cells at a site where uptake is desired comprising
a viscous fluid selected from the group consisting of hydrogels, lipogels and sols having a viscosity of between 2 and 200 Poise when measured at 37° C. with a standard rheometer at an applied stress ranging from 1 to 100 Pascals; and
the hormone,
wherein the viscous fluid comprises a polysaccharide.
0. 1. A composition for the administration of an agent to a cell comprising
a viscous material and an agent to be delivered, wherein the viscous material comprises a polysaccharide in a concentration range of between 1.0 and 2.0% (w/w), and wherein the agent is selected from the group consisting of proteins, peptides, nucleotide molecules, saccharides, polysaccharides, lipids, synthetic chemotherapeutic agents, and diagnostic compounds, wherein the composition has an apparent viscosity of less than 10 Poise or greater than 2000 Poise at a shear stress of between approximately 1 and 200 Pascal.
0. 2. The composition of claim 1, wherein the composition has approximately the same apparent viscosity, at a shear stress of between approximately 1 and 1000 Pascal and at a strain rate approximately that of endocytosis, as the cytosolic fluid of the cell to which the agent is to be delivered.
0. 3. The composition of claim 1 wherein the concentration of the polysaccharide is less than or equal to 1.75% (w/w).
0. 4. The composition of claim 1, wherein the agent is selected from the group consisting of insulin, alpha interferons, beta interferon, follicle stimulating hormone, and growth factors.
0. 5. A method for delivering an agent to cells at a site where uptake is desired comprising administering to the cells at the site where uptake is desired a composition comprising
(a) a viscous material comprising a polysaccharide in a concentration range of between 1.0 and 2.0% (w/w), and
(b) the agent to be delivered, wherein the agent is selected from the group consisting of proteins, peptides, nucleotide molecules, saccharides, polysaccharides, lipids, synthetic chemotherapeutic agents, and diagnostic compounds,
wherein the composition has an apparent viscosity of less than 10 Poise or greater than 2000 Poise at a shear stress of between approximately 1 and 200 Pascal.
0. 6. The method of claim 5, wherein the cells to which the agent is to be delivered are in the nose, rectum, mouth, ear, eye, or lungs.
0. 7. The method of method of claim 5, wherein the composition is administered topically.
0. 8. The method of claim 5, wherein the site is mucosal tissue.
0. 9. The method of claim 5, wherein the site is lower gastrointestinal tract mucosal tissue.
0. 10. The method of claim 5, wherein site is the vagina or rectum.
0. 11. The method of claim 5, wherein the site is the nose, eye, or mouth.
0. 12. The method of claim 5, wherein the site is the respiratory or pulmonary system.
0. 13. The composition of claim 1 wherein the polysaccharide is selected from the group consisting of celluloses, dextrans and alginates.
0. 14. The method of claim 5 wherein the polysaccharide is selected from the group consisting of celluloses, dextrans and alginates.
0. 15. The composition of claim 13 wherein the polysaccharide is methylcellulose.
0. 16. The method of claim 14 wherein the polysaccharide is methylcellulose.
0. 18. The composition of claim 17, wherein the hormone is a reproductive hormone.
0. 19. The composition of claim 18, wherein the reproductive hormone is selected from the group consisting of estrogen, estradiol and progesterone.
0. 20. The composition of claim 17, wherein the viscous material is a hydrogel.
0. 21. The composition of claim 17, wherein the viscous fluid is 1-2% (w/w) methocel.
0. 22. The composition of claim 17, wherein the polysaccharide is a cellulose.
0. 23. The composition of claim 22, wherein the cellulose is methylcellulose.
0. 24. The composition of claim 18, wherein the reproductive hormone is gonadotropin releasing hormone (GnRH) or an analog of GnRH.
0. 25. The composition of claim 24, wherein the viscous fluid is 1-2% (w/w) methocel.
0. 26. The composition of claim 17, wherein the composition is in a formulation suitable for administration to mucosa of tissue.
0. 27. The composition of claim 26, wherein the tissue is lower gastrointestinal tract mucosal tissue.
0. 28. The composition of claim 17, wherein the composition is in a form suitable for administration to the vagina or rectum.
0. 29. The composition of claim 26, wherein the tissue is selected from the group consisting of tissue of the nose, the rectum, the vagina, the mouth, the ear, the eye, and the lungs.

This application is a materials oligosaccharides, ribozymes, and guide sequences for ribozymes, carbohydrates and polysaccharides, lipids, and other synthetic organic and inorganic molecules. Preferred bioactive compounds include growth factors, antigens, antibodies or antibody fragments, and genes such as genes useful for treatment of cystic fibrosis, A1A deficiency and other genetic deficiencies.

Preferred hormones includes peptide-releasing hormones such as insulin, luteinizing hormone releasing hormone (“LHRH”), gonadotropin releasing hormone (“GnRH”), deslorelin and leuprolide acetate, oxytocin, vasoactive intestinal peptide (VIP), glucagon, parathyroid hormone (PTH), thyroid stimulating hormone, follicle stimulating hormone, growth factors such as nerve growth factor (NGF), epidermal growth factor (EGF), vascular endothelial growth factor (VEGF), insulin-like growth factors (IGF-I and IGF-II), fibroblast growth factors (FGFs), platelet-derived endothelial cell growth factor (PD-ECGF), transforming growth factor beta (TGF-β), and keratinocyte growth factor (KGF). Other materials which can be delivered include cytokines such as tumor necrosis factors (TFN-α and TNF-β), colony stimulating factors (CSFs), interleukin-2, gamma interferon, consensus interferon, alpha interferons, beta interferon; attachment peptides such as RGD; bioactive peptides such as renin inhibitory peptides, vasopressin, detirelix, somatostatin, and vasoactive intestinal peptide; coagulation inhibitors such as aprotinin, heparin, and hirudin; enzymes such as superoxide dismutase, neutral endopeptidase, catalase, albumin, calcitonin, alpha-1-antitrypsin (A1A), deoxyribonuclease (DNAase), lectins such as concanavalin A, and analogues thereof.

Diagnostic agents can also be delivered. These can be administered alone or coupled to one or more bioactive compounds as described above. The agents can be radiolabeled, fluorescently labeled, enzymatically labeled and/or include magnetic compounds and other materials that can be delected using x-rays, ultrasound, magnetic resonance imaging (“MRI”), computed tomography (“CT”), or fluoroscopy.

D. Carriers for Compounds to be Delivered

The compounds to be delivered and/or enhancers can optionally be incorporated into carriers, which are then dispersed in a viscous fluid with an apparent viscosity approximately equal to the cytosolic fluid of the cell to which the compounds are to be delivered. Exemplary carriers include viruses, liposomes, lipid/DNA complexes, micelles, protein/lipid complexes, and polymeric nanoparticles or microparticles.

The carrier must be small enough to be effectively endocytosed. Suitable carriers possess a characteristic dimension of less than about 200 nm, preferably less than about 100 nm, and more preferably, are less than about 60 nm.

The carrier must be able to bind to a cell surface receptor. If the carrier does not naturally bind, it is well known in the art how to modify carriers such that they are bound, jonically or covalently, to a ligand (i.e., LHRH) that binds to a cell surface receptor. For example, U.S. Pat. No. 5,258,499 to Konigsberg et al. describes the incorporation of receptor specific ligands into liposomes, which are then used to target receptors on the cell surface.

The use of carriers can be important when the compound to be delivered does not bind to or otherwise interact with cell surface receptors. The compound can be incorporated into a carrier which contains a ligand or other moiety which binds to or interacts with cell surface receptors. Then, due to the binding of or interaction with the receptor to the cell surface and the apparent viscosity of the composition, the carrier (and encapsulated compound) is intracellularly delivered by endocytosis.

The use of carriers can be particularly important for intracellularly delivering nucleic acid molecules. In one embodiment, nucleic acid molecules are encapsulated in a liposome, preferably a cationic liposome, that has a receptor-binding ligand, such as LHRH, on its surface. The liposome is then dispersed in a viscous fluid. When the composition is administered, the liposomes are endocytosed by the cell, and the nucleic acid molecules are released from the liposome inside the cell.

E. Compositions for Lowering or Raising Membrane Tension

The efficiency of the method can be increased by lowering the membrane tension. Suitable methods for lowering membrane tension include including a biocompatible surface active agent in the hydrogel, performing exothermic reactions on the cell surface (i.e., complex formation), and applying an external field to the cell surface. Suitable biocompatible surface active agents include surfactin, trehalose, fatty acids such as palmitin and oleic acid, polyethylene glycol, hexadecanol, and phospholipids such as phosphatidylcholines and phosphatidylglycerols. Suitable complex-forming chemical reactions include the reaction of receptor-binding ligands with cell surface receptors for these ligands, exothermic reactions such as occur between sodium salicylate and salicylic acid, and neutralization reactions as between hydrochloric acid and ammonia (Edwards et al. 1996 Biophys. J. 71, 1208-1214). External fields that can be applied to a cell surface to reduce membrane tension include ultrasound, electric fields, and focused light beams, such as laser beams.

The rate of cellular internalization can also be increased by causing the clustering of receptors on the cell membrane. This can be accomplished, for example, by creating zones on the membrane where the membrane tension is relatively high, causing the membrane fluid to flow toward the zone of high membrane tension. This flow can carry receptors localized in the membrane toward each other, causing them to cluster.

Methods of Administration

In a preferred embodiment, the compound to be delivered and/or the enhancer are contained in the same formulation for simultaneous administration. Alternatively, the composition and steroid are provided as parts of a kit, for separate administration. As shown in the examples, the enhancer may be a hormone such as estradiol or progesterone, administered systemically, while the compound to be delivered is administered topically at a site where delivery is enhanced by the hormone, such as the vaginal mucosa.

The compositions can be applied topically to the vagina, rectum, nose, eye, ear, mouth and the respiratory or pulmonary system. Preferably, the compositions are applied directly to the cells to which the compound is to be delivered, usually in a topical formulation. The enhancer can be administered simultaneously with or after administration of the composition including the viscous gel and agent to be delivered. The administration schedule (e.g., the interval of time between administering the enhancer and administering the gel composition) can be readily selected by one of skill in the art to maximize receptor expression and/or binding before exposure of the cell surface to the agent to be delivered.

The compositions are particularly advantageous for gene delivery and hormone therapy. By delivering a composition containing peptides such as GnRH or its analogues across the vaginal or nasal membranes, the compositions can be used to treat a variety of human hormone-based disorders.

The dosage will be expected to vary depending on several factors, including the patient, the particular bioactive compound to be delivered, and the nature of the condition to be treated, among other factors. One of skill in the art can readily determine an effective amount of the bioactive compound or compounds to administer to a patient in need thereof.

The method involves administering the composition to cells to enhance the rate of transport across the cell membranes, relative to the rate of delivery when non-viscous fluids are used in combination with enhancer or when viscous fluids are used without enhancer. Examples of methods of administration include oral administration, as in a liquid formulation or within solid foods, topical administration to the skin or the surface of the eye, intravaginal administration, rectal administration, intranasal administration, and administration via inhalation. When the composition is administered orally or by inhalation, it is preferred that it is administered as a dry powder that includes a swellable hydrogel that is designed to swell to an appropriate viscosity after delivery to the desired location. After inhalation, for example, the hydrogel absorbs water to obtain the desired viscosity and then delivers agents to the respiratory system. When administered orally, a hydrogel can be selected that does not absorb water under conditions present in the upper gastrointestinal tract, but which does absorb water under conditions present in the lower gastrointestinal tract (i.e., at a pH greater than about 6.5). Such hydrogels are well known to those of skill in the art. The use of such compositions can optimize the delivery of agents to the lower gastrointestinal tract.

Applications for the Compositions and Methods

The methods and compositions described herein are useful in a variety of therapeutic and diagnostic applications for humans and other animals. Preferred applications include the treatment of infertility and disease, such as cancer. The compositions can be used in various hormone replacement therapies as well. In a preferred method of use, viscous compositions are used to deliver progesterone vaginally to induce secretory transformation of the endometrium and promote development of pregnancy.

The compositions and methods of use thereof described herein will be more clearly understood with reference to the following non-limiting examples.

This study was intended to examine the relevance of control of the apparent viscosity of the extracellular fluid/cytosolic fluid to the enhancement of peptide drug delivery into the body via a noninvasive route by examining peptide transport across the vaginal epithelium of sheep.

A. Receptor-Mediated Transport of a Peptide, No Exogenous Steroid.

First, a peptide that undergoes receptor-mediated transport across the vaginal epithelium was identified by studying the permeation of peptides of varying molecular weight in a sheep model. Peptides were delivered vaginally to sheep in 5 ml of aqueous or methocel solutions with typical peptide concentrations of 10-40 μg/ml. A group of 18 intact ewes were utilized for these experiments. For each study, sheep were randomly assigned to a treatment group. In GnRH studies where each animal received all possible treatment combinations, each animal was assigned to an initial treatment group at random and subsequently randomly to each of the remaining treatment groups. A minimum of 5 days (typically 10 or more days) was allowed between experiments on a given animal, to provide sufficient time for complete recovery of pituitary responsiveness to the highest doses of the GnRH agonist used A 16G 150 mm jugular catheter (Abbocath-T, Abbott Laboratories, Chicago, Ill.) was inserted and blood samples collected at 0, 30, 60, 90, 120, 180, 240, 360, 480 and 1440 min. after treatment. Luteinizing hormone (LH) levels were determined.

The bioavailabilities of vasopressin (1084 Da), salmon calcitonin (3416 Da), and insulin (5786 Da) all were found to be less than 0.1% following vaginal administration in an aqueous buffer. Leuprolide acetate [luteinizing hormone releasing hormone (LHRH) analog] (1209 Da), however, exhibited high bioavailability (2.6±0.9%) based on biological response, even though its molecular weight is slightly larger than that of vasopressin. A comparison of the biological response to vasopressin and leuprolide acetate is shown in FIGS. 1a and 1b. Vasopressin administered by intravenous injection leads to high systemic cortisol levels within the first hour following treatment. However no detectable change in systemic cortisol levels was observed following vaginal administration (FIG. 1a). In contrast, LHRH analog produced significant luteinizing hormone (LH) response following intravenous injection and following vaginal administration (FIG. 1b). The near coincidence of peak serum LH concentrations following injection and vaginal administration indicated rapid internalization of leuprolide acetate, characteristic of a receptor-mediated route of transport.

B. Enhancement of Transport Using a Viscous, Balanced Carrier.

LHRH analog was placed in methyl cellulose solutions (“methocels”) of varying apparent viscosity. Studies of transferrin-mediated endocytosis on single cells have shown peak endocytosis rates at methyl cellulose concentrations between 1.25 and 1.75%, at which concentrations the methocels exhibit apparent viscosities in a range typical of intracellular viscosities (Evans & Yeung, Biophys. J. 56:151-60 (1989)). First, 200 μg of leuprolide acetate in 5 ml of aqueous solutions with melhocel weight concentrations varying between 0% and 3.0% were vaginally administered. LHRH analog bioavailability was found to increase as methocel concentration increased to 1.75%, then to fall at higher methocel concentration (FIG. 2), mirroring a trend observed for receptor-mediated endocytosis with single cells (Edwards, et al., Proc. Natl. Acad. Sci. U.S.A. 93:1786-91 (1996)). This appears to suggest that transfer of LHRH analog into the systemic circulation is rate-limited by endocytic transfer from the apical side of the vaginal epithelium, which can itself be controlled by the viscosity of the methocel solution within which it is administered, for the fluid-mechanical reasons described above and in Edwards, et al., Proc. Natl. Acad. Sci. U.S.A. 93:1786-91 (1996).

The enhanced bioavailability of LHRH also coincides with a longer-term release into the systemic circulation at the optimal methocel concentrations. This suggests the possibility of a diffusion-controlled delivery process, rather than an active, endocytic-controlled process; that is, increasing hydrogel viscosity might be related to diminished rate of peptide diffusion through the hydrogel to the vaginal epithelium. To test this hypothesis, the efficacy of a second, physically cross-linked hydrogel that was believed would not enhance endocytosis, but whose apparent viscosity (in the range of hydrogel concentrations 0.0-5.5%) was similar to that of the methocels (in the range 0.0-3.0%) was examined. It was anticipated that the physically cross-linked structure of the “control” hydrogel would prevent its deformation with (and entry into) invaginating sites on the epithelial membrane, hence impeding, rather than enhancing, endocytic uptake.

The results showed that when 5 ml of solution containing the physically cross-linked control gel was administered vaginally, the bioavailability of LHRH analog diminished with increasing concentration of the hydrogel in the range of 0.0-5.5%. Importantly, the duration of LHRH analog delivery also diminished with increasing control gel concentration, which is an unexpected effect if LHRH analog delivery is passive-diffusion controlled.

To determine whether membrane damage might explain the results shown in FIG. 2, vasopressin was vaginally administered in methocel solutions of 1.5 and 1.75%. Identical to the saline vaginal administration (FIG. 1a), no detectable changes in concentrations of cortisol were observed when vasopressin was administered with the methocel solutions, indicating that the barrier properties of the membrane to passive transport remain intact.

C. Determination of Role of Steroids in Uptake and Transport

Biological response to vaginal LHRH analog administration exhibited a bimodal distribution in the studies (see FIG. 2), with approximately 30% of animals showing little or no response at all. No such bimodal response was observed when LHRH analog was administered by intravenous injection (FIG. 1b), indicating that the source of the bimodal response resides in the vaginal absorption pathway. It was therefore hypothesized that the responsiveness of animals to LHRH analog vaginal delivery varied with steroid-dependent hormone receptor expression (estrous cycle). To test this hypothesis, a group of ewes was ovariectomized and administered estradiol and progesterone to mimic the animals' estrous cycle. Ewes were pre-medicated with atropine (0.02 mg/lb) and Telazol (R) (2 mg/lb) intramuscularly. After induction of recumbency, thipental (5% in water) was administered intravenously to induce sufficient anesthesia to permit endotracheal intubation. Anesthesia was maintained using halothane in oxygen at 1-2 liters per minute. Ovaries were removed through a mid-line incision.

Within 24 h of surgery, a 1.5 cm silicone implant of estradiol (Compudose 200, Elanco, Ind.) was inserted into the left ear to provide a basal level of estradiol. The anestrus state was simulated after two weeks of estradiol delivery following surgery. Experiments were performed in the simulated anestrus state (i.e. two weeks after surgery) as described above. Immediately following the last blood sample, a progesterone-releasing intravaginal device (CIDR-G, Carter Hold Harvey Plastic Products, Hamilton, New Zealand) was inserted.

In a parallel study, an alternative progesterone-releasing device (Snychro-Mate-B, Sanofi Animal Health, Overland Park, Kans.) was placed in the left ear. The mid-luteal phase was simulated after permitting a 10 day intravaginal or ear progesterone treatment. Experiments were performed in the simulated mid-luteal phase as described above.

The progesterone-releasing (vaginal or ear) implant was removed and the follicular phase was simulated by allowing a time lapse of 48 h. Experiments were performed in the follicular phase as described above.

Next, 200 μg of leuprolide acetate in 5 ml of aqueous solutions was vaginally administered during simulated anestrus (estradiol only), mid-luteal (estradiol and progesterone), and follicular (48 h after progesterone withdrawal) phases, as described above. When LHRH analog was delivered in aqueous solutions with or without 1.75% methocel, it was found that less than 50% of animals responded during estrogen replacement without progesterone. In contrast, 100% of animals responded when treated with progesterone and estradiol (FIG. 3). This same trend also was observed for the other LHRH analog doses. That is, a reproducible response was observed in all animals only during progesterone and estradiol treatment, when the animals can be expected to express maximal numbers of hormone receptors.

This confirms the hypothesis that the LH response of animals depended on steroid milieu, as is consistent with the hypothesis of uptake of LHRH analog occurs via a receptor-mediated route.

Three doses of LHRH analog: 10, 40, and 100 μg, were administered. It was found that during progesterone and estradiol treatment, the highest and lowest doses resulted in LH responses that were either saturated (maximal LH response with and without methocel) or undetectable, presumably due to the sigmoidal dose-response nature of LHRH analog treatment. The results of the intermediate dose-response study are shown in FIG. 4. The 1.75% methocel administration results in a bioavailability of 6% compared to 10% for the case of the 0% methocel. These results agree with the results of the uncontrolled animal study (FIG. 2) (minus non-responders).

A significant finding of this study is that LHRH analog delivery across the vaginal mucosa is receptor-mediated, with a reproducibility that can be increased by controlling the stage of the estrous cycle. This approach to be peptide delivery can be further improved by controlling the viscous properties of the medium that contacts the vaginal mucosa, and from which the peptide transfers. Unlike the single-cell systems where a similar phenomenon has been observed, the vaginal mucosa includes a mucus barrier that is itself highly viscous and presumably combines with the administered hydrogel to create a mixture of artificial and physiological hydrogels whose net viscous properties act to control the rate of vesicle formation along the apical epithelial membrane. While the exact nature of this mixed gel remains unclear (as, for example, the administration of estradiol and progesterone changes the Theological properties of the mucus lining, potentially providing an alternative interpretation of the results observed in FIG. 3), that hydrogel-enhancement of receptor-mediated transport can be achieved at vaginal mucosa suggests that a similar enhancement can achieved at other drug delivery sites, such as at the nasal mucosa.

The ability to enhance the delivery of LHRH analog into the systemic circulation by delivering LHRH analog in a “rheologically-optimized” hydrogel should help to make noninvasive LHRH analog therapies (such as the treatment of endometriosis or prostate cancer) more viable than at present. Recognition that it enters the body via a receptor-mediated route can further lead to hormonal-control strategies to minimize irreproducibility. Finally, the chemical attachment of LHRH analog to other molecules or nanoparticulate carriers that are too large to cross epithelial barriers of the body at a therapeutically relevant rate yet sufficiently small to enter an endocytic vesicle should make it possible to use LHRH analog as a kind of locomotive to propel other molecules, vesicle, or particles into the body without the need for injection.

Studies were conducted to assess the involvement of steroids in modulating the transport of GnRH across the vaginal mucosa. The main objectives were to confirm the need for steroids in vaginal GnRH transport, to determine if treatment with both progesterone and estradiol were necessary, and to demonstrate down-regulation of LH secretion with daily administration of GnRH agonist.

A. Chronic Vaginal Dosing of DES to Suppress LH Secretion.

The objective was to determine if chronic vaginal dosing with 200 μg of deslorelin (“DES”) in gel would be able to suppress secretion of LH. Lower doses of DES will result in the down-regulation of the anterior pituitary gland in sheep. Ovariectomized sheep were used for the study, since they secrete high levels of LH in the-absence of ovarian steroids. The sheep were dosed daily with DES in 5 mL of gel, or gel only for 17 days. A single blood sample was collected by jugular venipuncture. Plasma was collected and assayed for LH.

Results from this study are shown in FIG. 4. There were no differences in the average concentrations between the DES and control groups over the course of the study. LH secretion appears to have been slightly suppressed between days 6 and 12 of the study. However, a much greater inhibition in LH secretion was expected if significant amounts of DES were crossing the vaginal mucosa. An earlier study demonstrated that estrous cycles could be inhibited with daily vaginal administration of GnRH agonist. In this study, however, all the animals had intact ovaries. Previous studies have followed LH release after a single dosing. It has been shown that sheep treated with estradiol and progesterone respond much better in terms of the percentage of animals exhibiting LH release, the magnitude of the LH release, and a reduction in the variance of the response. Therefore, it is likely that treatment with progesterone, either alone or in combination with estradiol, was required for the GnRH agonist to be transported across the vaginal mucosa.

B. Determination of Roles of Progesterone and Estradiol in Vaginal Transport

This study was conducted to determine if progesterone alone, or progesterone in combination with estradiol, is required to ensure GnRH transport across the vaginal epithelium. In past studies, estradiol was given as an implant inserted in the outer ear, which is a common method of administering estradiol to animals. However, it results in high and variable estradiol concentrations in jugular blood. It would be helpful to eliminate this steroid from the animal model, if possible, since delivering estradiol using (AH-based technologies is of interest.

Ewes (n=12) were treated with progesterone using a vaginal CIDR device. In addition, six sheep received a 15 mm silastic implant of estradiol. Five days later, all sheep were treated vaginally with 200 μg of DES in gel. Blood samples were taken every 30 minutes for 2 hours following treatment and then every 60 minutes for an additional four hours.

All ewes in this experiment responded with a robust discharge of LH following GnRH treatment. There was a distinct difference in the pattern of LH release between the two groups (FIG. 13). The peak LH occurred earlier in ewes treated only with progesterone (120 minutes) than in ewes treated with progesterone and estradiol (240 minutes).

The difference in the timing of the peak LH between the groups is nearly identical to those differences between ovariectomized and ovariectomized plus estradiol treated ewes (see Deaver et al., Domest. Anim. Endocrinol. 4(2) :95-102 (1987)). Thus, it is likely that the difference in the patterns of LH release is attributable to estradiol's effects on pituitary responsiveness to GnRH and not the vaginal uptake mechanism. Furthermore, if the latter were correct, then the lag time between treatment and vaginal transfer of GnRH into the circulatory system would be on the order of 70-80 minutes.

C. Effect of Vaginal Administration of DES in Progesterone-Primed Ewes.

The objective of this study was to determine if daily vaginal administration of DES in progesterone-primed ewes would cause a reduction in basal LH secretion and loss of pituitary responsiveness of GnRH. Six ovariectomized ewes were used for the study. Vaginal CIDR devices containing progesterone were inserted. Twenty-four hours later, ewes were dosed daily with 200 μg of DES (GnRH agonist) in 5 mL of gel. Each day, blood samples were collected at 0 and 120 minutes post-treatment. These times were selected in order to evaluate changes in basal secretion of LH (time 0) and the peak LH response following GnRH administration (time 120).

The change in LH between 0 and 120 minutes was greatest in 3 of 6 ewes on the first day of DES administration. In the fourth ewe, a robust release of LH was observed following the first DES treatment, but the increase in LH was even higher following the second treatment with DES. When the differential in LH release following the first treatment with DES is assigned a value of 100% and the change in responsiveness plotted against time (FIG. 7), it is clear that continued daily treatment significantly reduced pituitary responsiveness to DES. In addition, significant decreases in basal LH also occurred in these animals (FIG. 8).

In the two remaining animals, the change in LH secretion continued to increase 5 to 7 days following the initiation of DES treatment. However, once the maximum response was achieved, pituitary-responsiveness to DES rapidly declined (FIG. 16; Ewe 9). A reasonable interpretation of these data is that insufficient DES was transported over the first several days to initiate the down-regulation phenomena. However, once the transport mechanism became optimized, adequate transport of DES was achieved to down-regulate LH release from the anterior pituitary gland.

D. Direct Vaginal Administration of DES Enhanced Uptake.

An attempt was made to treat ewes with progesterone using the systemic administration of a depot form of progesterone and ear implants of a synthetic progestogen. Pituitary release of LH was poor following the vaginal administration of DES in gel. When LH release in these animals was not observed, the gel from the same preparations used vaginally was injected subcutaneously. LH release was then obtained, confirming that the DES/gel preparations contained biologically active material. Given the consistent responses obtained in earlier experiments and those obtained more recently using the CIDR delivery system, it was concluded that the progesterone (generally) should be applied directly to the vagina in order to achieve sufficient local concentrations. Given that luteal phase sheep also respond well, systemic administration of greater amounts of progesterone than used here, in formulations that will maintain consistently high concentrations in the blood, should also work.

E. Controls Show Uptake is Selective.

Another study provided information about the role of the silastic CIDR device itself in the delivery process. The study was based on concern that the CIDR might be damaging the vaginal mucosa, allowing for GnRH transport by a non-selective mechanism. CIDR devices were inserted into six ewes. Five days later, all ewes were treated vaginally with DES. Five of the six ewes had a robust release of LH. After the initial dosing, three ewes were treated with DES and three with gel alone every day for 18 days. At the end of the 18-day treatment period, all ewes were again treated with DES in gel. This time, none of the ewes displayed a robust release of LH.

Review of the protocol and notes showed that the CIDR devices, which were designed to release progesterone only over a 10- to 12-day period, were not changed mid-way through the trial as initially planned. Consequently, by the time the second DES administration was given, the CIDR devices had been in place for approximately 24 days. The ewes therefore were no longer receiving adequate amounts of progesterone locally to maintain the vaginal transport system. This study showed that the CIDR per se does not facilitate vaginal uptake of GnRH.

Conclusions

Based on the outcome of all experiments, local short periods of progesterone treatment activates a mechanism for transporting GnRH agonist across the vaginal mucosa in sufficient amounts to acutely cause the release of LH and the down-regulation of LH release with repeated dosing.

Local exposure of the vagina to progesterone is preferred for the transport of GnRH agonist across the mucosal membrane. Systemic administration of either progesterone or synthetic progestogens is not preferred for achieving adequate priming of the vaginal mucosa for GnRH transport. Intravaginal devices used for administration of progesterone do not appear to directly effect vaginal transport of GnRH.

Approximately 50% of ewes will have significant transport after only 24 hours of exposure to progesterone, and essentially 100% of the ewes will transport GnRH after four days of exposure. Co-administration of estradiol will alter the time course of LH release in progesterone treated ewes, which likely is due to a direct effect on the anterior pituitary gland. The lag time is about 70-80 minutes between vaginal administration of GnRH and the transport of sufficient amounts of GnRH agonist into the blood to cause LH release. Chronic administration of GnRH agonist across the vaginal mucosa will reduce the basal secretion of LH and down-regulate the ability of the anterior pituitary gland to respond to GnRH agonist.

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. The references cited herein are hereby incorporated by reference.

Langer, Robert S., Deaver, Daniel R., Edwards, David A.

Patent Priority Assignee Title
10052386, Jun 18 2012 THERAPEUTICSMD, INC Progesterone formulations
10206932, May 22 2014 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
10258630, Oct 22 2014 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
10286077, Apr 01 2016 THERAPEUTICSMD, INC Steroid hormone compositions in medium chain oils
10328087, Jul 23 2015 THERAPEUTICSMD, INC Formulations for solubilizing hormones
10398708, Oct 22 2014 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
10471072, Dec 21 2012 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
10471074, Apr 01 2016 THERAPEUTICSMD, INC Steroid hormone pharmaceutical composition
10471148, Jun 18 2012 THERAPEUTICSMD, INC Progesterone formulations having a desirable PK profile
10532059, Apr 01 2016 THERAPEUTICSMD, INC Steroid hormone pharmaceutical composition
10537581, Dec 21 2012 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
10568891, Dec 21 2012 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
10639375, Jun 18 2012 THERAPEUTICSMD, INC Progesterone formulations
10668082, Oct 22 2014 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
10675288, Nov 23 2011 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
10806697, Dec 21 2012 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
10806740, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
10835487, Dec 21 2012 TherapeuticsMD, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
10888516, Dec 21 2012 TherapeuticsMD, Inc. Soluble estradiol capsule for vaginal insertion
10912783, Jul 23 2015 THERAPEUTICSMD, INC Formulations for solubilizing hormones
11033626, Jun 18 2012 THERAPEUTICSMD, INC Progesterone formulations having a desirable pk profile
11065197, Dec 21 2012 TherapeuticsMD, Inc. Soluble estradiol capsule for vaginal insertion
11103513, May 22 2014 TherapeuticsMD Natural combination hormone replacement formulations and therapies
11103516, Nov 23 2011 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
11110099, Jun 18 2012 TherapeuticsMD, Inc. Natural combination hormone replacement formulations and therapies
11116717, Dec 21 2012 TherapeuticsMD, Inc. Soluble estradiol capsule for vaginal insertion
11123283, Dec 21 2012 TherapeuticsMD, Inc. Soluble estradiol capsule for vaginal insertion
11166963, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
11241445, Dec 21 2012 TherapeuticsMD, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
11246875, Dec 21 2012 TherapeuticsMD, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
11266661, Dec 21 2012 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
11304959, Dec 21 2012 TherapeuticsMD, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
11351182, Dec 21 2012 TherapeuticsMD, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
11497709, Dec 21 2012 TherapeuticsMD, Inc. Vaginal inserted estradiol pharmaceutical compositions and methods
11529360, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
11622933, Dec 21 2012 TherapeuticsMD, Inc. Soluble estradiol capsule for vaginal insertion
11633405, Feb 07 2020 THERAPEUTICSMD, INC Steroid hormone pharmaceutical formulations
11793819, Nov 23 2011 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
11865179, Jun 18 2012 TherapeuticsMD, Inc. Progesterone formulations having a desirable PK profile
8633178, Nov 23 2011 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
8846648, Nov 23 2011 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
8846649, Nov 23 2011 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
8933059, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
8987237, Nov 23 2011 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
8987238, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
9006222, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
9012434, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
9180091, Dec 21 2012 THERAPEUTICSMD, INC Soluble estradiol capsule for vaginal insertion
9248136, Nov 23 2011 THERAPEUTICSMD, INC Transdermal hormone replacement therapies
9289382, Jun 18 2012 THERAPEUTICSMD, INC Vaginal inserted estradiol pharmaceutical compositions and methods
9301920, Jun 18 2012 THERAPEUTICSMD, INC Natural combination hormone replacement formulations and therapies
9931349, Apr 01 2016 THERAPEUTICSMD, INC Steroid hormone pharmaceutical composition
Patent Priority Assignee Title
4013792, Apr 11 1974 Warner-Lambert Company Process for the production of base for topical steroids
4383993, May 30 1980 University of Kentucky Research Foundation Nasal dosage forms containing natural female sex hormones
4749700, Oct 23 1984 Nastech Pharmaceutical Co, Inc. Novel methods of administering antihistamines, antinausea and antiemetic pharmaceutical agents and novel dosage forms containing same
4810503, Mar 31 1987 BASF Corporation; BASF CORPORATION, A CORP OF DE Polymers which form gels at low concentrations in water
4956171, Jul 21 1989 Paco Pharmaceutical Services, Inc. Transdermal drug delivery using a dual permeation enhancer and method of performing the same
5013714, Dec 15 1988 Viscoelastic solution
5120546, Dec 21 1989 McNeil AB Transdermal system
5258499, May 16 1988 NEXSTAR PHARMACEUTICALS, INC Liposome targeting using receptor specific ligands
5344644, Aug 01 1991 Takeda Chemical Industries, Ltd Water-soluble composition for sustained-release
5399351, Jul 09 1990 Genzyme Corporation Biocompatible viscoelastic gel slurries, their preparation and use
5442043, Nov 27 1992 Takeda Chemical Industries, Ltd Peptide conjugate
5766620, Oct 23 1995 THERATECH, INC Buccal delivery of glucagon-like insulinotropic peptides
5985320, Mar 04 1996 The Penn State Research Foundation Materials and methods for enhancing cellular internalization
6387390, Oct 05 1998 PENN STATE RESEARCH FOUNDATION, THE Compositions and methods for enhancing receptor-mediated cellular internalization
6652873, Oct 05 1998 The Penn State Research Foundation Compositions and methods for enhancing receptor-mediated cellular internalization
6908623, Oct 05 1998 The Penn State Research Foundation Compositions and methods for enhancing receptor-mediated cellular internalization
EP267015,
EP312208,
EP391342,
GB1090492,
WO9610335,
WO9732572,
WO8301198,
WO8602553,
WO8702576,
WO8905149,
WO9211037,
WO9308845,
WO9400155,
WO9605321,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 04 1999DEAVER, DANIEL R The Penn State Research FoundationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0212750006 pdf
Nov 05 1999EDWARDS, DAVID A The Penn State Research FoundationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0212750006 pdf
Jun 21 2007The Penn State Research Foundation(assignment on the face of the patent)
Jun 21 2007Massachusetts Institute of Technology(assignment on the face of the patent)
Jul 31 2007LANGER, ROBERT S Massachusetts Institute of TechnologyASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0212740983 pdf
Date Maintenance Fee Events
Oct 18 2012M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 27 2017REM: Maintenance Fee Reminder Mailed.
Jun 21 2017EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jan 25 20144 years fee payment window open
Jul 25 20146 months grace period start (w surcharge)
Jan 25 2015patent expiry (for year 4)
Jan 25 20172 years to revive unintentionally abandoned end. (for year 4)
Jan 25 20188 years fee payment window open
Jul 25 20186 months grace period start (w surcharge)
Jan 25 2019patent expiry (for year 8)
Jan 25 20212 years to revive unintentionally abandoned end. (for year 8)
Jan 25 202212 years fee payment window open
Jul 25 20226 months grace period start (w surcharge)
Jan 25 2023patent expiry (for year 12)
Jan 25 20252 years to revive unintentionally abandoned end. (for year 12)