A multi-purpose wire includes at least one elongated conductor having a width of at least 0.125 inches. The conductor includes at least one conductive layer having a thickness no greater than about 0.0200 inches. The wire also includes a bonding material between each conductor, and an insulation layer surrounding the conductor and bonding material.
|
0. 34. A wire comprising:
a plurality of conductors, each conductor having a width of about 0.125 inches or more and comprising at least one conductive layer having a thickness no greater than about 0.0200 inches;
a bonding material adjacent to said plurality of conductors; and
an insulation layer selected from the group consisting of urethane, polyethylene and a fluoropolymer, said insulation layer surrounding said plurality of conductors and said bonding material, said bonding material being bonded to said insulation layer,
wherein said plurality of conductors are separated by a distance in a range of about 0.125 inches and about 0.6 inches, and
wherein the wire may be folded back upon itself at any angle to accommodate angle changes on the surface of a wall or ceiling.
5. A multi-purpose wire, comprising:
a plurality of elongated conductors, each conductor having a width of 0.125 inches or more and comprising at least one conductive layer having a thickness in a range of about 0.0004 to about 0.0200 inches;
a bonding material adjacent each said elongated conductor; and
an insulation layer selected from the group consisting of urethane, polyethylene and a fluoropolymer, said insulation layer surrounding said plurality of elongated conductors and said bonding material,
wherein a thickness of said wire is no greater than about 0.050 inches, and
wherein said plurality of elongated conductors are separated by a distance in a range of about 0.125 and about 0.6 inches. inches, and
wherein the multi-purpose wire may be folded back upon itself at any angle to accommodate angle changes on the surface of a wall or ceiling.
1. A surface mountable, flexible, multi-purpose wiring comprising:
a plurality of flat, elongated conductors, each conductor having a width of 0.125 inches or more and comprising at least one conductive layer having a cross sectional height in the range of about 0.0004 to about 0.0200 inches;
a bonding material adjacent each said flat, elongated conductor; and
an insulation layer selected from the group consisting of urethane, polyethylene and a fluoropolymer, said insulating layer surrounding said plurality of flat, elongated conductors and said bonding material, said bonding material being bonded to said insulation layer,
wherein a combined cross-sectional height of said plurality of flat, elongated conductors, bonding material and insulation layer is less than about 0.050 inches,
wherein said plurality of flat, elongated conductors are separated by a distance in a range of about 0.125 and about 0.6 inches. inches, and
wherein the wiring may be folded back upon itself at any angle to accommodate angle changes on the surface of a wall or ceiling.
2. The multi-purpose wiring of
3. The multi-purpose wiring of
4. The multi-purpose wiring of
6. The multi-purpose wire of
7. The wire according to
8. The wire according to
9. The wire according to
10. The wire according to
12. The wire according to
13. The wire according to
14. The wire according to
0. 15. The wire according to
16. The wire according to
17. The wire according to
18. The wire according to
19. The wire according to
20. The wire according to
21. The wire according to
22. The wire according to
23. The wire according to
24. The wire according to
25. The wire according to
26. The wire according to
27. The wire according to
28. The wire according to
an AC neutral conductor and an AC power conductor, each having a width in a range of about 0.4 and about 0.6 inches; and
an AC ground conductor having a width in a range of about 0.2 and about 0.4 inches, and
wherein of said at least one conductive layer has a thickness of about about 0.002 inches, wherein said thickness of said wire is in a range of about 0.012 to about 0.050 inches, wherein a distance between said plurality of elongated conductors is in a range of about 0.4 and about 0.6 inches, and wherein a width of said wire is in a range of about 3.0 and about 3.5 inches.
29. The wire according to
30. The wire according to
0. 31. The multi-purpose wiring of
0. 32. The multi-purpose wiring of
0. 33. The wire according to
0. 35. The wire of
0. 36. The wire of
0. 37. The wire of
0. 38. The wire of
|
This application is a continuation of application Ser. No. 08/942,305 filed Oct 1, 1997 now abandoned.
1. Field of the Invention
The present invention generally relates to flat wiring, and more particularly, to a thin, bendable, surface-mounted flat wire for use in a variety of wiring applications.
2. Description of the Related Art
Current wiring and re-wiring techniques and procedures present many limitations to the user in existing commercial or residential applications. The choices for adding, changing or moving any of the many wiring applications—electrical, telephone, antenna/CATV, loud speaker, and low voltage wiring, as well as the associated plugs, switches, and connections—is expensive or obtrusive or both.
Temporary or removable methods such as extension cords, long telephone and antenna/CATV cords, external loud speaker wire, and low voltage wire, are cumbersome and hard to hide or blend into a room.
Permanent installations typically require either a professional to install in a wall if the user desires a hidden installation or the use of some type of unattractive and inflexible conduit. Both methods tend to be expensive.
In light of the foregoing, there exists a need for a permanent, non-obtrusive, low-cost, easy to self-install, location specific, hidden system for wiring and re-wiring applications on walls and ceilings. There also exists a need for associated plugs, switches, and connections that could provide an interface between such a new wiring system and conventional wiring.
The present invention is directed to flat, thin, flexible, multi-layered wires, which substantially obviate one or more of the problems due to the limitations and disadvantages of the related art.
By way of example and not by limitation, the present invention can be utilized in a wide variety of applications, including: standard electrical wiring; telephone wiring; loud speaker wiring; low voltage wiring such as security systems; under surface lighting; and cable TV wiring.
In addition, the present invention includes several unique outlets, switches, and connectors that provide the interface between existing conventional round wiring and the flat wires of the present invention.
To achieve these and other advantages and in accordance with the purpose of the invention, as embodied and broadly described, the invention provides for a surface mounted, flexible, multi-purpose wire, comprising, a plurality of flat elongated conductors spaced apart in a generally parallel relationship, wherein each of the plurality of flat conductors comprises a plurality of copper layers; an adhesive material separating the plurality of flat conductors; and an insulation layer surrounding the flat conductors and the adhesive material, wherein the adhesive material bonds to the insulation layer; and wherein a cross-sectional height of the flat conductors and insulation layer is such that the multi-purpose wire will blend in with the surface when painted or after wallpaper is applied.
The copper layers are generally on the order of about 0.002 inches thick, but may range from about 0.0004 to 0.020 inches. The number and thickness of the copper layers may be adjusted to suit the desired application. It is understood that the various dimensions described herein may vary considerably within the practice of this invention.
The insulation layer can be composed of materials selected form the group consisting of polyester films (e.g., Dupont Mylar), urethane films, or teflon films. The adhesive material can be selected from the group consisting of adhesive tape (e.g., 3M 9500PC), liquid adhesive, or a combination of the two.
In another aspect, the invention provides for a surface mounted, flexible, multi-purpose wire, comprising a single flat conductor together with the adhesive material and insulation layers as described above.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
The foregoing and other objects, aspects and advantages will be better understood from the following detailed description of a preferred embodiment of the invention with reference to the drawings, in which:
In general, as stated above, the present invention can be used or be adapted to perform in a wide variety of applications including: standard electrical wiring; telephone wiring; loud speaker wiring; low voltage wiring applications such as intercoms and security systems; under surface lighting; and cable TV wiring. In addition, the present invention includes several unique outlets and switches that interface with existing conventional round wiring. Moreover, the present invention also utilizes tape, stripping tools, and unique connectors to implement a particular system embodiment. Each of the individual components will be discussed in greater detail, followed by a description of the applications to which the present disclosure is directed.
Each of the individual wire embodiments share a basic common structure. However, depending on the particular application, various modifications can be made to the basic structure and the dimensions of the structural components to achieve the desired purpose.
For ease of reference, the basic structure will be discussed in detail with reference to the first wire embodiment. It is understood that this basic structural concept applies to all the wire embodiments. Modifications to the basic structure will be discussed where appropriate. Like reference numbers will be used where possible to refer to similar parts throughout the drawings.
Referring now to the drawings, and more particularly to
Generally, the electrical wire 10 is a flat, flexible, wire that allows the user to bring electricity to any area of a wall or ceiling in a room. The electrical wire 10 is mounted to the surface of the wall or ceiling, thereby eliminating the need for costly inner wall or ceiling rewiring. The wire may be painted or papered over to match the rest of the surface.
The electrical wire 10 comprises a plurality of elongated and parallel spaced multi-layer conductors 11. As shown in
An internal adhesive material 13 separates the flat conductors 11 as well as providing edge sealing of the outer flat conductors as shown in FIG. 1. The adhesive material 13 and conductors 11 are surrounded by a thin layer of insulation material 15. In addition, an external adhesive layer 17 is applied to the back of the flat wire to attach the electrical wiring to the desired surface.
Each of the conductors 11 are comprised of one or a plurality of layers made with a copper material that is about 0.0004 to about 0.020 inches thick, and preferably on the order of about 0.002 inches thick. Three copper layers 11a, 11b, and 11c, are shown in
The current and or signal carrying specifications of a particular application may be accomplished in any of three ways, either individually or in combination. First, the width ‘wc’ of the conductors 11 may be varied. Second, additional thin copper layers may be stacked for each conductor 11. Third, the thickness ‘t’ of the conductor 11 may be increased.
For most load and current applications, each conductor will generally be composed of about 2-5 layers of copper. It is understood, however, that utilizing more or less layers, for each of the below disclosed embodiments, is within the scope of this invention.
For example, a five copper layer conductor, where each copper layer is about 0.002 inches thick, will be on the order of 0.012 inches thick including insulation. Even at that thickness, however, the flat wire presents an extremely thin cross-section that is virtually undetectable on a surface once painted or papered over.
The insulation layer 15 will now be described in greater detail. Insulation is achieved with minimum thickness to prevent conduction under ideal conditions only. The primary purpose of the insulation layer 15 is to assist in the optical occlusion of the presence of the wire as applied to a surface so that a pleasing appearance can be achieved upon installation.
The insulation layer 15 also orients the copper conductive layers. In addition, the insulation material may be used alone, or in combination with the internal adhesive 13, to separate the conductive layer groups and maintain a safe dielectric distance between conductors of different purposes (e.g., AC ground vs AC neutral or AC power conductors).
As shown in
It is understood that additional insulative materials are considered to be within the scope of this invention and may be used so long as the insulation is compliant, paintable, and bondable to surfaces. The insulation should also be compatible with joint compounds, be UV tolerant, and have similar thermal expansion and contraction characteristics as that of the conductors and the surface to which it is adhered.
Other desirable properties are that the insulation should withstand tensile forces applied in the fabrication process, not retract or relax under storage conditions, and be removable when its use is completed.
Any abrasion, cracking, cutting, piercing, or any other insulation damage—that would render an unsafe exposure to electrical harm—will be made safe using electronic means of failure detection that will disconnect harmful currents from the user in a time frame that will prevent permanent harm. This electronic failure detection means, or Ground Fault Interrupter (GFI) circuit, is discussed in greater detail later in the specification.
Returning to
The thickness of the internal adhesive material 13 closely approximates the cross-sectional height ‘t’ of the conductors 11, especially where the internal adhesive separates the conductors 11. As shown in
An external adhesive layer 17 is provided for attaching the wire to the desired surface. The external adhesive layer 17 could be, for example, two-sided tape, with one side being fixed to the back of the flat wire 10 and the other to the wall or surface. Alternatively, a chemical adhesive may be applied separately, and may consist of any of the adhesives with good bonding qualities to both the insulation layer 15 and the desired surface to which the flat wire 10 is adhered.
A finished flat 3-conductor wire 10, having, for example, three copper layers of 0.002 inch thickness, would be approximately 0.007 to 0.010 inches in cross-sectional height ‘t’. For a 15 amp rated wire, the entire width ‘W’ of the 3-conductor flat wire 10 is on the order of about 2.0-2.5 inches. The width ‘wc’ of each conductor is about 0.4-0.6 inches, and the spacing between conductors ‘ws’ is about 0.2-0.3 inches.
To ensure readily identifiable, proper and safe connections, the width ‘wc’ of the AC ground conductor could be increase slightly as compared to the AC neutral and AC power conductors. The width of the AC ground conductor would therefore be closer to 0.6 inches, while the widths of the other two conductors would be closer to 0.4 inches. Alternatively, the width of the AC ground conductor could be reduced as compared to the other conductors.
Similar dimensions would be useful for other applications, however, it is understood that the various dimensions can vary considerably within the practice of this invention.
The flat wire 10 provides a simple, low cost alternative to expensive rewiring jobs for supplying electricity to specific locations of walls and ceilings for use in fans, ceiling lighting, or wall or art lighting.
In
The 110 VAC 5-conductor wire is used where two circuits on one flat wire are desirable, such as a wire leading to a light and a fan, or where a switched plug is used. In this embodiment the five conductors consist of two AC neutral conductors, two AC power conductors, and a single AC ground conductor.
The number and thickness of the copper layers, the width ‘wc’ and thickness ‘t’ of the conductors 11, and the spacing between the conductors ‘ws’ are generally of the same dimensions as that of the 110 VAC 3-conductor wire. The overall width ‘W’ of the finished flat wire 20 is on the order of about 3.5-4.25 inches.
The flat wire conductors of the present invention may also be utilized to construct a 220 VAC wire embodiment, generally as shown with reference to
As in the 3-conductor 110 VAC electrical wire, the difference in ground conductor width in the 3-conductor 220 VAC electrical wire is to facilitate proper connection of the wires to the connectors.
As with the previous embodiments, the loud speaker wire 30 of the present invention, illustrated in
The loud speaker wire 30 can be mounted to the surface of a wall or ceiling, thereby eliminating the need for costly inner wall or ceiling rewiring. The wire may also be painted or papered over to match the rest of the surface.
Referring to
The pair of conductors 11 are separated by an appropriate adhesive material 13 and both are surrounded by an insulation layer 15 as discussed above. Similar insulation and adhesives may be used as previously described above.
Because of its application, the loud speaker wire 30 may also include a shielding material 18 surrounding the conductors 11 to reduce outside signal and cross-over interference. The shielding material 18 may be one or a plurality of layers of any suitable metallic or semi-metallic shielding materials, for example, aluminum or metalized polyester films.
The finished loud speaker wire 30 is approximately 0.008 inches in cross-sectional height ‘t’ with three copper layers, with an overall width ‘W’ of about 2.5-3.0 inches. The width ‘wc’ of each conductor is about 0.6-0.8 inches, and the spacing between the conductors ‘ws’ is about 0.2-0.3 inches.
As shown in
An illustrative example of a telephone wire embodiment 40 according to the present invention is shown in FIG. 4. In this embodiment, six multi-layered copper conductors 11 are provided, separated by adhesive material 13, and surrounded by insulation layer 15. A six conductor wire facilitates the use of Private Branch Exchange (PBX) switching, thereby providing a private telecommunications exchange that includes access to a public telecommunications exchange. The conductors 11 are functionally equivalent to standard 22 gauge telephone wire.
Two, four, and eight multi-layered copper conductor telephone wires may also be utilized. Moreover, the eight conductor embodiment approximates four twisted pair wires (e.g., unshielded twisted pair (UTP) wire), which may be suitable for carrying data.
Each of the conductors 11 would generally have two or three copper layers, the former being shown by copper layers 11a and 11b in FIG. 4. The copper layers are about 0.0004 to about 0.020 inches thick, and preferably on the order of about 0.002 inches thick. It is understood that, depending on the particular application, more or less copper layers may be utilized.
The finished telephone wire 40, with three copper layers, is approximately 0.008 inches in cross-sectional height ‘t’, with an overall width ‘W’ of about 1.5-3.5 inches, depending on the number of conductors 11 utilized. The width ‘wc’ of each conductor is about 0.2-0.4 inches, and the spacing between the conductors ‘ws’ is about 0.125-0.25 inches.
As shown in
An illustrative example of a cable television CATV wire embodiment 50 in accordance with the present invention is shown in FIG. 5. In this embodiment, a pair of conductors 11 are provided, each of which may generally have two or three copper layers, the former being shown by copper layers 11a and 11b in FIG. 5. The copper layers are about 0.0004 to about 0.020 inches thick, and preferably on the order of about 0.002 inches thick. It is understood that, depending on the particular application, more or less copper layers may be utilized.
As in the previous embodiments, the conductors 11 are separated by adhesive material 13, and surrounded by insulation layer 15. As shown in
The finished antenna/CATV wire 50, with three copper layers, is approximately 0.008 inches in cross-sectional height ‘t’, with an overall width ‘W’ of about 1.8-2.2 inches. The width ‘wc’ of each conductor is about 0.4-0.6 inches. As shown in
Each of the conductors 11 would generally have two or three copper layers, the later being shown by copper layers 11a, 11b, and 11c in FIG. 6. The copper layers are about 0.0004 to about 0.020 inches thick, and preferably on the order of about 0.002 inches thick. It is understood that, depending on the particular application, more or less copper layers may be utilized.
The finished low voltage wire 60, with three copper layers, is approximately 0.008 inches in cross-sectional height ‘t’, with an overall width ‘W’ of about 1.2-1.6 inches. The width ‘wc’ of each conductor is about 0.3-0.5 inches, and the spacing between the conductors ‘ws’ is about 0.2-0.3 inches.
As shown in
While the thin, flexible wire for under surface lighting is similar in construction to the 110 VAC 3-conductor and 5-conductor wire embodiments described above, it is unique in that the under surface lighting wire incorporates embedded lights 169. See FIG. 16. This allows the user to install the lighting under a surface of a cabinet, shelf, or other locations where under surface lighting is desired. This embodiment will be described in greater detail in the discussions of the conventional wire-to-flat wire system implementations later in the specification.
The present invention encompasses a family of outlets that provide connection points between the flat wires of the present invention and conventional existing electrical outlets and conventional round wire systems. These connecting outlets are of two general types, with one being directly “pluggable” into a conventional existing outlets, while the other is a “stand-alone” surface mounted unit.
The pluggable connecting outlets will always provide the compatibility interface between the standard household electric wiring apparatus and the various embodiments of the flat wires in accordance with the present invention. Accordingly, the pluggable outlet is always at the source of the standard electrical current. The stand-alone unit interfaces with the pluggable unit via the various flat wire embodiments of the present invention.
In the electrical wire embodiments, for example, current from the conventional wire 69 is transferred to the stand-alone outlet 67 via pluggable outlet 65 and the flat 110 VAC wire 68 of the present invention.
The outlet base 75 for the pluggable outlet 65 contains openings 75a and 75b that would be positioned over the female receptacles of the conventional existing outlet, and affixed to the surface with screws or other equivalent attachment devices. The outlet cover 74 would then be placed over the base 75.
The pluggable outlet 65 also contains a flat wire connector 76 and a Ground Fault Interrupter (GFI) module 77 with its associated GFI reset button 78. The GFI module 77 (the operation of which is discussed later in the specification) contains two sets of male contacts 79 and 79′ that pass through the openings 75a and 75b to plug into the respective female receptacles associated with conventional wiring systems. The GFI module 77 functions to interrupt the electric current to the load in the event the flat wire is pierced or cracked.
The stand-alone outlet 67 (see
A single outlet base 75 may be configured with “punch out” openings 75a and 75b so that it may be used with either the pluggable or stand-alone outlet assemblies.
Also depicted in
The flat wire connector 76, which is common to both the stand-alone and pluggable outlets, will now be discussed in greater detail. The flat wire connector 76 provides the connection point between the flat wires of the present invention and the copper outlet frame 84.
An example of such a “flat-wire to outlet frame” connector 90 is illustrated in the perspective view of FIG. 9A. While a 5-conductor connector assembly is shown for illustrative purposes, it is understood that the connector can be constructed to interface with any number of flat conductors having any number of copper layers.
Along one surface of connector 90 there is provided a plurality of flat wire receptacles 92 for receiving each of the flat wire conductors 11. The 3-conductor and 5-conductor electrical wires may use the same 5-conductor connector assembly 90, provided the outer wire receptacles are depopulated when the 3-conductor electrical wire is used. The other wire embodiments would have their own interface connectors 90. The need for multiple connectors does not pose a problem as the connectors can easily be swapped and inserted in the outlet cover 74 by plugging the connector into the male contacts 81 fixed to the outlet cover 74.
Each of the flat wire receptacles contains a plurality of slotted springs 94 for contacting the corresponding copper layers in each of the multi-layer conductors 11 (see
As shown in the perspective views in
As more clearly seen in
The sequence of connecting the flat wire to the connector 90 is described with reference to an exemplary 5-conductor embodiment where each of the conductors has three copper layers. First, each conductor 11 is lined up with a respective flat wire receptacle 92. Then, each copper layer for each of the conductors 11 is inserted between the slotted springs 94. The slotted springs 94 are slightly biased by screws 96 as shown in FIG. 9D. By tightening the screws, one can ensure that both the top and bottom of each copper layer are in contact with the slotted springs. This ensures the best conductor contact, and also ensures that each copper layer (and thus each conductor) experiences the same resistance.
Finally, the male contacts 81 and extended female slots 98 are lined up and the connection to either the pluggable or stand-alone outlet is made. The outlet cover 74 would have a small cutout at the edge facing the flat wire receptacles 92 of connector 90 to enable the flat wires to pass through the outlet cover 74 to reach the connector 90.
In addition to the flat-wire to outlet frame connector, a second connector type is also needed to provide an interface between conventional round wires and the various flat wire embodiments described above. This would occur, for example, where the flat wires connect to a wall light, fan, or intercom system.
An example of such a connector 100 is illustrated in the perspective view of
As shown in
Receptacle 110 contains cast copper leads 111 and 112 that contact the respective wiper assemblies 114 and 116. Each of the wiper assemblies contains three wipers (114a, 114b, 114c; 116a, 116b, 116c), each of which moves independently of the other two in the respective assembly.
The three-wiper receptacle 110 thus provides a better connection and more surface contact with the copper leads 111 and 112. The other ends of copper leads 111 and 112 extend to the copper frame 84 (see FIG. 8B). In addition, since the three wipers move independently, the receptacle is better able to accommodate torque in a plug.
A unique set of switches 124′ are provided for use with the wire products of the present invention. The switches may be electrically wired to an existing switch, or plugged into an existing outlet, or operated by radio frequency (RF) remote power. The switches are used mainly with the 3-conductor and 5-conductor wires, and under-surface lighting embodiments described above.
The switch mechanism may be front or side mounted (
Regardless of the particular type of switch utilized, however, all of the switches share certain common elements. The switches 124′ (see
If the switch unit is hardwired, it is coupled via voltage circuits. This makes the switches incapable of being used without a compatible plug unit.
The unique thin, flat wires of the present invention require equally unique insulation stripping tools to facilitate attachment to connectors and existing outlets. Each wire embodiment described above will have its own specialized tools.
Two versions are contemplated—one directed to use by professional electricians or installers and the other to non-professionals. The professional stripping tool is designed to cut and strip the insulation layer 17 off the conductors 11 in a single procedure similar to the manner of operating a conventional stripping tool. Considering the small thicknesses of the conductors, it is apparent that the stripping tool be precisely milled to allow for such precision cutting and stripping. Such precise milling may tend to raise the cost of such a tool, making it economically feasible for professional use only.
A second slicing tool directed to the non-professional will align the wire in the stripper and slice adjacent and perpendicular to the conductors, to allow the user to strip away the necessary insulation material to get to the conductive layers. The insulation is then peeled back and removed by scissors.
A general illustrative system embodiment—incorporating the various wires, outlets, switches, and connectors described above—is shown in FIG. 12A.
With reference to
By utilizing the flat wires, outlets, switches, and connectors of the present invention, however, the task is greatly simplified as is now described. First a pluggable outlet 65 (
A connector 90 (not shown in
The flat wire 123 is affixed to the wall surface with the adhesive layer 17 as described above, typically double sided tape, and either painted or papered over to obscure the wire.
As illustrated, the flexible, flat wire 123 incurs a 90 degree bend along its width at point 127 where the ceiling and wall adjoin, as the flat wire is adhered to a different planar surface. In addition to bending at any angle along its width to accommodate different planar surface joints, the flexible wire may actually be bent back upon itself at any angle to accommodate angle changes on the same planar surface.
Consider, for example, the second wall lighting, apparatus 126′ in FIG. 12A. The wall light 126′ is connected to standard switch 124 by a flat wire 128. For aesthetic reasons, rather than put a second stand-alone switch near the conventional switch, the flat wire is bent at a 45 degree angle at points 129 and 129′. The flat wire is basically folded back upon itself to achieve the 45 degree turn.
As illustrated, stereo system 130 is connected to speaker 131 via flat wires 133. The speaker 131 can be placed in any desired location. The traditional speaker wires 136 are then connected to a stand-alone plug on the wall. A second stand-alone plug is placed in the desired location near the new speaker position. The flat wires 133 are then run between the two stand-alone plugs. The entire length of the flat wire 133 may then be painted or papered over, thereby eliminating unsightly and cumbersome speaker wire.
With reference to
As illustrated, the existing phone jack or phone receptacle 141 is connected to the extension phone jack 142 via flat wires 143. As shown, a flat wire phone apparatus 147 is connected to the existing phone jack 141. The extension phone jack 142 is then placed in the desired location and connected to flat wire phone apparatus 147′. The flat wires 143 are then connected between the flat wire phone apparatuses 147 and 147′. The entire length of the flat wire 143 may then be painted or papered over, thereby eliminating unsightly and cumbersome phone wire.
A diagrammatic representation of a CATV application is shown in FIG. 15. The cable input 151 is fed into the house via the 75 ohm coaxial cable 158. The cable 158 is then connected to 75 ohm-300 ohm conversion apparatus 157 located on the wall near the input 151 into the house. A second conversion apparatus 157 is placed near the desired television 152 location. Flat wires 153 are then run between the two conversion apparatuses. As above, the entire length of the flat wire 153 may then be painted or papered over, thereby eliminating unsightly and cumbersome CATV wire.
The under surface lighting embodiment, including flat wires 163 with embedded lights 169, is shown in FIG. 16. The switch or plug 161 is connected to the flat wire 163. The embedded lights 169, may be, for example, double-ended RSC base 120V halogen lamp from 20 to 100 watts. The flat wires can be placed in any under surface location where additional light is desired, such as under a cabinet or shelf. The flat wire 163 may then be painted or papered over to match the rest of the surface.
The flat wires of the present invention may also be used with direct current (DC) applications. With reference to
Since the flat wire is nearly invisible after it is painted or papered over, there is a possibility that at some later date, a person could inadvertently drive a nail or picture hook through the flat wire, or otherwise cut the wire.
In each of the systems, therefore, a ground fault interruption (GFI) module(s) 77 (see
The GFI circuit will monitor the current flow through the power and neutral conductors of the AC circuits, and if more than ten milliampere of mismatch is sensed, then both conductors will be disconnected by a circuit breaker. The circuit breaker will be fast enough to prevent any permanently harmful discharge.
The circuits will provide a fail safe methodology such that any circuits will be checked before connection and rechecked after connection. Power from the circuit will provide connection so that a circuit failure will result in no power beyond the circuit breaker.
As described previously, the circuit is physically located in the “pluggable” outlet 65 (see
While the invention has been described in terms of the embodiments described above, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the appended claims.
Patent | Priority | Assignee | Title |
11081815, | Nov 16 2017 | BYRNE ELECTRICAL SPECIALISTS, INC ; BYRNE, NORMAN R | Electrical power or data distribution system |
11303079, | May 28 2019 | BYRNE ELECTRICAL SPECIALISTS, INC ; BYRNE, NORMAN R | Modular electrical system |
11831113, | May 28 2019 | Norman R., Byrne | Modular electrical system |
Patent | Priority | Assignee | Title |
3079458, | |||
3168617, | |||
3547718, | |||
4185887, | Jun 01 1973 | SOCIETA PIRELLI S P A , A COMPANY OF ITALY | Optical fiber cable |
4219928, | May 25 1979 | Thomas & Betts International, Inc | Flat cable and installing method |
4355865, | Mar 21 1980 | AMP Incorporated | Laminated optical fiber cable |
4401361, | Jun 06 1972 | BICC Limited | Optical guides |
4407065, | Jan 17 1980 | Multiple sheath cable and method of manufacture | |
4441088, | Dec 31 1981 | International Business Machines Corporation | Stripline cable with reduced crosstalk |
4616102, | Feb 21 1980 | Thomas & Betts International, Inc | Flat conductor electrical cable assembly |
4658090, | Jul 24 1984 | Phelps Dodge Industries, Inc. | Ribbon cable, a transposed ribbon cable, and a method and apparatus for manufacturing transposed ribbon cable |
4675625, | Mar 26 1985 | Rogers Corporation | Rolled delay line of the coplanar line type |
4845311, | Jul 21 1988 | HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company | Flexible coaxial cable apparatus and method |
4992059, | Dec 01 1989 | Northrop Grumman Corporation | Ultra fine line cable and a method for fabricating the same |
5003273, | Dec 04 1989 | ITT Corporation | Multilayer printed circuit board with pseudo-coaxial transmission lines |
5064684, | Aug 02 1989 | Eastman Kodak Company | Waveguides, interferometers, and methods of their formation |
5068632, | Dec 20 1988 | Thomson-CSF | Semi-rigid cable designed for the transmission of microwaves |
5136123, | Jul 17 1987 | Junkosha Co., Ltd. | Multilayer circuit board |
5274246, | May 04 1992 | The United States of America as represented by the Secretary of the Air | Optical modulation and switching with enhanced third order nonlinearity multiple quantum well effects |
5373109, | Dec 23 1992 | International Business Machines Corporation | Electrical cable having flat, flexible, multiple conductor sections |
5408053, | Nov 30 1993 | Hughes Aircraft Company | Layered planar transmission lines |
5430247, | Aug 31 1993 | MOTOROLA SOLUTIONS, INC | Twisted-pair planar conductor line off-set structure |
5468159, | Apr 07 1993 | International Business Machines Corporation | Portable external flexible cable and package using same |
5500489, | Jul 26 1994 | WHITAKER CORPORATION, THE | Cable for electronic retailing applications |
5554825, | Nov 14 1994 | The Whitaker Corporation | Flexible cable with a shield and a ground conductor |
5673352, | Jan 12 1996 | ALCATEL SUBMARINE NETWORKS, INC | Fiber optic micro cable |
5804768, | Jun 05 1995 | Southwire Company; NEWIRE, INC | Flat surface-mounted multi-purpose wire |
5847324, | Apr 01 1996 | International Business Machines Corporation | High performance electrical cable |
5939952, | May 24 1996 | Molex Incorporated | Flat flexible cable with pseudo-twisted conductors |
6005193, | Aug 20 1997 | Cable for transmitting electrical impulses | |
6055722, | May 20 1998 | Northrop Grumman Systems Corporation | Stripline flexible cable to printed circuit board attachment system |
6225568, | Aug 31 1998 | Advanced Flexible Circuits Co., Ltd. | Circuit board having shielding planes with varied void opening patterns for controlling the impedance and the transmission time |
DE2439512, | |||
EP116505, | |||
GB1028980, | |||
GB2252197, | |||
JP327608, | |||
JP363168, | |||
JP6082883, | |||
JP6165649, | |||
JP62166487, | |||
JP6299147, | |||
JP6347080, | |||
WO8706760, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 10 2004 | NeWire, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 10 2014 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Jun 12 2014 | LTOS: Pat Holder Claims Small Entity Status. |
Date | Maintenance Schedule |
Feb 01 2014 | 4 years fee payment window open |
Aug 01 2014 | 6 months grace period start (w surcharge) |
Feb 01 2015 | patent expiry (for year 4) |
Feb 01 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 01 2018 | 8 years fee payment window open |
Aug 01 2018 | 6 months grace period start (w surcharge) |
Feb 01 2019 | patent expiry (for year 8) |
Feb 01 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 01 2022 | 12 years fee payment window open |
Aug 01 2022 | 6 months grace period start (w surcharge) |
Feb 01 2023 | patent expiry (for year 12) |
Feb 01 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |