A dual screen display system having, a base, a pair of electronic display screens, an arm assembly supporting the display screens and connected to the base, swingable mountings for swingably mounting the display screens, the mountings being adjustable as to the angular orientation of each of the display screens relative to the arm assembly between a first arrangement with the screens in a common plane, and a second arrangement in which the screens are inwardly swung positions thereby to permit each of the screens to be swung into desired operative angular orientation, and adjustable movement limiting devices, engaging the swinging mountings and limiting movement of the screens. Also disclosed are interchangeable mounting brackets for mounting screens of varying sizes, or for mounting screens in various configurations, and hingeable and rotatable support members for supporting the screens so the screens are swingable to face in opposite directions. A modular display system is also disclosed which allows a one, two three or four display panel system to be formed.

Patent
   RE42091
Priority
Nov 20 1998
Filed
Jan 29 2004
Issued
Feb 01 2011
Expiry
Nov 19 2019
Assg.orig
Entity
Large
22
152
all paid
0. 9. A modular display system comprising:
a base structure;
a first support arm, operably coupled to said base structure;
a second support arm secured to said first support arm and having at least a pair of coupling assemblies for securing first and second display panels, the second support arm being readily detachable from the first support arm;
a third support arm secured to said first support arm and having at least a pair of coupling assemblies for supporting third and fourth display panels, the third support arm being readily detachable from the first support arm, wherein the display system is modularly configurable to support three display panels in a pyramid shape and modularly configurable to support three display panels in an inverted pyramid shape.
0. 25. A modular display system comprising:
a base structure;
a first support arm coupled to the base structure;
a coupling assembly for supporting one display panel from the first support arm;
a second support arm coupled to the first support arm, the second support arm being readily decoupleable from the first support arm;
at least two coupling assemblies for supporting at least two display panels from the second support arm, wherein the display system is modularly configurable to support at least three display panels in a pyramid shape, where the at least two display panels are disposed substantially horizontally below the one display panel, and wherein the display system is modularly configurable to support at least three display panels in an inverted pyramid shape, where the at least two display panels are disposed substantially horizontally above the one display panel.
0. 20. A modular display system comprising:
a first display panel;
a second display panel;
a third display panel;
a base structure;
a first support arm, operably coupled to said base structure;
a second support arm secured to said first support arm and having at least one pair of coupling assemblies for securing to portions of the first and second display panels;
a third support arm secured to said first support arm and having at least one coupling assembly for supporting the third display panel on said third support arm, wherein said third support arm may be readily detached from said first support arm to enable said display system to be modularly configured to support two display panels and modularly configured to support three or more display panels, and wherein the display system is modularly configurable to support the three display panels in a pyramid shape and modularly configurable to support the three display panels in an inverted pyramid shape.
0. 5. A modular display system comprising:
a base structure;
a first support arm, operably coupled to said base structure;
a second support arm secured to said first support arm and having at least a pair of coupling assemblies for securing first and second display panels, the second support arm being readily detachable from the first support arm; and
a third support arm secured to said first support arm and having at least a pair of coupling assemblies for securing third and fourth display panels, the third support arm being readily detachable from said first support arm, wherein the display system is modularly configurable to support two side-by-side display panels, modularly configurable to support two vertically stacked display panels, modularly configurable to support three display panels in a pyramid shape, modularly configurable to support three display panels in an inverted pyramid shape, and modularly configurable to support two horizontal display panels above two horizontal display panels.
0. 14. A modular support system for display panels, the system comprising:
a base structure;
a first support arm removably attachable to the base structure;
a second support arm removably attachable to the first support arm for supporting display panels;
a third support arm removably attachable to the first support arm for supporting display panels;
two coupling assemblies for the first support arm to couple two display panels thereto;
two coupling assemblies for the second support arm to couple two display panels thereto; and
two coupling assemblies for the third support arm to couple two display panels thereto;
wherein,
a) the modular support system is configurable as a one-support arm system having the first support arm, as a two-support arm system having the first and second support arms, and as a three-support arm system having the first, second and third support arms,
b) in the one-support arm system, the first support arm can support at least two display panels, at least one in either landscape orientation or portrait orientation, using the two coupling assemblies for the first support arm,
c) in the two-support arm system, the second support arm can support two display panels, in either landscape orientation or portrait orientation, using the two coupling assemblies for the second support arm, and
d) in the three-support arm system,
i) the second support arm can support two display panels, and
ii) the third support arm can support two display panels, in either landscape orientation or portrait orientation, using the two coupling assemblies for the third support arm.
0. 1. A modular display system comprising:
a base assembly;
a first support arm, operably coupled to said base assembly;
a second support arm secured to said first support arm and having at least a pair of coupling assemblies for securing to portions of first and second liquid crystal display (LCD) panels;
a third support arm secured to said first support arm and having at least one coupling assembly for supporting a third LCD panel on said third support arm; and
wherein said third support arm may be readily detached from said first support arm to enable said display system to be modularly configured as either a two panel LCD display system or as a three panel or greater LCD display system.
0. 2. The display system of claim 1, wherein said second support arm includes three said coupling assemblies enabling said first and second LCD panels to be supported adjacent one another in either a portrait positions or landscape positions, while minimizing a spacing between said first and second LCD panels.
0. 3. The display system of claim 1, wherein said third support arm includes a air of said coupling assemblies enabling said third LCD panel, and a fourth LCD panel, to be supported thereon.
0. 4. The display system of claim 3, wherein said third support arm includes three of said coupling assemblies enabling said third and fourth LCD panels to be supported in either a portrait or a landscape orientation while minimizing a spacing between said third and fourth LCD panels in either one of said orientations.
0. 6. The display system of claim 5, wherein at least one display panel can assume a landscape orientation and a portrait orientation.
0. 7. The system of claim 5, further comprising the first, the second and the third display panels.
0. 8. The system of claim 7, wherein the first, the second and the third display panels are liquid crystal display panels.
0. 10. The system of claim 9, wherein at least one display panel can assume a landscape orientation and a portrait orientation.
0. 11. The system of claim 9, wherein the base structure is designed to rest on a work surface.
0. 12. The system of claim 9, wherein the at least one pair of coupling assemblies secure the rears of the first and second display panels to the second support arm.
0. 13. The system of claim 9, wherein the second support arm is integral and the third support arm is integral.
0. 15. The system of claim 14, wherein the base structure is designed to rest on a work surface.
0. 16. The system of claim 14, wherein the two coupling assemblies for the second support arm to couple two display panels thereto couple the rears of the two display panels to the second support arm.
0. 17. The system of claim 14, wherein the second support arm is integral and the third support arm is integral.
0. 18. The system of claim 14, further comprising at least three display panels.
0. 19. The system of claim 18, wherein the at least three display panels are liquid crystal display panels.
0. 21. The system of claim 20, wherein at least one display panel can assume a landscape orientation and a portrait orientation.
0. 22. The system of claim 20, wherein the base structure is designed to rest on a work surface.
0. 23. The system of claim 20, wherein the at least one pair of coupling assemblies secure the rears of the first and second display panels to the second support arm.
0. 24. The system of claim 20, wherein the second support arm is integral and the third support arm is integral.
0. 26. The system of claim 25, further comprising at least three display panels.
0. 27. The system of claim 25, wherein the at least two coupling assemblies for supporting at least two display panels support the at least two display panels from the backs thereof.
0. 28. The system of claim 25, wherein the coupling assembly for supporting one display panel can support the one display panel in both portrait and landscape orientations.
0. 29. The system of claim 25, wherein the at least two coupling assemblies for supporting at least two display panels support the at least two display panels from the backs thereof.
0. 30. The system of claim 25, wherein the base structure is adapted to rest on a work surface.

This application claims benefit of provisional application 60/109,668 filed Nov. 20, 1998.

The invention relates generally to electronic displays having dual display screens used with computers and CAD design equipment, and more particularly to a display system permitting positioning of dual display screens in an infolded “booking” mode, and to a novel dismountable joint for mounting articles, such as display screens. Also disclosed is an interchangeable display screen and mounting.

Computers are readily adapted to operate multiple displays. Paired monitors and screens are useful when large amounts of related information, such as data or graphics, must be compared. Paired monitors can be inconvenient, however, where limited desk space is available. Monitors may be horizontally aligned, or vertically aligned. It is especially desirable to permit swinging of the monitor orientations together into a “booking” mode.

The invention also relates to a novel swingable mounting, which is suitable for mounting a variety of different pieces of equipment and instruments particularly for example video cameras, telescopes, mirrors, and any number of different articles, which it may be desired to swing into a position from which the article is not easily displaced.

The invention also relates to an interchangeable computer display screen, in which one or more of a variety of screen configurations can be connected or disconnected in various configurations with a computer.

In one aspect, the invention provides a display system having two screens and comprising a base, a pair of electronic displays mounted on the base and means for swingably mounting the display screens, for swinging towards one another for convenient viewing. The swinging means includes an arm assembly which supports the display screens on the base. The support for the arm assembly from the base may have an orientation relative to the base in which the display screens are positioned in vertically stacked screen relationship and may also have a different orientation in which the display screens are positioned in a horizontal, side by side relationship. Each display screen has a swingable joint connecting it to the arm assembly to permit adjustment of its angular orientation relative to the other screen. The angular orientation of each of the display screens relative to the arm assembly can thus be set by the user so as to orient each display screen in the desired angular orientation for that operator.

In one implementation of the invention, the arm assembly can be set in one position about a generally horizontal axis relative to the base, and the display screens can be swung together relative to the arm assembly. The arm assembly may be locked in either orientations, typically vertical or horizontal. Each display screen may be permitted to swing only between a pair of angular positions relative to the arm assembly by controls in the swingable joints.

The displays will often be horizontally arranged side by side in their operative angular orientation. It will generally be desirable to minimize the spacing between edges of the display screens whether vertically registered or horizontally registered. To that end, the center-to-center spacing between the display screens is preferably reduced when the screens are swung together.

The swingable mounting joints connecting the display screens to the arm assembly are preferably formed in such a way that they can be preconfigured either for a side by side orientation or for a vertically stacked orientation of the screens, with means being provided on the swingable joints to guide the assembly in one fashion or the other, and the arm assembly is preferably provided with connecting means connecting to the swingable joints, which cooperate with the means guiding the assembly.

The swingable joints are preferably provided with control abutments by means of which the swinging of the displays can be guided and controlled both when in their horizontal side-by-side arrangement and when in their vertically stacked arrangement, and the position and angular displacement of the two screens can be preset by adjustment of such positional controls during assembly.

A further feature of the invention is the provision of a unique form of spring-loaded pivot mount for mounting equipment, such as the display screen. The pivot mount is capable of adjusting the spring pressure on the pivot so that the article mounted on the pivot mount, in this case a screen can be adjusted, when grasped with both hands and moved, but which is otherwise highly resistant to movement due to frictional locking of the pivot mount.

The pivot mount has numerous other uses, other than mounting display screens as will be apparent from the following description.

Further aspects of the invention provide for the interchangeability of screens one with the other, so that larger or smaller screens may be used with the same computer, and so that screens may be used in various different positions.

In some cases the screens may simply be stood on a table. In other cases the screens may be wall-mounted or mounted on some form of base separate from the computer. In other cases the screens may be interchangeably and releasably mountable for example in a vehicle, and they may be configured in pairs so that they may be portable and set up for a multi screen display, for example, for viewing by a number of persons simultaneously.

The various features of novelty which characterize the invention are pointed out with more particularity in the claims annexed to and forming a part of this disclosure. For a better understanding of the invention, its operating advantages and specific objects attained by its use, reference should be made to the accompanying drawings and descriptive matter in which there are illustrated and described preferred embodiments of the invention.

The various advantages of the present invention will become apparent to one skilled in the art by reading the following specification and subjoined claims and by referencing the following drawings in which:

FIG. 1 is a perspective illustration of a dual display screen system, showing swinging movement of the two screens towards one another;

FIG. 2 is a side-elevation of FIG. 1;

FIG. 3 is a front-elevation of the dual display screens of FIG. 1;

FIG. 4 is a top plan view of the dual display screens of FIG. 1;

FIG. 5 is a perspective illustration of dual display screen shown with the screens in vertical arrangement one above the other;

FIG. 6 is a side-elevation of FIG. 5 showing the screens tilted towards one another;

FIG. 7 is an exploded view of the pivot mount and ball joint used in this embodiment of the invention;

FIG. 8 is a section along the line 88 of FIG. 7;

FIG. 9 is a section along the line 99 of FIG. 7;

FIG. 10 is an exploded perspective illustration of an arm assembly, and showing cut away portions of the swingable joints;

FIG. 11 is a section along the line 1111 of FIG. 10, showing the two components assembled;

FIG. 12 is a section along the line 1212 of FIG. 10 showing the two parts assembled;

FIG. 13 is a perspective partly exploded illustration showing an alternative interchangeable mounting system for mounting the screens;

FIG. 14 is an exploded rear perspective illustration of a complementary portion of the mounting system, which is fitted to the back of each screen;

FIG. 15 is an exploded perspective illustration showing the interchangeable mounting system of the invention coupled with a ball joint similar to that shown in FIG. 12, to enable a screen to be mounted on a stand separately from the computer;

FIG. 16 is a rear elevation of the complementary portion of the interchangeable mounting system mounted on the back of a screen;

FIG. 17 is a section along the line 1717 of FIG. 16;

FIG. 18 is a perspective illustration partly in phantom of a modified form of stand for a computer screen;

FIG. 19 is a perspective illustration of a stand somewhat similar to FIG. 18, with a collapsible stand arm nesting in a base;

FIG. 19a is a perspective of the unit of FIG. 19 folded and nested for storage or carrying;

FIG. 20 is a rear perspective illustration partly exploded showing a modified form of computer together with a display releasible mounted on an arm extending from the computer;

FIG. 21 is a front perspective illustration of a wall-mounted form of interchangeable display screen together with a control panel;

FIG. 22 is a schematic illustration showing an interchangeable mounting of a display screen in a vehicle;

FIG. 23 is an illustration of another vehicle mounting of the interchangeable displays screen, in the rear compartment of the vehicle;

FIG. 24 is an illustration of a computer with a rear mounted support arm, and a greatly enlarged display screen fitted to the arm;

FIG. 25 is a perspective illustration of a table-mounted screen;

FIG. 26 shows a computer having two screens mounted one above the other, with a rotatable mount between the two screens;

FIG. 27 is a view of the same computer as shown in FIG. 26 showing the two screens folded outwardly, so that the display can be viewed by two persons sitting opposite one another;

FIG. 28 is an illustration of a portable dual display screen with a hinging mount, the two screens being shown folded together in a stored or carrying position;

FIG. 29 is a perspective illustration showing a plurality of the display screens of FIG. 28 opened up so that they may stand on the table and face in opposite directions, and coupled to a computer;

FIG. 30 is a perspective illustration of an alternate form of tripod display stand for holding three displays for example, on a conference room table or the like;

FIG. 31 is a perspective illustration of the tripod support of FIG. 30;

FIG. 32 is a rear perspective partially exploded view of another form of dismountable display leg for a display screen;

FIG. 33 is a rear perspective illustration of a typical lap top computer, having two display screens, the one being slidable relative to the other for nesting, or extendable for use;

FIG. 34 is a perspective illustration of the lap top computer with dual display screens of FIG. 33 showing the display screens in another configuration;

FIG. 35 is a perspective illustration of another form of lap top computer having two display screens, and showing a slidable cover panel for one of the two display screens;

FIG. 36 is a rear perspective view of another form of display screen, showing attachment recesses for various components;

FIG. 37 is a perspective illustration of, for example, a lap top computer showing two display screens such as that illustrated in FIG. 36, being attachable to a hinge mounting on the computer;

FIG. 38 is a front elevational view of a pair of display screens as illustrated in FIG. 36 shown side by side;

FIG. 39 is a front elevational view corresponding to FIG. 38, but showing the two display screens one above the other;

FIG. 40 shows an illustration of a further embodiment of invention with a computer having two display screens joined along the side by a hinge;

FIG. 41 shows the computer of FIG. 40 with the two display screens swung out side by side;

FIG. 42 shows the same computer with the two screens swung back to back, so as to display in opposite directions;

FIG. 43 is a perspective view of a laptop computer system incorporating a center LCD panel and a pair of half-width LCD panels on each side thereof, wherein the half-width panels may be folded over the center LCD panel and the entire display portion then folded down onto the keyboard portion of the laptop to form a compact assembly;

FIG. 44 is a side elevational view of a display system of the present invention incorporating a telescoping and pivoting upper support arm for positioning an upper LCD panel adjustably at a desired height above a lower LCD panel or in an orientation facing away from the lower LCD panel;

FIG. 45 is a side elevational view of the display system of FIG. 44 showing the upper support arm in an extended position;

FIG. 46 is a side elevational view of the display system with the upper LCD panel adjusted at an angle relative to the lower LCD panel;

FIG. 47 is a side elevational view of the display system with the upper LCD panel folded over backward relative to the lower LCD panel;

FIG. 48 is a perspective view of the display system in use at an airline ticket counter;

FIG. 49 is a perspective view of the display system in a folded orientation for easy handling;

FIG. 50 is a perspective view of an alternative preferred embodiment of a display system of the present invention incorporating a rotating support member to enable a LCD panel to be rotated about a vertical axis;

FIG. 51 is a perspective view illustrating an upper LCD panel mounted for swiveling movement relative to a lower LCD panel using the system shown in FIG. 50;

FIG. 52 is a perspective view of the display system shown in FIG. 51 showing the two LCD panels facing in opposite directions;

FIG. 53 is an exploded perspective view of a modular, multi-panel LCD display system in accordance with another alternative preferred embodiment of the present invention;

FIG. 54 is a perspective view of the display system shown in FIG. 53 in assembled form ready to accept four LCD panels;

FIG. 55 is a front view of the display system of FIG. 54 with four LCD panels attached thereto;

FIG. 56 is a rear view of the display system of FIG. 55;

FIG. 57 is a perspective view of the display system of FIG. 55;

FIG. 58 is an exploded perspective view of the system shown in FIG. 53 but without one of the support arms such that a three LCD panel display system is formed;

FIG. 59 is an exploded perspective view of the display system shown in FIG. 58 illustrating how a single LCD panel is attached at an uppermost end of one of the support arms;

FIG. 60 is a front elevational view of three LCD panels supported on the display system shown in FIG. 59;

FIG. 61 is a front elevational view of three LCD panels being supported such that the single LCD panel is below an upper pair of LCD panels;

FIG. 62 is a perspective view of a base assembly for supporting three LCD panels in the configuration shown in FIG. 62;

FIG. 63 is a front elevational view of a four LCD panel system with two of the panels disposed in portrait orientation and two disposed in landscape orientation; and

FIG. 64 is a front elevational view of a three LCD panel system with two LCD panels disposed in a landscape orientation and one in a portrait orientation.

As already explained, the invention in this particular embodiment illustrated, has its application to the use of dual display screens, which can be used to display two different computer images simultaneously. This may have application for example in CAD computer design application. For these and other purposes it is particularly useful if the two screens or displays can be tilted towards one another so that they appear in the form more or less of two pages of an open book. The screens are preferably arranged side by side, in horizontal alignment, but may also be arranged vertically one above the other.

Referring now to FIGS. 1, 2 and 3, the invention is there illustrated as in the form of a pair of video display screens 10 and 12, each of which may be of known construction, but which may typically be liquid crystal displays (LCDs) for example. They are each provided with video terminal connectors 14 (FIG. 2) by means of which they may be connected to a computer.

Each of the screens 10 and 12 comprises a central rectangular display portion 16, and a rectangular marginal frame 18.

The two display screens 10 and 12 are mounted at opposite ends of a mounting arm 20. The mounting arm 20 is itself supported on an upright stand 22 and a base 24. The arm 20 may be connected to the base 22 by a coupling means 26 (FIG. 4) by means of which the arm may be attached during assembly, either horizontally, or vertically (FIG. 6) prior to delivery to the customer.

In some cases the manufacturer may simply make the arm permanently attached in one position, i.e. horizontal or the other i.e. vertical, to reduce expense.

As will be noted in FIGS. 2 and 4, each of the displays 10 and 12 is mounted on respective free ends of arm 20, by means of a swingable mounting means 28 and 30 respectively.

The swingable mounting means 28 and 30 are so constructed as to permit the two screens 10 and 12 to be swung together towards one another, into the configuration shown in FIGS. 1 and 4, in which they both remain in the same upright planes, and in which they are both swung towards one another by equal angles. In this way, as the two screens 10 and 12 are swung towards one another into this configuration, the angular displacement of one screen is equal to the angular displacement of the other screen, so that the two frames 18 of the screens 10 and 12 substantially meet at a central point indicated generally as P, thus bringing the two screens 1616 as close as possible together and at the same time, as far as possible, simulating the appearance of two pages of a book opened up.

It will be observed that when the arm 20 is fastened in its vertical position as shown in FIGS. 5, the lower one of the two screens 10 and 12 is moved up the arm, because in the vertically stacked orientation, the rectangular screens have a shorter vertical dimension, and it is desirable that they should be as close to one another as possible when they are swung together, so that the longer sides meet at point P.

From the foregoing description it will be understood that it is desirable that the two screens can be swung together into their inwardly angled relation as shown in FIGS. 1 and 4, or FIG. 6, but that the screens should be capable of being tilted only to a limited degree in any other direction relative to one another, since this might reduce the clarity of the dual display. However, the two screens may be tilted slightly upwardly, or downwardly by similar angular displacements. In this way the simulation of an open book arrangement is maintained.

For these reasons, the two display screens 10 and 12 are mounted on the arm 20 by means of the swingable mountings 28 and 30. These mountings will now be described in greater detail with regard to FIGS. 7, 8 and 9.

FIG. 7 illustrates the mounting 28 or 30 in an exploded perspective view. The swingable joint consists essentially of a ball 32, and a socket 34, with the ball 32 being preferably cast out of a suitable material preferably a metallic material and the socket 34 being cast preferably of a somewhat resilient material such as a thermoplastic. The ball 32 is mounted on a neck 36, which extends from a generally rectangular junction block 38. The block 38 is formed with a plurality, in this case four, rectangular guide members 40, spaced apart at 90 degrees from one another around the block 38.

One of the guide members 40A, is wider than the other three guide members 40, to provide guidance when the guide members are assembled in a manner to be described below.

The block 38 and guide members 40 are designed to fit into suitable recesses in the arm 20 (described below).

A collar member 42 of generally semi-arcuate shape, is designed to fit over the block 38 and around the socket 34, for reasons to be described below. Collar 42 is formed with fastening flanges 44 by means of which it may be secured in position as described below.

In this particular embodiment, the arm 20 is provided at each end with three mounting recesses 46A, 46B and 46C. Each mounting recess 46 has four channel shaped grooves 48 formed therein spaced at ninety degrees therearound. The channel shaped grooves 48 are intended to receive the rectangular guide members 40 of the swingable joints.

One of the guide channel grooves 48A is wider than the others, to receive the wider one 40A of the rectangular guide members. In this way the guide members provide a keying function, which controls the positioning of the swingable joints and the display screen.

Bolts 50 align with the blocks 38, and are received in suitable threaded bores 51 (FIG. 7) and secure the assemblies in position.

The ball 32 is provided with a plurality, in this case four screw receiving bores 52, adapted to receive screws 54 therein. The sockets are spaced around the widest part of the ball 32, and are radially spaced apart by 90 degrees from one another. It will be appreciated that while there are four such bores 52, in certain circumstances only two or three screws 54 will be inserted, for reasons to be described below.

The heads of the screws 54 are cylindrical and protrude outwardly from the ball 32, and are received in respective slots 56 formed in socket 34. The ball 32 is a snug frictional fit within the interior of socket 34, so that a significant twisting moment is required to rotate the ball within the socket.

Clearly depending on the number of screws 54 in position, the actual movement of the ball in the socket is restricted. Thus for example if there are three such screws 54 in position, two of the screws 54 will simply limit the movement of the ball 32, so that the ball 32 can virtually be moved only around the axis of the two screws 54. If a third screw 54 is inserted then it will restrict movement of the ball so that it can be rotated only in such a fashion that the screw 54 rides along its respective groove 56, but that it will not be able to move significantly in the reverse angular direction.

For reasons to be described below, two of the slots 56A and 56B are wider and the other two slots 56 are narrower.

The socket 34 has a generally annular base 58, and a spring loaded plate 60 abuts against the annular base 58. The shape of the socket 34 is such that a small cylindrical boss 59 project through a registering opening in the spring plate 60, (FIG. 9).

The spring plate 60 is secured in position by means of screws 62 passing through suitable registering openings 61 on the flange 44 of the collar 42, and secured in threaded openings 63 in plate 60.

By tightening or loosening the screws 62, it is possible to apply greater or lesser pressure by flexing the plate 60 against the rear surface of socket 34, and thus adjust the friction between the surface of the ball 32 in the socket 34. In this way it is possible to preset the rotational force or torque that would be require to rotate the ball in the socket.

Additional control of the friction on the ball is provided by means of the frusto-conical collar 42. This mates with frusto-conical bevels 64 on the exterior of collar 34. Thus by tightening or loosening the screws 50 in the sockets 48, the collar 42 can be made to squeeze and wedge the four sides of the socket 34 together tightly around the ball 32 and thus still further control the friction applied by the socket 34 to the ball 32.

In order to further control and limit the swinging of the ball 32 and stem 36 relative to the socket 34, limiting screws 7070 are provided, which can be inserted or removed in suitable threaded inserts 7272 in annular base 58 of socket 34.

One or more such screws 70 can be inserted (FIG. 9) and can be adjustably positioned, so as to abut against the cylindrical heads of screws 54, and thus limit swinging of the ball 32.

Access to screws 70 can be obtained through registering opening 74 in plate 60.

As mentioned, all of these settings would be preset in the factory before shipment, so that in use the actual scope of movement of the display screen, by means of rotating the ball 32 in the socket 34 is substantially restricted or limited.

It will thus be seen that the novel ball and socket joint described provides a great degree of control on the angular position of the article attached to it, in this case the screens 10 or 12. In fact, by suitable adjustments in the factory, the friction on the ball 32 can be made sufficiently tight that it is substantially impossible to manually move the arm 36 on which the ball 32 is mounted, simply by grasping the block 38.

However, the friction can be so adjusted that by grasping the two edges of the display screen, the position of the display screen can be manually adjusted to the most suitable position, and once adjusted it will remain substantially fixed in that position.

Thus, once the block 38 is inserted in position in its socket in the arm, and locked in position, then by grasping the two side frames of the screen, sufficient torque can be applied, to adjust the position of the screen and rotate the ball 32 in the socket 34 until the screen is in the desired position.

In accordance with various further embodiments of the invention as illustrated in FIGS. 13 through 29, the invention provides for a still greater range of interchangeability either as between one screen and another screen for computer, which may facilitate either the use of a small portable screen or a much larger screen, or the use of a plurality of screens, or the ready interchangeability of simple forms of screen mountings.

FIGS. 13, 14, 15 and 16 indicate one form of interchangeable screen attachment, being a further embodiment of the ball and socket joint as illustrated in FIGS. 7 through 12. In this further embodiment, a modified form of plate 80 is secured to the ball and socket joint 28-30. The plate 8 in this case is formed with a generally V-shaped socket 82, the edges of the V-shaped socket being formed with flanges. A complementary attachment plug 84 is mounted on a plate 86 which is secured to the back of the screen 18. In this embodiment the arm 20 is shown mounted on an independent base stand 88, and the actual computer and keyboard may be located elsewhere and simply connected by suitable coupling cables (not shown) so that the entire arrangement of displays and mounting arm can be positioned wherever it is most convenient.

In this embodiment, for added security, locking screws 90 may be provided in either side of the V-shaped recess 82. The flexibility of the interchangeable screen system according to the invention is further illustrated in FIGS. 18 and 19. In this case, a portable mounting base for a single display screen may be provided. In this case a base 92 is formed with a groove 94. A swingable upright arm 96 is swingable into and out of the groove 94. The arm 26 may have a telescopic ability, and may be provided with a V-shaped retaining slot 98 at its upper end, for retaining a display screen shown in phantom as 12, having a mounting plug 84 formed to fit the slot 98. If desired the slot 94 may also be arranged to hold a manual computer “mouse” device of a type well known in computer art indicated generally as M, giving a limited device of control over the display on the screen. FIG. 19a illustrates the device with the arm 94 swung downwardly into the groove 92 and nested.

FIG. 20 illustrates a modification of this concept, in which for example a computer of the lap-top type indicated generally as C may be provided with a swingable support arm 100, having a V-shaped slot 102 at its upper end similar to the slot 98. A display screen indicated generally as 12 may have a mating groove or recess 104 adapted to receive the arm 100, and within the groove 104 there is a V-shaped locking flange 106 shaped to mate with the V-shaped slot 102. The locking flange 106 can be provided with electrical contacts 107. Contacts 107 can be arranged to contact matching contacts 108 (FIG. 19), in the V shaped slot 102. This arrangement can be used in all these embodiments to avoid the use of cables wherever possible.

In this way the entire combination of lap-top computer and display 12 can be fitted together and swung down into a closed position for carrying or storage and can be swung upwardly for use, and if desired, the screen 12 as illustrated can be easily removed and a screen having different characteristics or a larger screen can simply be snapped in position, if desired.

FIG. 21 illustrates the adaptability of the system for use in for example the removable mounting of a display screen on a wall, or the side of a booth for example. In this case a wall mounting block 110 can be attached by any suitable fastening means (not shown) for securing the same to a vertical surface. The mounting block 110 may have finger operated controls similar to a computer “Mouse” for limited control of the display on the screen for demonstration or presentation purposes and may have speakers for combined audio and visual effects.

The display screen 12 itself can again simply be mounted on an upright arm 112 having at its upper end a generally V-shaped recessed body 114, preferably on a hinged mount 116. The screen 12 will be supplied with a suitable V-shaped locking flange on its rear surface (not shown) of the type already described.

FIG. 22 illustrates the same concept for the mounting of a display screen indicated as 12 in a vehicle. This may have application particularly for sales persons and for displaying maps of cities and the like, to assist drivers of delivery vehicles. In this case the display screen 12 can be mounted on an arm 120 secured at a suitable position on the front of the interior compartment of the vehicle. Again a releasable mount of the V-shaped slotted type shown as 122 is provided on the arm 120, and the screen 12 would be provided on its rear with a suitable inverted V-shaped locking flange fitting in the recess 122. There would also be provided matching electrical contacts, described above, in these components, to avoid the use of cables. In this way, the screen 12 could be placed and locked in position when it was required, and when the vehicle was parked the screen 122 could simply be easily dismounted and placed in the trunk, or taken out of the vehicle altogether, for greater security.

The screen 12 would be connected to a suitable small computer (not shown) again being of the portable type so that it could readily be removed from the vehicle.

A somewhat similar arrangement could be made for the rear compartment of the vehicle illustrated in FIG. 23. In this case a swingable arm 126 is shown mounted in the rear surface of each of the front seats indicated as S in a vehicle.

A suitable V-shaped slotted mounting recess 128 would be mounted on the arm 126. The arm 126 could be swung out from the seat, and a display screen 12 could be mounted on the V-shaped recess.

FIG. 24 illustrates a typical laptop computer C, having an enlarged display screen 12 mounted on a hinged arm 130, which is hinged to the rear of the computer. This illustrates the adaptability of the interchangeable screen mounting using the V-shaped recess and plug, so as to adapt a smaller laptop type computer C, with use with a much larger screen 12.

FIG. 25 illustrates the use of a free-standing screen 12 having a rearwardly mounted hinged leg 132, which can be swung rearwardly to support the screen at an angle somewhat in the manner of an easel. Again, the hinging leg 132 can be connected to the back of the screen 12 by interchangeable means such as the V-shaped recess and plug, if desired.

FIG. 26 illustrates another configuration, in which a computer indicated generally as C may be provided with two screens 12A and 12B swingably and hingeably mounted to the rear edge of the computer C. The lower screen 12A is hinged along the line 134. The upper screen 12B is hinged to the lower screen 12A by means of the generally cylindrical tubular hinge bar 136.

As illustrated in FIG. 27, the uppermost screen 12B can be swung into an obtuse angle relative to the lower screen 12A so that the two screens 12A and 12B can be viewed by at least two persons sitting opposite to one another. By means of suitable software, when the upper screen 12B is swung into the obtuse angle shown, the image on the screen 12B will be reversed, so that the images on screens 12A and 12B are both viewed the right way up.

FIGS. 28 and 29 illustrate forms of free-standing dual screens indicated generally as 140 and 142, connected together by a tubular hinge bar 144.

The pairs of screens 140 and 142 can be swung open at obtuse angles to one another and stood on a surface such as a table as illustrated in FIG. 29. They may be connected to a computer C by means of daisy chain cables 146, which plug into opposite ends of the tubular hinge bar 144. As in the embodiment of FIGS. 26 and 27, the computer will contain suitable software the nature of which is to invert the image as between one screen and the other so that both screens show their respective images the right way up.

Various other modifications and adaptations can also be made using the principles of the invention.

Thus, FIG. 30 is a perspective illustration of an alternate form of tripod display stand 145 for holding three displays 12 for example, on a conference room able or the like.

FIG. 31 is a perspective illustration of the tripod support 145 of FIG. 30.

FIG. 32 is a rear perspective partially exploded view of another form of dismountable display leg 130 for a display screen 12.

FIG. 33 is a rear perspective illustration of a typical lap top computer C, having two display screens 12A and 12B, the one being slidable relative to the other for nesting, or extendable for use on arms 150.

FIG. 34 is a perspective illustration of the lap top computer C with dual display screens 12A and 12B of FIG. 33 showing the display screens in another configuration.

FIG. 35 is a perspective illustration of another form of lap top computer C having two display screens 12A and 12B, and showing a slidable cover panel 152 for one of the two display screens.

FIG. 36 is a rear perspective view of another form of display screen 154, showing attachment recesses 156 for various components. Electrical connections 157 are incorporated in the recesses 156 for interconnection with matching contacts (not shown) in suitable accessories. Accessories may include audio speakers, and video cameras for direct feed back, to give only two examples.

FIG. 37 is a perspective illustration of, for example, a lap top computer C showing two display screens 154154 such as that illustrated in FIG. 36, being attachable to a hinge mounting 158 on the computer.

FIG. 38 is a front elevational view of a pair of display screens 154154 as illustrated in FIG. 36 shown side by side by audio speakers 158 and video cameras 159 attached.

FIG. 39 is a front elevational view corresponding to FIG. 38, but showing he two display screens 154154 one above the other.

As best shown in FIGS. 40, 41 and 42, a further embodiment of the invention may provide for a typical computer C having two display screens 160 and 162. The screen 160 is hinged to the computer by means of a hinge 164. The second screen 162 is hinged to the first screen by means of a vertical hinge along one side indicated as 166.

As best shown in FIGS. 41 and 42, the two screens 160 and 162 may either be swung out so that they are side by side with one another facing the operator of the computer C, or, as shown in FIG. 42, the two screens may be swung so that screen 162 is back to back with screen 160, thereby displaying the display both to the operator of the computer and to somebody sitting facing him. In this form of the invention special software and the like will not be required for the reversing software and the like will not be required for the reversing of the images, since both images will be shown the right way up.

Referring now to FIG. 43, a computer 168 in accordance with another alternative preferred embodiment of the present invention is shown. The computer incorporates a center LCD panel 170 pivotably mounted by a hinge 172 to a base portion 174 of the computer. Pivotably supported on opposite sides of the center LCD panel 170 are a pair of LCD panels 176 which are each about one-half the width of the center LCD panel 170. The outer LCD panels 176 are supported by hinges 178, which may be identical in construction to hinge 172. The outer LCD panels 176 may be folded over the center LCD panel 170 and the entire display portion comprising panels 170 and 176 then folded down against the base 174 to form a compact unit that may be easily carried.

Referring now to FIGS. 44-49, a display system 180 in accordance with another alternative preferred embodiment of the present invention is shown. The display system 180 includes a base 182 and a support column 184. Secured to the support column 184 is a lower support arm 186 and a telescoping upper support arm 188. Attached to each support arm is a mounting assembly 190, which preferably comprises a ball joint such as that described herein. Secured to each mounting assembly 190 is a LCD panel 192.

With specific reference to FIGS. 45-47, the lower support arm 186 comprises a tubular construction and the upper support arm 188 comprises a neck portion 194 which enables the upper support arm 188 to be extended (i.e., telescoped) relative to the lower support arm 186. The upper support arm 188 further includes a hinge 196 which enables the upper LCD panel 192 to be angled relative to the neck portion 194 so as to place it at a convenient viewing angle. As is apparent in FIG. 47, the upper LCD panel 192 can even be rotated into position to face away from the lower LCD panel 192. This orientation is particularly well suited for retail applications where a sales person needs to view information while inputting product or other information, and where it is desirable to display to the customer various items of information as the transaction is conducted. Advantageously, the telescoping upper support arm 188 and the hinge 196 enable the two LCD panels 192 to be placed at separate heights to accommodate airline ticket counters, hotel registration counters and other like structures where an employee's counter is frequently at a different height from a surface or counter useable by a customer.

FIGS. 47 and 48 illustrate the display screen 180 in use at an ailine ticket counter 198 having a first counter 200 at a lower height than a second counter 202. In this application it will be appreciated that suitable software will be required to “flip” the image displayed on the upper LCD panel 192. The telescoping upper support arm 188 inherently provides a degree of adjustability to accommodate a range of counter heights without modification to the either of the support arms 186,188 or the support column 184.

FIG. 49 illustrates the two LCD panels 192 folded together such that the display system 180 forms a compact assembly which may be easily transported if needed. In this regard it will be appreciated that any form of conventional clasp may be included to secure the folded LCD panels 192 to one another or to the base. Also, a handle could easily be attached to a portion of the display system 180, such as the support column 184, to enable the system 180 to be easily transported.

Referring now to FIGS. 50 and 51, still another display system 200 is shown. With specific reference to FIG. 50, the display system 200 includes a support column 202 and an upper support member 204 having a neck portion 206. The support column 202 includes a bore 208 adapted to receive the neck portion and enable the neck portion 206 to rotate or swivel therein such that the upper support member 204 can be swiveled. The support member 204 is secured to a rear surface 212 of a LCD panel 210 through either a fixed arrangement or a pivotable mounting arrangement such as disclosed herein. The neck 206 may be captured by any suitable arrangement in the bore 208 such that the LCD panel 210 is not removable from the support column 202. Alternatively, it may be releasably disposed in the bore 208 such that the entire upper support member 204 and LCD panel 210 may be lifted out of the column 202 before repositioning the LCD panel 210 as desired. In this manner the clearance between the LCD panel 210 and the support column 202, which would otherwise be important for allowing the support member 204 to freely rotate with the LCD panel 210 thereon, will not be a concern.

With specific reference to FIG. 51, the display system 200 is shown with the upper LCD panel 210 rotated to a position perpendicular to a lower LCD panel 212. The support column 202 is supported on a base 214. In FIG. 52 the upper LCD panel 210 is rotated 180 degrees from the lower LCD panel 212 to permit two individuals facing each other to each view one of the LCD panels 210,212.

Referring now to FIG. 53, a modular display system 300 is shown in accordance with another alternative preferred embodiment of the present invention. The display system 300 is intended to support anywhere from one to four independent LCD display panels, but it will be appreciated that the system 300 could easily be expanded to support more than four LCD panels if needed, as will be explained momentarily.

Referring to FIG. 53, the system 300 includes a base 302, a support column 304, a first support arm 306, a second support arm 308 and a third support arm 310. Each support arm 306, 308 and 310 includes at least two coupling assemblies 312, and preferably three such assemblies 312. The support column 304 also includes once such assembly 312, although this member could also include several assemblies 312 if needed. Support arms 306, 308 and 310 each also include a mounting member 314 (with the mounting member of support arm 306 being hidden in FIG. 53) which is disposed preferably at an approximate mid-point along a length of its support arm. Each mounting member 314 is adapted to engage in either one of two positions 90 degrees offset from one another in one of the coupling assemblies 312 is a key-like fashion to hold its associated LCD panel in either a portrait orientation or a landscape orientation.

The pair of coupling assemblies closely adjacent each other on each support arms 308 and 310 are provided to space two adjacently positioned LCD panels mounted on each arm slightly farther apart from each other to provide additional clearance needed when the two LCD panels are placed in a landscape orientation. Thus, in a landscape orientation, the two LCD panels supported on either of the arms 308 and/or 310 will be supported at the two outermost coupling assemblies 312 near the very ends of each arm. In a portrait orientation the LCD panels will need to be spaced closer to each other, thus requiring one of the LCD panels to be coupled to the more inwardly positioned assembly 312a (FIG. 53) of each support arm 308 and 310. The closely positioned pair of coupling assemblies 312 on support arm 306 enables the third support arm 310 to be mounted in one of two positions on arm 306 depending upon whether the LCD panels are disposed in a landscape or a portrait orientation. FIGS. 55-57 illustrate four LCD panels 316 supported on the display system 300. It will be appreciated that each of the LCD panels 316 includes a mounting member identical or similar to members 314 on a rear housing surface thereof such that each can be quickly and easily coupled to one of the coupling assemblies 312.

It will be appreciated that the display system 300 could easily be used to support less than four LCD panels 316 if desired. For example, in the drawing of FIG. 54 the second support arm 308 could be eliminated and the one LCD panel 316 coupled directly to the vertically uppermost coupling assembly 312. This arrangement is illustrated in FIGS. 58-60. Alternatively, the lower support arm 310 could be eliminated and a LCD panel 316 coupled directly thereto as illustrated in FIGS. 61 and 62.

It will be appreciated that the display system 300 could be easily modified through the use of additional support arms to support more than four LCD panels 316 if needed. For example, the support arm 306 could be lengthened sufficiently to extend above the second arm 308, and a fourth support arm identical to arms 308 and 310 could be coupled perpendicularly thereto such that two extra LCD panels could be supported. An even longer support member and still another extra support arm could be incorporated to support eight LCD panels 316. As can be appreciated, a very large plurality of independent LCD panels can be supported from a single base 302 and support column 304 if needed. Particularly desirable is the feature of being able to orientate the LCD panels 316 in either portrait or landscape mode, or a combination of each, as needed. FIGS. 63 and 64 illustrate variations of the above described display systems incorporating both landscape and portrait orientated LCD panels 316.

Those skilled in the art can now appreciate from the foregoing description that the broad teachings of the present invention can be implemented in a variety of forms. Therefore, while this invention has been described in connection with particular examples thereof, the true scope of the invention should not be so limited since other modifications will become apparent to the skilled practitioner upon a study of the drawings, specification and following claims.

Moscovitch, Jerry, Elchuk, Mark

Patent Priority Assignee Title
10309552, Dec 27 2013 Stryker Corporation Multi-stage rotary overtravel stop
10485499, Apr 17 2017 General Electric Company Method and systems for a compact integrated monitor arm for an imaging system
10638620, May 16 2018 BenQ Intelligent Technology (Shanghai) Co., Ltd; Benq Corporation Display device
10802264, May 01 2013 Bio-Rad Laboratories, Inc. Adjustable digital microscope display
11011084, Feb 04 2020 CHRISTIE DIGITAL SYSTEMS USA, INC Modular mounting system
11592658, May 01 2013 Bio-Rad Laboratories, Inc. Adjustable digital microscope display
8363170, Jun 14 2007 Panasonic Automotive Systems Company of America, Division of Panasonic Corporation of North America; PANASONIC AUTOMOTIVE SYSTEMS COMPANY OF AMERICA DIVISION OF PANASONICA CORP OF NORTH AMERICAS Dual display multi-modal vehicle infotainment system
8472174, May 07 2008 Comark, LLC Video display system
9083926, Oct 25 2010 Saturn Licensing LLC Multi-display device and method therefore
9529464, Jan 21 2013 U-SEE 2 LIMITED Dual display assembly
9615474, Oct 16 2012 SHENZHEN AOTO ELECTRONICS CO , LTD Device for quick splicing of a display screen
9829696, May 01 2013 BIO-RAD LABORATORIES, INC Adjustable digital microscope display
9881536, Oct 25 2010 Saturn Licensing LLC Multi-display device and method therefore
9885862, May 01 2013 BIO-RAD LABORATORIES, INC Adjustable digital microscope display
9924125, Sep 30 2015 Samsung Display Co., Ltd.; SAMSUNG DISPLAY CO , LTD Multi-screen display device and manufacturing method thereof
9945498, Dec 27 2013 Stryker Corporation Multi-stage rotary overtravel stop
9998706, Nov 13 2014 Cisco Technology, Inc.; Cisco Technology, Inc Video conference endpoint displays
D836779, Apr 17 2017 General Electric Company Compact mobile C arm system
D854540, Dec 23 2016 LG Electronics Inc Monitor
D888678, May 18 2018 LG Electronics Inc Monitor for computer
D888679, May 18 2018 LG Electronics Inc Monitor for computer
D888680, May 18 2018 LG Electronics Inc Monitor for computer
Patent Priority Assignee Title
2794554,
2890010,
3262517,
3514871,
3697681,
3734301,
3909525,
4112423, Sep 13 1976 Kelsey-Hayes Company Dual-screen data display terminal for data processing units
4159417, Oct 28 1977 EMPRUVE, INC Electronic book
4267555, Jun 29 1979 International Business Machines Corporation Rotatable raster scan display
4438458, Feb 16 1981 Siemens Aktiengesellschaft Data display device
4453687, Mar 01 1982 SWEERE, HARRY C ; Ergotron, Inc Swivel/tilt mounting device for a cathode ray tube
4547027, Feb 21 1984 I D E CORPORATION Modular swivel connector
4589713, Apr 09 1984 Raytheon Company Video display support joint
4635105, Jul 22 1983 Thomson CSF Large screen video display comprising a matrix array of cathode-ray tubes operated at increased vertical and horizontal scan rates
4646875, Dec 30 1985 Paxton-Mitchell Company Articulated boom structure
4662797, Feb 14 1984 Hermann Hemscheidt Maschinenfabrik GmbH & Co. Adaptable housing for a video terminal
4712799, Sep 27 1984 Edwards Manufacturing, Inc. Multi-screen video gaming device and method
4726552, May 20 1985 AMERICAN DE ROSA LAMPARTS, LLC Lamp swivel
4734779, Jul 18 1986 Video Matrix Corporation Video projection system
4761641, Jan 21 1983 VIDCOM RENTSERVICE B V Information display system
4770303, Feb 27 1984 Demountable stand for supporting hanging plants
4772942, Jan 11 1986 Pilkington P.E. Limited Display system having wide field of view
4797942, Mar 02 1987 General Electric Company Pyramid processor for building large-area, high-resolution image by parts
4800376, Jan 13 1986 Sony Corporation Multiple display system
4805036, May 19 1986 Group-N Corporation Synchronization of plural video reproducing systems
4814759, Jul 08 1987 McKesson Information Solutions LLC Flat panel display monitor apparatus
4831368, Jun 18 1986 Hitachi, Ltd.; Hitachi Software Engineering Co., Ltd. Display apparatus with rotatable display screen
4833542, Jul 15 1986 Mitsubishi Denki Kabushiki Kaisha Large screen display apparatus having modular structure
4836478, Oct 15 1987 SWEERE, HARRY C ; Ergotron, Inc Suspension system for personal computers and monitors
4865420, Oct 10 1986 Wood for video screen
4920458, Jun 29 1989 Interactive workstation
4979579, Dec 20 1988 Sartorius AG Electronic balance
5009384, Jun 29 1990 INTERNATIONAL INTER-LINK INC Overhead support system for TV monitors
5012345, Jan 26 1988 Protocol Engineering PLC Film registration apparatus and method
5076524, Dec 27 1990 Rockwell Collins, Inc TV/LCD pop-up stowage retraction means
5122941, Sep 24 1990 Biomechanics Corporation of America Video terminal accessory
5128662, Oct 20 1989 Collapsibly segmented display screens for computers or the like
5134390, Jul 21 1988 Hitachi, Ltd. Method and apparatus for rotatable display
5177616, Dec 02 1991 MATSUSHITA AVIONICS SYSTEMS COMPANY Stowable video display assembly
5179447, Apr 16 1991 Rockwell International Corporation Personal video player and monitor assembly for airline passenger seat console
5193069, Apr 28 1989 Kabushiki Kaisha Toshiba Portable computer to which different types of flat display panels can be attached
5195709, Mar 10 1989 Hughes Missile Systems Company Television receiver supporting structure of arm rest
5210656, Nov 19 1991 Lastolite Limited Light reflecting device
5222780, Dec 27 1990 Rockwell Collins, Inc TV/LCD pop-up stowage retraction means
5224861, Sep 17 1990 L-3 Communications Corporation Training device onboard instruction station
5278779, Jun 26 1992 Laptop computer with hinged keyboard
5316369, Feb 15 1989 KOITO INDUSTRIES, LTD Seat arm rest capable of housing television receiver therein
5337676, Mar 26 1993 Nelson Hoffman, Inc. Track device for mounting an entertainment module in chairs slotted
5467102, Aug 31 1992 Kabushiki Kaisha Toshiba Portable display device with at least two display screens controllable collectively or separately
5494447, Mar 26 1993 KHUSHEIM COMPANY FOR INDUSTRIAL EQUIPMENT Hinge assembly for electronic devices
5505424, Aug 04 1994 HEALTH CARE INFORMATION Swivel support for an article
5534888, Feb 03 1994 Motorola Electronic book
5537127, Jun 30 1992 Kabushiki Kaisha Toshiba Image monitor system console
5537290, Jul 19 1991 Teknion Furniture Systems Limited Work station with adjustable flat electronic display screen
5547248, May 26 1993 Societe Industrielle et Commerciale de Materiel Aeronautique Passenger seat for a public transport vehicle, the seat including a video display which can be retracted into an armrest
5583529, Oct 31 1989 Kabushiki Kaisha Toshiba Portable apparatus having a flat panel type display unit
5590021, Jul 16 1993 DELL U S A , L P Secondary display system for computer
5594620, Jul 16 1993 Dell U.S.A., L.P. Secondary display system having a plurality of clamping devices for mounting on a computer monitor
5600580, Nov 30 1992 HTC Corporation Notebook type information processing apparatus having input function with pen
5673170, Jul 16 1993 Dell U.S.A., L.P. Secondary display system for computer
5675687, Nov 20 1995 Texas Instruments Incorporated Seamless multi-section visual display system
5687939, Apr 26 1996 Dual display system
5703922, Jun 07 1995 Siemens Aktiengesellschaft Therapy apparatus with a radiation source
5729429, Feb 20 1996 Ergonomic laptop computer having display positioning supports
5729430, Oct 21 1996 Gateway, Inc Corner placement monitor stand
5732922, Jan 16 1995 LG Electronics Inc. Monitor support
5768163, Apr 15 1996 Hewlett-Packard Company Versatile attachment of handheld devices to a host computing system
5815735, Apr 29 1996 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Portable computer with removable display screen using removably mateable connectors to form the sole supporting interconnection between the computer base portion and display screen structure
5820623, Jun 20 1995 Articulated arm for medical procedures
5847698, Sep 17 1996 DataVentures, Inc. Electronic book device
5867210, Feb 09 1996 BARELS, LARRY Stereoscopic on-screen surgical microscope systems
5904328, Jun 23 1997 Nvidia Corporation Articulating computer monitor
5914698, Apr 15 1996 ADDCO LLC Modular message board
5918841, Jun 07 1996 Ergotron, Inc. Computer keyboard and flat panel display cart
5949643, Nov 18 1996 XENTEX TECHNOLOGIES, INC Portable computer having split keyboard and pivotal display screen halves
6015120, Jun 07 1996 Ergotron, Inc. Desktop flat panel display support system
6019332, Jun 07 1996 Ergotron, Inc. Pivot/ratchet assembly and support system
6020890, Aug 12 1996 Fujitsu Limited Two-dimensional image display device for three-dimensional computer graphics model
6061104, Jul 22 1998 RPX Corporation Flat panel display and stand with vertical adjustment and tilt adjustment
6064373, Jun 29 1993 NETAIRUS SYSTEMS LLC Desktop computer with adjustable flat panel screen
6134103, Oct 30 1998 Flat panel display with adjustable height for a portable computer
6151401, Apr 09 1998 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Planar speaker for multimedia laptop PCs
6222507, Nov 19 1997 AU Optronics Corporation Compact personal computer having a plurality of display panels
6256374, Oct 19 1998 Hologic, Inc; Biolucent, LLC; Cytyc Corporation; CYTYC SURGICAL PRODUCTS, LIMITED PARTNERSHIP; SUROS SURGICAL SYSTEMS, INC ; Third Wave Technologies, INC; Gen-Probe Incorporated Miniature C-arm apparatus with dual video display monitor and single driver interface therefor
6302612, Mar 16 1998 VIDEOCON GLOBAL LIMITED Pivotally extensible display device
6343003, Nov 14 1997 NEC Tokin Corporation Capacitor element and battery cell
6343006, Nov 20 1998 Computer display screen system and adjustable screen mount, and swinging screens therefor
6449143, Jul 24 1998 SCHNEIDER ELECTRIC SYSTEMS USA, INC Operator workstation
6532146, Jan 23 2002 SLIDE VIEW CORPORATION Computer display device with dual lateral slide-out screens
6554238, Nov 18 1999 Claiteal Pty. Limited Support arm for visual display unit
6587082, Jun 10 1997 Multiple access computer monitoring system
6625038, Aug 07 2000 ZF FRIEDRICHSHAFEN AG, Functional asymmetrical circuit substrate assembly including a mirror-symmetrical component layout
6667877, Nov 20 2001 SLIDE VIEW CORPORATION Dual display device with lateral withdrawal for side-by-side viewing
6667878, Jan 30 2002 Double screen laptop
6702604, Aug 23 1999 MASS ENGINEERED DESIGN, INC Universal quick connector apparatus for an LCD monitor
6739096, Jun 22 2001 Steelcase Inc Movable office support system
6963487, Oct 25 2001 HEWLETT-PACKARD DEVELOPMENT COMPANY L P Pedestal computer docking station
723114,
20050146845,
229348,
D244571, Nov 28 1975 Stand for potted plants
D278820, Jun 04 1982 Crosfield Electronics Limited Page planning table with display monitor
D294354, Dec 16 1985 ATN, Inc. Information display stand
D300699, Jul 13 1987 Dayton Precision Mfg. Co. Outdoor support for multiple flower pots
D303962, Jul 27 1985 MITSUBISHI DENKI KABUSHIKI KAISHA, 2-3, MARUNOUCHI 2-CHOME CHIYODA-KU, TOKYO 100 JAPAN Outdoor video display unit
D340049, Mar 19 1991 Outdoor video display unit
D340235, Feb 21 1991 Rockwell Collins, Inc Monitor pop-up display unit for a seat in the passenger compartment of an aircraft
D371449, Apr 12 1995 Lamp
D395041, Jun 23 1997 Nvidia Corporation Computer monitor assembly
D395298, Nov 14 1996 Rockwell Collins, Inc Dual monitor mount
D425036, May 07 1999 NCR Corporation Computer display
D440543, Dec 09 1999 Honeywell International Inc Quadruple display ergonomic control console
D448023, Aug 28 2000 UM Digital, Inc. Multimedia computer
D448370, Aug 28 2000 UM Digital, Inc. Multimedia computer
D449302, Dec 06 1999 LG ELECTRONICS, INC Monitor
D469745, Mar 14 2002 Emtel, Inc. Emergency medical video-conferencing unit
D469746, Mar 14 2002 Emtel, Inc. Emergency medical video-conferencing unit
DE19541759,
DE19800376,
DE29901751,
DE4027556,
EP424074,
EP807879,
FR2554269,
GB2200783,
GB2269516,
GB2297010,
GB2333391,
JP10055165,
JP10171382,
JP1055165,
JP11271730,
JP3291722,
JP6161600,
JP6161703,
JP62197815,
JP63233417,
JP6324759,
JP7160364,
JP8271979,
RE36978, Oct 13 1998 Dual display system
WO39493,
WO1035196,
WO1035197,
WO1037070,
WO35196,
WO39493,
WO135197,
WO9918491,
WO9939328,
WO9950813,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 25 2021NAVITAS SYSTEMS LLCWells Fargo Bank, National AssociationSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0566840054 pdf
Jul 13 2023Wells Fargo Bank, National AssociationNAVITAS SYSTEMS LLCRELEASE OF SECURITY INTEREST IN SPECIFIED PATENTS0642880502 pdf
Date Maintenance Fee Events
Sep 06 2013REM: Maintenance Fee Reminder Mailed.
Jan 28 2014M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jan 28 2014M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity.
Jan 30 2014STOL: Pat Hldr no Longer Claims Small Ent Stat


Date Maintenance Schedule
Feb 01 20144 years fee payment window open
Aug 01 20146 months grace period start (w surcharge)
Feb 01 2015patent expiry (for year 4)
Feb 01 20172 years to revive unintentionally abandoned end. (for year 4)
Feb 01 20188 years fee payment window open
Aug 01 20186 months grace period start (w surcharge)
Feb 01 2019patent expiry (for year 8)
Feb 01 20212 years to revive unintentionally abandoned end. (for year 8)
Feb 01 202212 years fee payment window open
Aug 01 20226 months grace period start (w surcharge)
Feb 01 2023patent expiry (for year 12)
Feb 01 20252 years to revive unintentionally abandoned end. (for year 12)