A set of radio frequency (RF) integrated circuits includes a transmit chip having a power amplifier and a receive chip adapted to work with the transmit chip. The receive chip has one or more low noise amplifiers to receive RF signals, and a processor coupled to the low noise amplifiers, the processor transmitting data through the transmit chip and receiving data from the on-chip low noise amplifiers.
|
11. A set of radio frequency (RF) integrated circuits, including:
a transmit chipcomprising a power amplifier ; and
a receive chip adapted configured to be coupled to the transmit chip, comprising:
one or more low noise amplifiers to receive RF signals, ; and
a processor coupled to the one or more low noise amplifiers, the processor configured to transmitting transmit data through the transmit chip and receiving receive data from the one or more on-chip low noise amplifiers.
1. A radio frequency transceiver system, comprising:
a transmit chip; and
a receive chip adapted to be coupled to the a transmit chip, the receive chip having a transistor device comprising:
a layer of gate oxide on a surface of the a semiconductor substrate;
a gate electrode formed on the surface of the gate oxide, the gate electrode having a drain side;
a p-well implanted within a the semiconductor substrate under the gate electrode;
an n-well implanted in the p-well on the drain side;
an n+ source region in the p-well outside of the n-well; and
an n+ drain region within the substrate inside the n-well.
0. 17. A system comprising:
an integrated circuit having an analog portion and a digital portion integrated on a substrate, the analog portion including:
a cellular radio core; and
a short-range wireless transceiver core coupled to the cellular radio core;
wherein the digital portion includes:
a reconfigurable processor core coupled to the cellular radio core and the short-range wireless transceiver core, wherein the reconfigurable processor core is configured to control the cellular radio core and the short-range wireless transceiver core; and
wherein at least the digital portion includes a device having a gate electrode formed on the substrate, and wherein the gate electrode has a drain side, a p-well implanted within the substrate under the gate electrode, an n-well implanted in the p-well on the drain side, an n+ source region in the p-well outside of the n-well, and an n+ drain region in the n-well.
2. The system of
3. The system of
5. The system of
a second gate electrode formed on the surface of the gate oxide;
a second n-well implanted within a the semiconductor substrate under the second gate electrode;
a p+ source region in the second n-well; and
a p+ drain region within the semiconductor substrate inside the second n-well.
7. The system of claim 1 5, wherein the first and second n-wells are formed at the same time is adjacent to the p-well.
8. The system of
9. The system of
10. The system of
12. The set of
13. The set of
14. The set of
15. The set of
a PHY coupled to the processor; and
a MAC coupled to the PHY.
16. The set of
0. 18. The system of 17, wherein the integrated circuit further comprises a radio frequency (RF) sniffer.
0. 19. The system of
0. 20. The system of
|
This invention relates to the field of wireless integrated circuits.
The demand for low-cost, reliable wireless communications continues to increase at a rapid rate, as do the demands on the technologies enabling such communications. Chip designers work on many fronts to find ways to make the circuitry found inside devices such as cellular phones smaller, cheaper, easier to fabricate, less power-hungry, and more reliable.
One major component in a cellular phone is a radio frequency (RF) transceiver. U.S. Pat. No. 6,049,702 shows a block diagram of the RF/analog and analog/digital (A/D) interface circuitry of a basic transceiver, which can be combined with other components (not shown) to form a complete transceiver. The transmitter portion of the transceiver includes digital-to-analog converters (DACs), low-pass filters for filtering the outputs of DACs, respectively, and a modulator that performs a frequency conversion on signals received at its inputs and which is driven by a phase-locked loop (PLL) circuit that includes a reference voltage-controlled-oscillator (VCO) and a resonator (tank circuit). The modulator's output is fed to a power amplifier, and the amplified output is fed to one side of a transmit/receive (T/R) switch, filtered with a bandpass filter, and connected to an antenna.
The receiver portion is connected to the other side of T/R switch. Incoming signals are received by the antenna and filtered by the bandpass filter before being fed to a low-noise amplifier (LNA)/demodulator circuit. The output of the circuit's LNA is passed through a bandpass filter before being fed to a demodulator which performs a frequency conversion on the signal received by antenna. The demodulator is driven by a PLL circuit which includes a reference VCO and a tank circuit. The demodulator output drives an intermediate-frequency automatic gain control (IF AGC) stage, with a bandpass filter interposed between the stage's IF amplifier and its AGC circuitry. The AGC output is fed to an IF demodulator which is driven by a PLL circuit that includes a reference VCO and a tank circuit. The IF demodulator's two outputs are passed through respective low-pass filters before being fed to respective analog-to-digital converters (ADCs).
Current RF transceivers are implemented using a variety of device technologies For example, DACs, ADCs, and all other digital baseband transceiver circuitry are typically CMOS circuits. The modulator, LNA/demodulator, IF/AGC stage, and IF demodulator generally use bipolar junction transistors (BJTs). The power amplifier can be fabricated on a gallium arsenide (GaAs) substrate, particularly for a high-power application such as a cellular phone Bandpass, lowpass filters, as well as tank circuits, and antenna are generally built with discrete components. T/R switch is also typically made from discrete components, or are made from costly, complex PIN diode circuits if integrated.
Because a variety of technologies must be combined, current transceivers typically requires multiple integrated circuits (IC). For example, a CDMA or WCDMA RF front end typically consists of two ICs. There is a receive IC and a transmit IC, which need to be on separate pieces of silicon to isolate the low power received signal (around 10 mW) from the high power send signal (around 300 mW). With a processor IC to control the RF front-end, the electronic of an RF system requires three chips: a processor IC, a receive IC, and a transmit IC. These ICs add cost and can result in an assembly is typically larger than is desired, particularly when the limited space and weight requirements imposed on designers of battery-powered handheld devices must be met.
In one aspect, a set of radio frequency (RF) integrated circuits includes a transmit chip having a power amplifier and a receive chip adapted to work with the transmit chip. The receive chip has one or more low noise amplifiers to receive RF signals, and a processor coupled to the low noise amplifiers, the processor transmitting data through the transmit chip and receiving data from the on-chip low noise amplifiers.
In another aspect, a radio frequency transceiver system includes a transmit chip; and a receive chip having a transistor device. The transistor device includes a layer of gate oxide on a surface of the semiconductor substrate, a gate electrode formed on the surface of the gate oxide, the gate electrode having a drain side; a p-well implanted within a semiconductor substrate under the gate electrode; an n-well implanted in the p-well on the drain side; an n+ source region in the p-well outside of the n-well; an n+ drain region within the substrate inside the n-well; and lightly doped regions extending respectively from the source and drain regions toward the gate electrode.
Implementations of the device may include one or more of the following. The n-well extends slightly under the gate electrode. The p-well is deeper than the n-well. A second device can be fabricated adjacent the first device with a second gate electrode formed on the surface of the gate oxide; a second n-well implanted within a semiconductor substrate under the second gate electrode; a p+ source region in the second n-well; and a p+ drain region within the substrate inside the second n-well The second n-well is adjacent the p-well. The first and second n-wells are formed at the same time. The device can be used in digital circuits that operate next to sensitive analog circuits such as CMOS imaging elements, precision analog-digital converters, or radio frequency circuits
In another aspect, a method for manufacturing a two-chip radio frequency transceiver system with a receive chip having a transistor device. The transistor device a metal oxide semiconductor transistor device includes implanting a p-well in a substrate; implanting an n-well in the p-well; growing a gate oxide above the p-well; forming a polysilicon layer on the gate oxide; implanting a p+ region in the substrate; and implanting an n+ region in the substrate.
Implementations of the above aspect may include one or more of the following. The method includes forming lightly doped regions extending respectively from the source and drain regions toward the gate electrode. The method also includes forming an isolation layer between the substrate and the gate oxide. The method includes patterning the polysilicon layer. The method also includes patterning the p+ region and the n+ region. The method forms robust devices that can used in digital circuitry adjacent analog circuitry. The analog circuit can be imaging elements, analog to digital converters or a radio frequency circuits, among others.
Advantages of the device can include one or more of the following. The system is a 2 chip solution instead of a 3 chip solution, saving weight, cost, and board real-estate. These advantages are important for mobile applications such as handheld computers and cellular telephones, among others. The baseband chip has several process steps that can be used to enhance the performance of a low-power RF detector. For example, as discussed below, the circuits use implants that can reduce hot electrons, and also a very thin oxide layer that can be used to make low voltage high performance transistors. The system also uses reliable and inexpensive MOSFETs. The MOSFETs can be used in mixed-mode integrated circuits (ICs) that include both digital and analog circuits on a single chip. The device reduces the magnitude of electric field seen along the channel near the drain of an MOS device, especially in digital transistors which switch at high frequency. The device also avoids the hot electron injection problem without creating sharp curvatures on the junction and without an additional long drive-in time that can cause undesired thermal effects in the other parts of the device. The resultant low junction curvature increases the breakdown voltage, making it possible to operate the transistor at higher biases without catastrophic failure. The inventive process also forms source/drain regions having low series resistance and a large junction radius, and which does not require additional masking or heating steps.
The following detailed description of the embodiments can best be understood when read in conjunction with the following drawings, in which:
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration specific embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and structural changes may be made without departing from the scope of the present invention.
In one embodiment, an RF transceiver solution is provided using only two chips: one chip (transmit chip) contains high power transmit circuitry, while the second chip (baseband chip) contains low power RF signal receive/sense circuit, a digital processor and related logic circuits.
The receive chip 40 is adapted to work with the transmit chip. The receive chip 40 receives signals from the antenna 30 through a digitally programmable filter 42 The output of the filter 42 is provided to a multiplexer switch 44. The RF signal is routed through the multiplexer switch 44 to one or more low noise amplifiers 46, whose outputs are provided to a mixer 48. The mixer receives reference signals from a programmable local oscillator 50. The output of the mixer 48 is provided to a second digitally programmable filter 52 and is digitized by a data conversion circuit 54. The digitized signal is provided to a MAC 56 and a PHY 58. The PHY 58 in turn communicates with the processor 60 The processor 60 is connected to all blocks on the receive chip 40 and to the PGA circuit 24 and transmit receive switch 26 on the transmit chip 10.
One embodiment uses CMOS transistors which at 0.1 um are reaching Q factors of 10 or more, so good resonators can be built with these transistors. The baseband chip has several process steps that can be used to enhance the performance of a low-power RF detector. For example, as discussed below, the circuits use implants that can reduce hot electrons, and also a very thin oxide layer that can be used to make low voltage high performance transistors. The end result is a 2 chip solution instead of a 3 chip solution.
The p-well 132 is adjacent to an n-well 162, which contains two p+ regions 164 and 166. A polysilicon layer 168 is deposited above the silicon dioxide layer 115 to form a gate. The layer of polysilicon material is next implanted with phosphorous, an N-type material. The layer of polysilicon material implanted with phosphorous is then oxidized with a layer of silicon dioxide. This device is commonly known as a PMOS device, and it typically does not suffer from hot electron problems.
An isolation layer is placed and patterned (step 210). A gate oxide is grown and patterned (step 212). The gate oxide layer 115 can be formed through any suitable process, such as by chemical vapor deposition (CVD). In an alternative embodiment, the gate oxide is thermally grown on the substrate 102. Next, the polysilicon layer 115 is formed and patterned (step 214). The layer of undoped polysilicon is deposited on the top surface of gate oxide 104 and can be deposited by any suitable method, such as by CVD. The upper surface of the structure can be planarized through chemical mechanical polishing (CMP). The patterning process involves photoresist is deposited as a continuous layer on polysilicon and selectively irradiated using a photolithographic system, such as a step and repeat optical projection system, in which I-line ultraviolet light from a mercury-vapor lamp is projected through a first reticle and a focusing lens to obtain an image pattern. Thereafter, the photoresist is developed and the irradiated portions of the photoresist are removed to provide openings in photoresist. The openings expose portions of polysilicon layer to an etch, thereby defining a gate region. An anisotropic etch is applied that removes the exposed portions of polysilicon 105. Various etchants can be used to anisotropically etch or to selectively remove the polysilicon and oxide layers. After the etching step or steps, the gate region 104 remains. The gate region 104 includes: the polysilicon layer 105 on top of the gate oxide 115 on top of the substrate 102. The photoresist is stripped, using conventional photoresist stripping techniques.
The source region 108 and a drain region 120 are provided by implanting ion dopants into the top of the substrate 102 (step 224). The ion implantation uses conventional ion implanting techniques. In one embodiment, the source and drain LDD regions 112 and 118 respectively, include the phosphorous-doped silicon material. The gate 104 behaves as an implant mask and provides for self-aligned source and drain LDD regions, 112 and 118 respectively. The p+ region is also placed using conventional process.
Next, a high temperature rapid thermal anneal (RTA) is conducted in the presence of Arsenic (As) gas (step 226). This process cures out the crystal damage induced by the previous ion implant process. Additionally, the annealing step is performed in the presence of As gas. The presence of the As gas causes an additional doping implantation into the substrate 102. An oxide layer is subsequently deposited and etched anisotropically, resulting in spacers 117 next to the poly gate 105. The n+ source/drain regions 110 and 116, are formed in the pwell 132, next to the spacers 117, in the region where the gate oxide 115 has been etched back These highly doped regions form electrical connections to the drain/source electrodes, 108 and 120 respectively.
Next, salicide contacts are formed on the gate 104, source 108, drain 120 and lightly doped regions 112 and 118 (step 228). Additionally contact formation, not included here, is achieved using conventional techniques. These further processing steps are not repeated herein. Likewise, the principal processing steps disclosed herein may be combined with other steps apparent to those skilled in the art.
The application of the extra nwell region around the drain of the NMOS transistor reduces hot electron effects by reducing the electric field in the pinch-off region. The electric field is proportional to the voltage drop across the pinch-off region divided by the length of the pinch-off region. The nwell region extends laterally with a smooth decrease in doping, so that part of the drain voltage is dropped across the nwell region. Also, the pinchoff region is extended somewhat because the channel is counterdoped, resulting in lower doping in the pinchoff area, which in turn increases the pinchoff length. The field is therefore significantly reduced, and since the hot electron current depends exponentially on the field, there is a very large corresponding decrease in this current.
Thus the invention provides a method and structure for a transistor whose gate is protected from “hot electron injection.” Advantageously, the transistor is well-suited for use in a device such as a mixed signal integrated circuit chip, as well as an electronic system including a processor/memory and analog components such as A/D and D/A converters, imagers and RF circuits. The electronic system may also be a portable appliance as shown in FIG. 4. The information handling system 200 deploys transistor devices formed as discussed above. The device has a fast and reliable channel having a long life.
The reconfigurable processor core 350 controls the cellular radio core 310 and the short-range wireless transceiver core 330 to provide a seamless dual-mode network integrated circuit that operates with a plurality of distinct and unrelated communications standards and protocols such as Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS), Enhance Data Rates for GSM Evolution (Edge) and Bluetooth™. The cell phone core 310 provides wide area network (WAN) access, while the short-range wireless transceiver core 330 supports local area network (LAN) access. The reconfigurable processor core 350 has embedded read-only-memory (ROM) containing software such as IEEE802.11, GSM, GPRS, Edge, and/or Bluetooth™ protocol software, among others.
In one embodiment, the cellular radio core 310 includes a transmitter/receiver section that is connected to an off-chip antenna (not shown). The transmitter/receiver section is a direct conversion radio that includes an I/Q demodulator, transmit/receive oscillator/clock generator, multi-band power amplifier (PA) and PA control circuit, and voltage-controlled oscillators and synthesizers. In another embodiment of transmitter/receiver section 312, intermediate frequency (IF) stages are used. In this embodiment, during cellular reception, the transmitter/receiver section converts received signals into a first intermediate frequency (IF) by mixing the received signals with a synthesized local oscillator frequency and then translates the first IF signal to a second IF signal. The second IF signal is hard-limited and processed to extract an RSSI signal proportional to the logarithm of the amplitude of the second IF signal. The hard-limited IF signal is processed to extract numerical values related to the instantaneous signal phase, which are then combined with the RSSI signal.
For voice reception, the combined signals are processed by the processor core 350 to form PCM voice samples that are subsequently converted into an analog signal and provided to an external speaker or earphone. For data reception, the processor simply transfers the data over an input/output (I/O) port. During voice transmission, an off-chip microphone captures analog voice signals, digitizes the signal, and provides the digitized signal to the processor core 350. The processor core 350 codes the signal and reduces the bit-rate for transmission. The processor core 350 converts the reduced bit-rate signals to modulated signals, for example. During data transmission, the data is modulated and the modulated signals are then fed to the cellular telephone transmitter of the transmitter/receiver section.
Turning now to the short-range wireless transceiver core 330, the short-range wireless transceiver core 330 contains a radio frequency (RF) modem core 332 that communicates with a link controller core 334. The processor core 350 controls the link controller core 334. In one embodiment, the RF modem core 332 has a direct-conversion radio architecture with integrated VCO and frequency synthesizer. The RF-unit 332 includes an RF receiver connected to an analog-digital converter (ADC), which in turn is connected to a modem 316 performing digital modulation, channel filtering, AFC, symbol timing recovery, and bit slicing operations. For transmission, the modem is connected to a digital to analog converter (DAC) that in turn drives an RF transmitter.
According to one implementation, when the short-range wireless core 330 in the idle mode detects that the short-range network using Bluetooth™ signals, for example, have dropped in strength, the device 300 activates the cellular radio core 310 to establish a cellular link, using information from the latest periodic ping. If a cellular connection is established and Bluetooth™ signals are weak, the device 300 sends a deregistration message to the Bluetooth™ system and/or a registration message to the cellular system. Upon registration from the cellular system, the short-range transceiver core 330 is turned off or put into a deep sleep mode and the cellular radio core 310 and relevant parts of the synthesizer are powered up to listen to the cellular channel.
The router 390 can send packets in parallel through the separate pathways of cellular or Bluetooth™. For example, if a Bluetooth™ connection is established, the router 390 knows which address it is looking at and will be able to immediately route packets using another connection standard. In doing this operation, the router 390 pings its environment to decide on optimal transmission medium. If the signal reception is poor for both pathways, the router 390 can send some packets in parallel through both the primary and secondary communication channel (cellular and/or Bluetooth™) to make sure some of the packets arrive at their destinations. However, if the signal strength is adequate, the router 390 prefers the Bluetooth™ mode to minimize the number of subscribers using the capacity-limited and more expensive cellular system at any give time. Only a small percentage of the device 300, those that are temporarily outside the Bluetooth coverage, represents a potential load on the capacity of the cellular system, so that the number of mobile users can be many times greater than the capacity of the cellular system alone could support. All the above implementations have circuits combining low noise devices with high-speed, high-noise digital transistors on the same silicon substrate By using the present invention on the digital transistors closest to the low-noise sections, the impact of the generated noise can be greatly reduced.
Although specific embodiments have been illustrated and described herein, it is appreciated by those of ordinary skill in the art that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown. This application is intended to cover any adaptations or variations of the present invention. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.
Patent | Priority | Assignee | Title |
8959348, | Jun 05 2009 | Rochester Institute of Technology | Methods establishing a symmetric encryption key and devices thereof |
Patent | Priority | Assignee | Title |
4325180, | Feb 15 1979 | Texas Instruments Incorporated | Process for monolithic integration of logic, control, and high voltage interface circuitry |
4403395, | Feb 15 1979 | Texas Instruments Incorporated | Monolithic integration of logic, control and high voltage interface circuitry |
4546370, | Feb 15 1979 | Texas Instruments Incorporated | Monolithic integration of logic, control and high voltage interface circuitry |
4562638, | Nov 09 1983 | Siemens Aktiengesellschaft | Method for the simultaneous manufacture of fast short channel and voltage-stable MOS transistors in VLSI circuits |
4835596, | Aug 04 1980 | Siemens Aktiengesellschaft | Transistor with a high collector-emitter breakthrough voltage |
4874713, | May 01 1989 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Method of making asymmetrically optimized CMOS field effect transistors |
4956311, | Jun 27 1989 | National Semiconductor Corporation | Double-diffused drain CMOS process using a counterdoping technique |
5032881, | Jun 29 1990 | National Semiconductor Corporation | Asymmetric virtual ground EPROM cell and fabrication method |
5108935, | Nov 16 1990 | Texas Instruments Incorporated | Reduction of hot carrier effects in semiconductor devices by controlled scattering via the intentional introduction of impurities |
5275961, | Nov 23 1990 | Texas Instruments Incorporated | Method of forming insulated gate field-effect transistors |
5296393, | Nov 23 1990 | Texas Instruments Incorporated | Process for the simultaneous fabrication of high-and-low-voltage semiconductor devices, integrated circuit containing the same, systems and methods |
5334870, | Apr 17 1992 | NIPPONDENSO CO , LTD | Complementary MIS transistor and a fabrication process thereof |
5359221, | Jul 10 1992 | Elpida Memory, Inc | Semiconductor device |
5389809, | Feb 01 1982 | Texas Instruments Incorporated | Silicided MOS transistor |
5407844, | Nov 23 1990 | Texas Instruments Incorporated | Process for simultaneously fabricating an insulated gate field-effect transistor and a bipolar transistor |
5429959, | Nov 23 1990 | Texas Instruments Incorporated | Process for simultaneously fabricating a bipolar transistor and a field-effect transistor |
5432114, | Oct 24 1994 | Analog Devices, Inc.; Analog Devices, Inc | Process for integration of gate dielectric layers having different parameters in an IGFET integrated circuit |
5477070, | Apr 13 1993 | SAMSUNG ELECTRONICS CO , LTD | Drive transistor for CCD-type image sensor |
5529941, | Mar 28 1994 | VLSI Technology, Inc. | Method for making an integrated circuit structure |
5532176, | Apr 17 1992 | NIPPONDENSO CO , LTD | Process for fabricating a complementary MIS transistor |
5554871, | Nov 09 1994 | Renesas Electronics Corporation | Semiconductor device having MOS transistor with nitrogen doping |
5610421, | Dec 15 1993 | SGS-THOMSON MICROELECTRONICS S R L | Integrated circuit with EPROM cells |
5623159, | Oct 03 1994 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Integrated circuit isolation structure for suppressing high-frequency cross-talk |
5635753, | Dec 30 1991 | HOFFLINGER, BERND | Integrated circuit |
5648286, | Sep 03 1996 | Advanced Micro Devices, Inc. | Method of making asymmetrical transistor with lightly doped drain region, heavily doped source and drain regions, and ultra-heavily doped source region |
5677224, | Sep 03 1996 | Advanced Micro Devices, Inc. | Method of making asymmetrical N-channel and P-channel devices |
5679968, | Jan 31 1990 | Texas Instruments Incorporated | Transistor having reduced hot carrier implantation |
5681768, | Jan 31 1990 | Texas Instruments Incorporated | Transistor having reduced hot carrier implantation |
5731233, | Nov 09 1994 | Renesas Electronics Corporation | Semiconductor device having MOS transistor and method of manufacturing the same |
5736418, | Jun 07 1996 | Bell Semiconductor, LLC | Method for fabricating a field effect transistor using microtrenches to control hot electron effects |
5744372, | Apr 12 1995 | National Semiconductor Corporation | Fabrication of complementary field-effect transistors each having multi-part channel |
5753556, | Apr 17 1992 | Nippondenso Co., Ltd. | Method of fabricating a MIS transistor |
5756381, | Oct 09 1996 | Advanced Micro Devices, Inc. | Method providing, an enriched source side extension and a lightly doped extension |
5757045, | Jul 17 1996 | TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD. | CMOS device structure with reduced risk of salicide bridging and reduced resistance via use of a ultra shallow, junction extension, ion implantation |
5759897, | Sep 03 1996 | GLOBALFOUNDRIES Inc | Method of making an asymmetrical transistor with lightly and heavily doped drain regions and ultra-heavily doped source region |
5770464, | Dec 31 1993 | Hyundai Electronics Industriers Co., Ltd. | Method for fabricating semiconductor devices having lightly doped drain |
5789787, | Sep 03 1996 | Advanced Micro Devices, Inc. | Asymmetrical N-channel and P-channel devices |
5811341, | Dec 09 1996 | Freescale Semiconductor, Inc | Differential amplifier having unilateral field effect transistors and process of fabricating |
5831306, | Sep 03 1996 | Advanced Micro Devices, Inc. | Asymmetrical transistor with lightly doped drain region, heavily doped source and drain regions, and ultra-heavily doped source region |
5837554, | Dec 15 1993 | SGS-Thomson Microelectronics S.r.l. | Integrated circuit with EPROM cells |
5840604, | Dec 28 1995 | Samsung Electronics Co., Ltd. | Methods of forming MOS transistors having hot-carrier suppression electrodes |
5851886, | Oct 23 1995 | GLOBALFOUNDRIES Inc | Method of large angle tilt implant of channel region |
5851893, | Jul 18 1997 | GLOBALFOUNDRIES Inc | Method of making transistor having a gate dielectric which is substantially resistant to drain-side hot carrier injection |
5864165, | Nov 02 1994 | Bell Semiconductor, LLC | Triangular semiconductor NAND gate |
5879999, | Sep 30 1996 | Freescale Semiconductor, Inc | Method of manufacturing an insulated gate semiconductor device having a spacer extension |
5898235, | Dec 31 1996 | STMicroelectronics, Inc | Integrated circuit with power dissipation control |
5904529, | Aug 25 1997 | GLOBALFOUNDRIES Inc | Method of making an asymmetrical IGFET and providing a field dielectric between active regions of a semiconductor substrate |
5918137, | Apr 27 1998 | HANGER SOLUTIONS, LLC | MOS transistor with shield coplanar with gate electrode |
5920103, | Jun 20 1997 | GLOBALFOUNDRIES Inc | Asymmetrical transistor having a gate dielectric which is substantially resistant to hot carrier injection |
5923982, | Apr 21 1997 | GLOBALFOUNDRIES Inc | Method of making asymmetrical transistor with lightly and heavily doped drain regions and ultra-heavily doped source region using two source/drain implant steps |
5925913, | Aug 25 1997 | AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc | System for enhancing the performance of a circuit by reducing the channel length of one or more transistors |
5939751, | Jun 15 1996 | Hyundai Electronics Industries Co., Ltd. | MOSFET having double junction structures in each of source and drain regions |
5969394, | Dec 18 1997 | GLOBALFOUNDRIES Inc | Method and structure for high aspect gate and short channel length insulated gate field effect transistors |
5973367, | Oct 13 1995 | Siliconix Incorporated | Multiple gated MOSFET for use in DC-DC converter |
5977586, | Sep 30 1992 | STMicroelectronics S.r.l. | Non-volatile integrated low-doped drain device with partially overlapping gate regions |
5994741, | Sep 25 1992 | Kabushiki Kaisha Toshiba | Semiconductor device having digital and analog circuits integrated on one chip |
6004849, | Aug 15 1997 | Advanced Micro Devices, Inc. | Method of making an asymmetrical IGFET with a silicide contact on the drain without a silicide contact on the source |
6033964, | Aug 25 1997 | AMD TECHNOLOGIES HOLDINGS, INC ; GLOBALFOUNDRIES Inc | System for enhancing the performance of a circuit by reducing the channel length of one or more transistors |
6057582, | Feb 04 1998 | LG Semicon Co., Ltd. | Semiconductor device with gate electrode having end portions to reduce hot carrier effects |
6069031, | Jan 26 1998 | TSMC-ACER Semiconductor Manufacturing Corporation; TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Process to form CMOS devices with higher ESD and hot carrier immunity |
6075270, | Aug 26 1997 | Oki Electric Industry Co., Ltd. | Field effect transistor |
6078080, | Sep 03 1996 | GLOBALFOUNDRIES Inc | Asymmetrical transistor with lightly and heavily doped drain regions and ultra-heavily doped source region |
6078082, | Apr 12 1995 | National Semiconductor Corporation | Field-effect transistor having multi-part channel |
6087198, | Feb 28 1997 | Texas Instruments Incorporated | Low cost packaging for thin-film resonators and thin-film resonator-based filters |
6090672, | Jul 22 1998 | Ultra short channel damascene MOS transistors | |
6125268, | Nov 19 1997 | Ericsson Inc. | Tuning bandwidth minimization for low voltage dual band receiver |
6127700, | Sep 12 1995 | National Semiconductor Corporation | Field-effect transistor having local threshold-adjust doping |
6159783, | Nov 09 1994 | Renesas Electronics Corporation | Semiconductor device having MOS transistor and method of manufacturing the same |
6168999, | Sep 07 1999 | GLOBALFOUNDRIES Inc | Method for fabricating high-performance submicron mosfet with lateral asymmetric channel and a lightly doped drain |
6172400, | Apr 27 1998 | HANGER SOLUTIONS, LLC | MOS transistor with shield coplanar with gate electrode |
6177321, | May 10 1999 | MAGNACHIP SEMICONDUCTOR LTD | Semiconductor device and fabrication method thereof |
6200862, | Nov 06 1998 | GLOBALFOUNDRIES Inc | Mask for asymmetrical transistor formation with paired transistors |
6222229, | Feb 18 1999 | HANGER SOLUTIONS, LLC | Self-aligned shield structure for realizing high frequency power MOSFET devices with improved reliability |
6287906, | Nov 09 1994 | Renesas Electronics Corporation | Semiconductor device having MOS transistor and method of manufacturing the same |
6297535, | Jul 18 1997 | GLOBALFOUNDRIES Inc | Transistor having a gate dielectric which is substantially resistant to drain-side hot carrier injection |
6323091, | Jul 16 1999 | IXYS Intl Limited | Method of forming semiconductor memory device with LDD |
6346728, | Feb 16 1998 | Renesas Electronics Corporation | Plural transistor device with multi-finger structure |
6362038, | Sep 06 1996 | Micron Technology, Inc. | Low and high voltage CMOS devices and process for fabricating same |
6372590, | Oct 15 1997 | GLOBALFOUNDRIES Inc | Method for making transistor having reduced series resistance |
6376870, | Sep 08 2000 | Texas Instruments Incorporated | Low voltage transistors with increased breakdown voltage to substrate |
6376891, | Dec 30 1995 | Mitsubishi Denki Kabushiki Kaisha | High voltage breakdown isolation semiconductor device and manufacturing process for making the device |
6380835, | Jul 27 1999 | KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY KAIST | Symmetric multi-layer spiral inductor for use in RF integrated circuits |
6400001, | Jan 29 1999 | ST Wireless SA | Varactor, in particular for radio-frequency transceivers |
6407441, | Dec 29 1997 | Texas Instruments Incorporated | Integrated circuit and method of using porous silicon to achieve component isolation in radio frequency applications |
6413824, | Jun 11 1999 | Texas Instruments Incorporated | METHOD TO PARTIALLY OR COMPLETELY SUPPRESS POCKET IMPLANT IN SELECTIVE CIRCUIT ELEMENTS WITH NO ADDITIONAL MASK IN A CMOS FLOW WHERE SEPARATE MASKING STEPS ARE USED FOR THE DRAIN EXTENSION IMPLANTS FOR THE LOW VOLTAGE AND HIGH VOLTAGE TRANSISTORS |
6417054, | Jan 26 2001 | Chartered Semiconductor Manufacturing Ltd. | Method for fabricating a self aligned S/D CMOS device on insulated layer by forming a trench along the STI and fill with oxide |
6432759, | Nov 24 1992 | Bell Semiconductor, LLC | Method of forming source and drain regions for CMOS devices |
6451640, | Dec 20 1996 | Renesas Electronics Corporation | Semiconductor device having NMOS and PMOS transistors on common substrate and method of fabricating the same |
6465283, | Feb 01 2000 | Transpacific IP Ltd | Structure and fabrication method using latch-up implantation for improving latch-up immunity in CMOS fabrication process |
6476457, | May 10 1999 | MAGNACHIP SEMICONDUCTOR LTD | Semiconductor device with drift layer |
6477606, | Aug 21 1998 | Matsushita Electric Industrial Co., Ltd. | Bus system and a master device that stabilizes bus electric potential during non-access periods |
6483157, | Jun 20 1997 | GLOBALFOUNDRIES Inc | Asymmetrical transistor having a barrier-incorporated gate oxide and a graded implant only in the drain-side junction area |
6484038, | Nov 19 1997 | Ericsson Inc. | Method and apparatus for generating a plurality of reference frequencies in a mobile phone using a common crystal reference oscillator |
6492671, | Apr 15 1999 | Infineon Technologies AG | CMOS process |
6504218, | Sep 03 1996 | Advanced Micro Devices, Inc. | Asymmetrical N-channel and P-channel devices |
6506647, | Oct 11 2000 | Renesas Electronics Corporation | Method for fabricating a semiconductor integrated circuit device |
6506648, | Sep 02 1998 | M-RED INC | Method of fabricating a high power RF field effect transistor with reduced hot electron injection and resulting structure |
6528848, | Sep 21 1999 | Renesas Electronics Corporation | Semiconductor device and a method of manufacturing the same |
6548876, | Nov 14 2000 | KEY FOUNDRY CO , LTD | Semiconductor device of sub-micron or high voltage CMOS structure and method for manufacturing the same |
6548942, | Feb 28 1997 | Texas Instruments Incorporated | Encapsulated packaging for thin-film resonators and thin-film resonator-based filters having a piezoelectric resonator between two acoustic reflectors |
6563181, | Nov 02 2001 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | High frequency signal isolation in a semiconductor device |
6566185, | Feb 16 1998 | Renesas Electronics Corporation | Method of manufacturing a plural unit high frequency transistor |
6576966, | Apr 12 1995 | National Semiconductor Corporation | Field-effect transistor having multi-part channel |
6596575, | Dec 30 1995 | Mitsubishi Denki Kabushiki Kaisha | High voltage breakdown isolation semiconductor device and manufacturing process for making the device |
6605842, | Sep 21 1999 | Renesas Electronics Corporation | Semiconductor device and a method of manufacturing the same |
6627507, | Dec 29 1997 | Texas Instruments Incorporated | Integrated circuit and method of using porous silicon to achieve component isolation in radio frequency applications |
6627992, | May 21 2001 | XYTRANS, INC | Millimeter wave (MMW) transceiver module with transmitter, receiver and local oscillator frequency multiplier surface mounted chip set |
6642543, | Sep 26 2000 | BOARD OF TRUSTEES OF THE LELAND STANFORD JUNNIOR UNIVERSITY, THE | Thin and thick gate oxide transistors on a functional block of a CMOS circuit residing within the core of an IC chip |
6707115, | Apr 16 2001 | Intellectual Ventures I LLC | Transistor with minimal hot electron injection |
6709940, | Nov 14 2000 | KEY FOUNDRY CO , LTD | Method for manufacturing semiconductor device of sub-micron or high voltage CMOS structure |
6710424, | Sep 21 2001 | UNWIRED BROADBAND, INC | RF chipset architecture |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 11 2001 | SCHMIDT, DOMINIK J | AIRIFY COMMUNICATIONS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023559 | /0677 | |
Dec 18 2002 | AIRIFY COMMUNICATIONS, INC | INTELLECT CAPITAL VENTURES L L C | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023559 | /0737 | |
Jul 25 2003 | INTELLECT CAPITAL VENTURES L L C | AirIP Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023559 | /0746 | |
Aug 30 2004 | AirIP Corporation | Gallitzin Allegheny LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023559 | /0761 | |
Mar 15 2006 | Intellectual Ventures I LLC | (assignment on the face of the patent) | / | |||
Dec 07 2010 | Gallitzin Allegheny LLC | Intellectual Ventures I LLC | MERGER SEE DOCUMENT FOR DETAILS | 025446 | /0035 | |
Oct 30 2019 | Intellectual Ventures I LLC | INTELLECTUAL VENTURES ASSETS 135 LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050885 | /0964 | |
Nov 15 2019 | INTELLECTUAL VENTURES ASSETS 135 LLC | COMMWORKS SOLUTIONS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051463 | /0138 | |
Sep 18 2020 | COMMWORKS SOLUTIONS, LLC | UNWIRED BROADBAND, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 054443 FRAME: 0958 ASSIGNOR S HEREBY CONFIRMS THE LICENSE | 056981 | /0631 | |
Sep 18 2020 | COMMWORKS SOLUTIONS, LLC | UNWIRED BROADBAND, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE NAME PREVIOUSLY RECORDED AT REEL: 054443 FRAME: 0958 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 056981 | /0631 | |
Sep 18 2020 | COMMWORKS SOLUTIONS, LLC | UNWIRED BROADBAND, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE THE NATURE OF CONVEYANCE PREVIOUSLY RECORDED AT REEL: 056981 FRAME: 0631 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 059907 | /0563 | |
Sep 18 2020 | COMMWORKS SOLUTIONS, LLC | UNWIRED SOLUTIONS, INC | LICENSE SEE DOCUMENT FOR DETAILS | 054443 | /0958 |
Date | Maintenance Fee Events |
Aug 24 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Aug 25 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 22 2014 | 4 years fee payment window open |
Sep 22 2014 | 6 months grace period start (w surcharge) |
Mar 22 2015 | patent expiry (for year 4) |
Mar 22 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 22 2018 | 8 years fee payment window open |
Sep 22 2018 | 6 months grace period start (w surcharge) |
Mar 22 2019 | patent expiry (for year 8) |
Mar 22 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 22 2022 | 12 years fee payment window open |
Sep 22 2022 | 6 months grace period start (w surcharge) |
Mar 22 2023 | patent expiry (for year 12) |
Mar 22 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |