A satellite gateway is coupled to a communications network and is operative to communicate with a communications satellite. A terrestrial terminal interface subsystem is operative to communicate with the satellite gateway via the communications satellite using a first radio interface and to communicate with terminals over a geographic area using a second radio interface. The communications network may be a wireless communications network, and the satellite gateway is configured to communicate with a base station controller of the wireless communications network, such that the terrestrial terminal interface subsystem may provide one or more satellite-linked terrestrial base stations.

Patent
   RE42261
Priority
Feb 12 2002
Filed
May 09 2006
Issued
Mar 29 2011
Expiry
May 20 2022
Assg.orig
Entity
Large
8
154
all paid
46. An apparatus, comprising:
a mobile communications satellite operative to convey terminal communications between an earth-based communications network and a terrestrial wireless base station that communicates with wireless terminals in a geographic area , wherein communication between the terrestrial wireless base station and the mobile communications satellite, and communication between the wireless base station and the wireless terminals occurs occur over substantially the same frequency band, and wherein the wireless base station is operative to transfer information from a plurality of wireless communications channels to a lesser number of satellite communications channels.
44. An apparatus, comprising:
a satellite gateway operative to communicate with a communications network and to communicate via a mobile communications satellite with a terrestrial terminal interface system that serves wireless terminals in a geographic area , wherein communication between the terrestrial terminal interface system and the mobile communications satellite, and communication between the terrestrial terminal interface system and wireless terminals occurs occur over substantially the same frequency band, and wherein the terminal interface system is operative to transfer information from a plurality of wireless communications channels to a lesser number of satellite communications channels.
0. 126. A terminal interface subsystem comprising:
a satellite radio antenna;
a wireless communications radio antenna; and
an interface converter operative to communicate with at least one satellite via the satellite radio antenna using frequencies of a predetermined frequency band and to communicate with wireless terminals via the wireless communications radio antenna using frequencies of the predetermined frequency band, wherein the interface converter is operative to transfer information from a single satellite communications channel to a plurality of wireless communications channels and wherein the predetermined frequency band is a mobile satellite frequency band.
0. 127. A terminal interface subsystem comprising:
a satellite radio antenna;
a wireless communications radio antenna; and
an interface converter operative to communicate with at least one satellite via the satellite radio antenna using frequencies of a predetermined frequency band and to communicate with wireless terminals via the wireless communications radio antenna using frequencies of the predetermined frequency band, wherein the interface converter is operative to transfer information from a plurality of wireless communications channels to a lesser number of satellite communications channels and wherein the predetermined frequency band is a mobile satellite frequency band.
29. A terrestrial terminal interface subsystem for a wireless communications system, the subsystem comprising:
a satellite radio antenna;
a terrestrial wireless communications radio antenna; and
an interface converter operative to communicate with a mobile communications satellite via the satellite radio antenna using a first radio interface over a first frequency band and to communicate with wireless terminals over a geographic area via the terrestrial wireless communications radio antenna using a second radio interface over substantially the same first frequency band,
wherein the interface converter is operative to transfer information from a single satellite communication channel to a plurality of wireless communications channels.
48. A method of providing communications between a communications network and a plurality of wireless terminals served by a terrestrial base station, the method comprising: conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite, wherein communication between the terrestrial base station and the mobile communications satellite, and communication between the terrestrial base station and wireless terminals served by the terrestrial base station occurs occur over substantially the same frequency band, wherein conveying terminal communications between the communications network and the base station via a mobile communications satellite comprises transferring information from a plurality of wireless communications channels to a lesser number of satellite communications channels.
1. A wireless communications system, comprising:
a satellite gateway coupled to a communications network and operative to communicate with a mobile communications satellite; and
a terrestrial terminal interface subsystem operative to communicate with the satellite gateway via the mobile communications satellite using a first radio interface over a first frequency band and to communicate with wireless terminal over a geographic area terminals using a second radio interface over substantially the first frequency band,
wherein the terminal interface subsystem comprises an interface converter operative to convert between the first and second radio interfaces; and
wherein the interface converter is operative to transfer information from a plurality of wireless communications channels to a lesser number of satellite communications channels.
0. 140. A method of providing communications between a communications network and a plurality of wireless terminals served by a base station, the method comprising:
conveying terminal communications between the communications network and the base station via a communications satellite,
wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises:
receiving a signal from the communications satellite at a satellite radio antenna;
low-noise amplifying the received signal;
demodulating the amplified signal and regenerating the demodulated signal to recover a bitstream or other datastream in a format suitable for modulation and transmission to a wireless terminal;
modulating the bitstream or datastream;
amplifying the modulated signal; and
transmitting the amplified signal from a wireless communications radio antenna to a wireless terminal.
96. A terrestrial terminal interface subsystem for a wireless communications system, the subsystem comprising:
a satellite radio antenna;
a terrestrial wireless communications radio antenna;
an interface converter operative to communicate with a mobile communications satellite via the satellite radio antenna using a first radio interface and to communicate with wireless terminals over a geographic area via the terrestrial wireless communications radio antenna using a second radio interface;
a first low-noise low noise amplifier coupled to the satellite radio antenna;
a first demodulation and regeneration unit having an input coupled to an output of the first low noise amplifier;
a first modulator having an input coupled to an output of the first demodulation and regeneration unit; and
a first power amplifier having an input coupled to an output of the first modulator and an output coupled to the terrestrial wireless communications radio antenna,
wherein the interface converter is operative to transfer information from a single satellite communications channel to a plurality of wireless terminal communications channels.
70. A wireless communications system, comprising:
a satellite gateway coupled to a communications network and operative to communicate with a mobile communications satellite; and
a terrestrial terminal interface subsystem operative to communicate with the satellite gateway via the mobile communications satellite using a first radio interface and to communicate with wireless terminals over a geographic area using a second radio interface,
wherein the mobile communications satellite is operative to receive information intended for wireless terminals from the satellite gateway and to convey the received information to the wireless terminals without use of the terrestrial terminal interface subsystem; and
wherein the terrestrial terminal interface subsystem is operative to receive information from wireless terminals and to convey the received information to the communications network without use of the mobile communications satellite,
wherein the terminal interface subsystem comprises an interface converter operative to convert between the first and second radio interfaces, and
wherein the interface converter is operative to transfer information from a plurality of wireless communications channels to a lesser number of satellite communications channels.
65. An apparatus for providing communications between a communications network and a plurality of wireless terminals served by a terrestrial base station, the apparatus comprising:
means for conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite using a first radio interface; and
means for conveying the terminal communications between the terrestrial base station and wireless terminals using a second radio interface, wherein at least part of the terminal communications occurs between the communications network and the base station via the mobile communications satellite and communications between the base station and wireless terminals occur over substantially the same frequency band,
wherein the means for conveying terminal communications between the communications network and the base station via a mobile communications satellite using a first radio interface comprises means for conveying terminal communications between the communications network and a plurality of base stations, and
wherein the means for conveying terminal communications between the communications network and the base station via a mobile communications satellite using a first radio interface comprises means for transferring information from a plurality of wireless communications channels to a lesser number of satellite communications channels.
2. A system according to claim 1, wherein the first and second radio interfaces are different.
3. A system according to claim 1, wherein the first and second radio interfaces are the same.
4. A system according to claim 1, further comprising the mobile communications satellite.
5. A system according to claim 1, wherein the communications network comprises a wireless communications network, and wherein the satellite gateway is configured to communicate with a base station controller of the wireless communications network.
0. 6. A system according to claim 1, wherein the terrestrial terminal interface subsystem comprises an interface converter operative to convert between the first and second radio interfaces.
0. 7. A system according to claim 6, wherein the interface converter is operative to transfer information from a plurality of terrestrial wireless communications channels to a lesser number of satellite communications channels.
8. A system according to claim 7 1, wherein the interface converter is operative to transfer information from a single satellite communication channel to a plurality of terrestrial wireless communications channels.
9. A system according to claim 6 1, wherein the interface converter provides unidirectional communications.
10. A system according to claim 6 1, wherein the interface converter provides bidirectional communications.
11. A system according to claim 1, wherein the terrestrial terminal interface subsystem includes a satellite radio antenna and a terrestrial wireless communications radio antenna co-located at a single terrestrial base station.
12. A system according to claim 1, wherein the terrestrial terminal interface subsystem includes a satellite radio antenna and a terrestrial wireless communications radio antenna located at geographically separate sites locations.
13. A system according to claim 1, wherein the terrestrial terminal interface subsystem comprises a plurality of terrestrial base stations located at respective ones of a plurality of geographically distributed sites locations.
14. A system according to claim 1 4, wherein the mobile communications satellite is further operative to communicate with terrestrial terminals without use of the terrestrial terminal interface subsystem.
15. A system according to claim 1 4:
wherein the mobile communications satellite is operative to receive information intended for wireless terminals from the satellite gateway and to convey the received information to the wireless terminals without use of the terrestrial terminal interface subsystem; and
wherein the terrestrial terminal interface subsystem is operative to receive information from wireless terminals and to convey the received information to the communications network without use of the mobile communications satellite.
16. A system according to claim 1 4:
wherein the mobile communications satellite is operative to receive information from wireless terminals without use of the terrestrial terminal interface subsystem and to convey the received information to the satellite gateway; and
wherein the terrestrial terminal interface subsystem is operative receive information intended for wireless terminals from the mobile communications satellite and to convey the received information to terrestrial wireless terminals.
17. A system according to claim 1,
wherein the terrestrial terminal interface subsystem is operative to receive information intended for wireless terminals from the mobile communications satellite and to convey the received information to terrestrial wireless terminals; and
wherein the terrestrial terminal interface subsystem is operative to receive information from wireless terminals and to convey the received information to the communications network without use of the mobile communications satellite.
18. A system according to claim 1, wherein the terrestrial terminal interface subsystem is operative to control transmission power for of signals transmitted to the mobile communication satellite responsive to signals received from the mobile communication satellite.
19. A system according to claim 1, wherein the terrestrial terminal interface subsystem is operative to control transmission power for of signals transmitted to wireless terminal terminals responsive to signals received from wireless terminals.
20. A system according to claim 1, wherein the terrestrial terminal interface subsystem comprises:
a satellite radio, antenna;
a first low-noise low noise amplifier coupled to the satellite radio antenna;
a first demodulation and regeneration unit having an input coupled to an output of the first low noise amplifier;
a first modulator having an input coupled to an output of the first demodulation and regeneration unit;
a first power amplifier having an input coupled to an output of the first modulator; and
a terrestrial wireless communications radio antenna coupled to the output of the first power amplifier.
21. A system according to claim 20, further comprising a first interference reducer coupled to the first demodulation and regeneration unit.
22. A system according to claim 20, wherein the terrestrial terminal interface subsystem further comprises:
a second low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a second demodulation and regeneration unit having an input coupled to an output of the second low noise amplifier;
a second modulator having an input coupled to an output of the second demodulation and regeneration unit; and
a second power amplifier having an input coupled to an output of the second modulator and an output coupled to the satellite radio antenna.
23. A system according to claim 22, further comprising a second interference reducer coupled to the second demodulation and regeneration unit.
24. A system according to claim 22, wherein the second modulator is operative to control power of a signal transmitted from the satellite radio antenna responsive to the first demodulation and regeneration unit.
25. A system according to claim 22, wherein the first modulator is operative to control power of a signal transmitted from the terrestrial wireless communications radio antenna responsive to the second demodulation and regeneration unit.
26. A system according to claim 1, wherein the terrestrial terminal interface subsystem comprises:
a terrestrial wireless communications radio antenna;
a low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a demodulation and regeneration unit having an input coupled to an output of the low noise amplifier;
a modulator having an input coupled to an output of the demodulation and regeneration unit;
a power amplifier having an input coupled to an output of the second modulator; and
a satellite radio antenna coupled to an output of the power amplifier.
27. A system according to claim 1 further comprising a wireless terminal.
28. The system according to claim 1, wherein the frequency band is the L band.
30. A subsystem according to claim 29, A terminal interface subsystem for a wireless communications system, the subsystem comprising:
a satellite radio antenna;
a wireless communications radio antenna; and
an interface converter operative to communicate with a mobile communications satellite via the satellite radio antenna using a first radio interface over a first frequency band and to communicate with wireless terminals via the wireless communications radio antenna using a second radio interface over substantially the same first frequency band,
wherein the interface converter is operative to transfer information from a plurality of terrestrial wireless terminal communications channels to a lesser number of satellite communications channels.
0. 31. A subsystem according to claim 29, wherein the interface converter is operative to transfer information from a single satellite communication channel to a plurality of terrestrial wireless communications channels.
32. A subsystem according to claim 29, wherein the terrestrial wireless communications radio antenna, the satellite radio antenna, and the interface converter are co-located at a single terrestrial base station.
33. A subsystem according to claim 29, wherein the terrestrial wireless communications radio antenna and the satellite radio antenna are positioned at geographically separate locations.
34. A subsystem according to claim 29, wherein the terrestrial wireless communications radio antenna comprises a plurality of terrestrial radio antennas located at respective ones of a plurality of second geographically distributed second terrestrial sites locations.
35. A subsystem according to claim 29, wherein the interface converter provides unidirectional communications.
36. A subsystem according to claim 29, wherein the interface converter provides bidirectional communications.
37. A subsystem according to claim 29, comprising:
a first low-noise low noise amplifier coupled to the satellite radio antenna;
a first demodulation and regeneration unit having an input coupled to an output of the first low noise amplifier;
a first modulator having an input coupled to an output of the first demodulation and regeneration unit;
a first power amplifier having an input coupled to an output of the first modulator and an output coupled to the terrestrial wireless communications radio antenna.
38. A subsystem according to claim 37, further comprising a first interference reducer coupled to the first demodulation and regeneration unit.
39. A subsystem according to claim 37, comprising:
a second low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a second demodulation and regeneration unit having an input coupled to an output of the second low noise amplifier;
a second modulator having an input coupled to an output of the second demodulation and regeneration unit; and
a second power amplifier having an input coupled to an output of the second modulator and an output coupled to the satellite radio antenna.
40. A subsystem according to claim 39, further comprising a second interference reducer coupled to the second demodulation and regeneration unit.
41. A subsystem according to claim 39, wherein the second modulator is operative to control power of a signal transmitted from the satellite radio antenna responsive to the first demodulation and regeneration unit.
42. A subsystem according to claim 37 39, wherein the first modulator is operative to control power of a signal transmitted from the terrestrial wireless communications radio antenna responsive to the second demodulation and regeneration unit.
43. A subsystem according to claim 29, wherein the terrestrial terminal interface subsystem further comprises:
a lownoise low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a demodulation and regeneration unit having an input coupled to an output of the low noise amplifier;
a modulator having an input coupled to an output of the demodulation and regeneration unit; and
a power amplifier having an input coupled to an output of the second modulator and an output coupled to the satellite radio antenna.
45. An apparatus according to claim 44, wherein the communications network comprises a wireless communications network, and wherein the satellite gateway is configured to communicate with a base station controller of the wireless communications network.
47. An apparatus according to claim 46, wherein the mobile communications satellite is further operative to communicate with wireless terminals without use of the terrestrial wireless base station.
49. A method according to claim 48, wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises:
conveying a first radio signal from the mobile communications satellite to earth the base station using a first radio interface; and
conveying a second radio signal from the first radio signal from the terrestrial base station to a wireless terminal using a second radio interface, the second radio signal including information from the first radio signal.
50. A method according to claim 49, wherein the first and second radio interfaces are the same.
51. A method according to claim 48, wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises:
conveying a first radio signal from a wireless terminal to the terrestrial base station using a first radio interface; and
conveying a second radio signal from earth the base station to the mobile communications satellite using a second radio interface, the second radio signal including information from the first radio signal.
52. A method according to claim 51, wherein the first and second radio interfaces are the same.
53. A method according to claim 48, wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises conveying the terminal communications via a satellite antenna co-located with the terrestrial base station.
54. A method according to claim 48, wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises conveying terminal communications between the communications network and a plurality of terrestrial base stations via a single satellite link .
55. A method according to claim 48, wherein the communications network comprises a wireless communications network, and wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises conveying the terminal communications between the mobile communications satellite and a satellite gateway coupled to a base station controller of the wireless communications network.
0. 56. A method according to claim 48, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises transferring information from a plurality of terrestrial wireless communications channels to a lesser number of satellite communications channels.
57. A method according to claim 48, A method of providing communications between a communications network and a plurality of wireless terminals served by a base station, the method comprising: conveying terminal communications between the communications network and the base station via a mobile communications satellite, wherein communication between the base station and the mobile communications satellite and communication between the base station and wireless terminals served by the base station occur over substantially the same frequency band, and
wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises transferring information from a single satellite communication channel to a plurality of terrestrial wireless communications channels.
58. A method according to claim 48, further comprising communicating between the mobile communications satellite and wireless terminals without use of a terrestrial base station.
59. A method according to claim 48:
wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises conveying terminal communications from the terrestrial base station to the mobile communications satellite; and
wherein the method further comprises conveying terminal communications from the mobile communications satellite to wireless terminals without use of a terrestrial base station.
60. A method according to claim 48:
wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises conveying terminal communications from the mobile communications satellite to the terrestrial base station; and
wherein the method further comprises conveying terminal communications from wireless terminals to the mobile communications satellite without use of a terrestrial base station.
61. A method according to claim 48, further comprising controlling transmission power for of signals transmitted to the mobile communications satellite responsive to signals received from the mobile communications satellite.
62. A method according to claim 48, further comprising controlling transmission power for of signals transmitted to wireless terminals responsive to signals received from wireless terminals.
63. A method according to claim 48, wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises:
receiving a signal from the mobile communications satellite at an earth-based a satellite radio antenna;
low-noise low noise amplifying the received signal;
demodulating the amplified signal and generating a signal from the demodulated signal in a format suitable for transmission to a wireless terminal;
modulating the demodulated and regenerated signal;
amplifying the modulated signal; and
transmitting the amplified signal from a terrestrial wireless communications radio antenna to a wireless terminal.
64. A method according to claim 48, wherein conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite comprises:
receiving a radio signal from a wireless terminal at the terrestrial wireless communications radio antenna;
low noise amplifying the received radio signal;
demodulating the amplified radio signal and generating a signal from the demodulated signal in a format suitable for transmission to the mobile communications satellite;
modulating the generated signal;
amplifying the modulated signal; and
transmitting the amplified signal from an earth-based a satellite radio antenna.
0. 66. An apparatus according to claim 65, wherein the means for conveying terminal communications between the communications network and the terrestrial base station via a communications satellite using a first radio interface comprises means for conveying terminal communications between the communications network and a plurality of terrestrial base stations via a single satellite link.
0. 67. An apparatus according to claim 66, wherein the means for conveying terminal communications between the communications network and the terrestrial base station via a communications satellite using a first radio interface comprises means for transferring information from a plurality of terrestrial wireless communications channels to a lesser number of satellite communications channels.
68. An apparatus according to claim 65, An apparatus for providing communications between a communications network and a plurality of wireless terminals served by a base station, the apparatus comprising:
means for conveying terminal communications between the communications network and the base station via a mobile communications satellite using a first radio interface; and
means for conveying the terminal communications between the base station and wireless terminals using a second radio interface, wherein terminal communications between the communications network and the base station via the mobile communications satellite and communications between the base station and wireless terminals occur over substantially the same frequency band, and
wherein the means for conveying terminal communications between the communications network and the terrestrial base station via a mobile communications satellite using a first radio interface comprises means for transferring information from a single satellite communication channel to a plurality of terrestrial wireless communications channels.
69. An apparatus according to claim 65, further comprising means for communicating between the mobile communications satellite and wireless terminals without use of a terrestrial base station.
71. A system according to claim 70, wherein the first and second radio interfaces are different.
72. A system according to claim 70, wherein the first and second radio interfaces are the same.
73. A system according to claim 70, further comprising the mobile communications satellite.
74. A system according to claim 70, wherein the communications network comprises a wireless communications network, and wherein the satellite gateway is configured to communicate with a base station controller of the wireless communications network.
0. 75. A system according to claim 70, wherein the terrestrial terminal interface subsystem comprises an interface converter operative to convert between the first and second radio interfaces.
0. 76. A system according to claim 75, wherein the interface converter is operative to transfer information from a plurality of terrestrial wireless communications channels to a lesser number of satellite communications channels.
77. A system according to claim 75, A wireless communications system, comprising:
a satellite gateway coupled to a communications network and operative to communicate with a mobile communications satellite; and
a terminal interface subsystem operative to communicate with the satellite gateway via the mobile communications satellite using a first radio interface and to communicate with wireless terminals using a second radio interface,
wherein the mobile communications satellite is operative to receive information intended for wireless terminals from the satellite gateway and to convey the received information to the wireless terminals without use of the terminal interface subsystem; and
wherein the terminal interface subsystem is operative to receive information from wireless terminals and to convey the received information to the communications network without use of the mobile communications satellite,
wherein the terminal interface subsystem comprises an interface converter operative to convert between the first and second radio interfaces; and
wherein the interface converter is operative to transfer information from a single satellite communication communications channel to a plurality of terrestrial wireless communications channels.
78. A system according to claim 75 70, wherein the interface converter provides unidirectional communications.
79. A system according to claim 75 70, wherein the interface converter provides bidirectional communications.
80. A system according to claim 70, wherein the terrestrial terminal interface subsystem includes a satellite radio antenna and a terrestrial wireless communications radio antenna co-located at a single terrestrial base station.
81. A system according to claim 70, wherein the terrestrial terminal interface subsystem includes a satellite radio antenna and a terrestrial wireless communications radio antenna located at geographically separate sites locations.
82. A system according to claim 70, wherein the terrestrial terminal interface subsystem comprises a plurality of terrestrial base stations located at respective ones of a plurality of geographically distributed sites locations.
83. A system according to claim 70, wherein the mobile communications satellite is further operative to communicate with terrestrial terminals without use of the terrestrial terminal interface subsystem.
84. A system according to claim 70:
wherein the mobile communications satellite is operative to receive information from wireless terminals without use of the terrestrial terminal interface subsystem and to convey the received information to the satellite gateway; and
wherein the terrestrial terminal interface subsystem is operative receive information intended for wireless terminals from the mobile communications satellite and to convey the received information to terrestrial wireless terminals.
85. A system according to claim 70,
wherein the terrestrial terminal interface subsystem is operative to receive information intended for wireless terminals from the mobile communications satellite and to convey the received information to terrestrial wireless terminals; and
wherein the terrestrial terminal interface subsystem is operative to receive information from wireless terminals and to convey the received information to the communications network without use of the mobile communications satellite.
86. A system according to claim 70, wherein the terrestrial terminal interface subsystem is operative to control transmission power for of signals transmitted to the mobile communications satellite responsive to signals received from the mobile communications satellite.
87. A system according to claim 70, wherein the terrestrial terminal interface subsystem is operative to control transmission power for of signals transmitted to wireless terminals responsive to signals received from wireless terminals.
88. A system according to claim 70, wherein the terrestrial terminal interface subsystem comprises:
a satellite radio antenna;
first low-noise low noise amplifier coupled to the satellite radio antenna;
a first demodulation and regeneration unit having an input coupled to an output of the first low noise amplifier;
a first modulator having an input coupled to an output of the first demodulation and regeneration unit;
a first power amplifier having an input coupled to an output of the first modulator; and
a terrestrial wireless communications radio antenna coupled to the output of the first power amplifier.
89. A system according to claim 88, further comprising a first interference reducer coupled to the first demodulation and regeneration unit.
90. A system according to claim 88, wherein the terrestrial terminal interface subsystem further comprises:
a second low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a second demodulation and regeneration unit having an input coupled to an output of the second low noise amplifier;
a second modulator having an input coupled to an output of the second demodulation and regeneration unit; and
a second power amplifier having an input coupled to an output of the second modulator and an output coupled to the satellite radio antenna.
91. A system according to claim 90, further comprising a second interference reducer coupled to the second demodulation and regeneration unit.
92. A system according to claim 90, wherein the second modulator is operative to control power of a signal transmitted from the satellite radio antenna responsive to the first demodulation and regeneration unit.
93. A system according to claim 90, wherein the first modulator is operative to control power of a signal transmitted from the terrestrial wireless communications radio antenna responsive to the second demodulation and regeneration unit.
94. A system according to claim 70, wherein the terrestrial terminal interface subsystem comprises:
a terrestrial wireless communications radio antenna;
a low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a demodulation and regeneration unit having an input coupled to an output of the low noise amplifier;
a modulator having an input coupled to an output of the demodulation and regeneration unit;
a power amplifier having an input coupled to an output of the modulator; and
a satellite radio antenna coupled to an output of the power amplifier.
95. A system according to claim 70, further comprising a wireless terminal.
97. A subsystem according to claim 96, A terminal interface subsystem for a wireless communications system, the subsystem comprising:
a satellite radio antenna;
a wireless communications radio antenna;
an interface converter operative to communicate with a mobile communications satellite via the satellite radio antenna using a first radio interface and to communicate with wireless terminals via the wireless communications radio antenna using a second radio interface;
a first low noise amplifier coupled to the satellite radio antenna;
a first demodulation and regeneration unit having an input coupled to an output of the first low noise amplifier;
a first modulator having an input coupled to an output of the first demodulation and regeneration unit; and
a first power amplifier having an input coupled to an output of the first modulator and an output coupled to the wireless communications radio antenna,
wherein the interface converter is operative to transfer information from a plurality of terrestrial wireless terminal communications channels to a lesser number of satellite communications channels.
0. 98. A subsystem according to claim 96, wherein the interface converter is operative to transfer information from a single satellite communication channel to a plurality of terrestrial wireless communications channels.
99. A subsystem according to claim 96, wherein the terrestrial wireless communications radio antenna, the satellite radio antenna, and the interface converter are co-located at a single terrestrial base station.
100. A subsystem according to claim 96, wherein the terrestrial wireless communications radio antenna and the satellite radio antenna are positioned at geographically separate locations.
101. A subsystem according to claim 96, wherein the terrestrial wireless communications radio antenna comprises a plurality of terrestrial radio antennas located at respective ones of a plurality of second geographically distributed second terrestrial sites locations.
102. A subsystem according to claim 96, wherein the interface converter provides unidirectional communications.
103. A subsystem according to claim 96, wherein the interface converter provides bidirectional communications.
104. A subsystem according to claim 96, further comprising a first interference reducer coupled to the first demodulation and regeneration unit.
105. A subsystem according to claim 96, comprising:
a second low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a second demodulation and regeneration unit having an input coupled to an output of the second low noise amplifier;
a second modulator having an input coupled to an output of the second demodulation and regeneration unit; and
a second power amplifier having an input coupled to an output of the second modulator and an output coupled to the satellite radio antenna.
106. A subsystem according to claim 105, further comprising a second interference reducer coupled to the second demodulation and regeneration unit.
107. A subsystem according to claim 105, wherein the second modulator is operative to control power of a signal transmitted from the satellite radio antenna responsive to the first demodulation and regeneration unit.
108. A subsystem according to claim 99, wherein the first modulator is operative to control power of a signal transmitted from the terrestrial wireless communications radio antenna responsive to the second demodulation and regeneration unit.
109. A subsystem according to claim 96, wherein the terrestrial terminal interface subsystem further comprises:
a low noise amplifier coupled to the terrestrial wireless communications radio antenna;
a demodulation and regeneration unit having an input coupled to an output of the low noise amplifier;
a modulator having an input coupled to an output of the demodulation and regeneration unit; and
a power amplifier having an input coupled to an output of the second modulator and an output coupled to the satellite radio antenna.
0. 110. A method of providing communications between a communications network and a plurality of wireless terminals served by a terrestrial base station, the method comprising:
conveying terminal communications between the communications network and the terrestrial base station via a communications satellite,
wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises:
receiving a signal from the communications satellite at an earth-based satellite radio antenna;
low-noise amplifying the received signal;
demodulating the amplified signal and generating a signal from the demodulated signal in a format suitable for transmission to a wireless terminal;
modulating the demodulated and regenerated signal;
amplifying the modulated signal; and
transmitting the amplified signal from a terrestrial radio antenna to a wireless terminal.
0. 111. A method according to claim 110, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises:
conveying a first radio signal from the communications satellite to earth using a first radio interface; and
conveying a second radio signal from the first radio signal from the terrestrial base station to a wireless terminal using a second radio interface, the second radio signal including information from the first radio signal.
0. 112. A method according to claim 111, wherein the first and second radio interfaces are the same.
0. 113. A method according to claim 110, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises:
conveying a first radio signal from a wireless terminal to the terrestrial base station using a first radio interface; and
conveying a second radio signal from earth to the communications satellite using a second radio interface, the second radio signal including information from the first radio signal.
0. 114. A method according to claim 113, wherein the first and second radio interfaces are the same.
0. 115. A method according to claim 110, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises conveying the terminal communications via a satellite antenna co-located with the terrestrial base station.
0. 116. A method according to claim 110, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises conveying terminal communications between the communications network and a plurality of terrestrial base stations via a single satellite link.
0. 117. A method according to claim 110, wherein the communications network comprises a wireless communications network, and wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises conveying the terminal communications between the communications satellite and a satellite gateway coupled to a base station controller of the wireless communications network.
0. 118. A method according to claim 110, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises transferring information from a plurality of terrestrial wireless communications channels to a lesser number of satellite communications channels.
0. 119. A method according to claim 110, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises transferring information from a single satellite communication channel to a plurality of terrestrial wireless communications channels.
0. 120. A method according to claim 110, further comprising communicating between the communications satellite and wireless terminals without use of a terrestrial base station.
0. 121. A method according to claim 110:
wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises conveying terminal communications from the terrestrial base station to the communications satellite;and
wherein the method further comprises conveying terminal communications from the communications satellite to wireless terminals without use of a terrestrial base station.
0. 122. A method according to claim 110:
wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises conveying terminal communications from the communications satellite to the terrestrial base station; and
wherein the method further comprises conveying terminal communications from wireless terminals to the communications satellite without use of a terrestrial base station.
0. 123. A method according to claim 110, further comprising controlling transmission power for signals transmitted to the communications satellite responsive to signals received from the communications satellite.
0. 124. A method according to claim 110, further comprising controlling transmission power for signals transmitted to wireless terminals responsive to signals received from wireless terminals.
0. 125. A method according to claim 110, wherein conveying terminal communications between the communications network and the terrestrial base station via a communications satellite comprises:
receiving a radio signal from a wireless terminal at the terrestrial radio antenna;
low noise amplifying the received radio signal;
demodulating the amplified radio signal and generating a signal from the demodulated signal in a format suitable for transmission to the communications satellite;
modulating the generated signal;
amplifying the modulated signal; and
transmitting the amplified signal from an earth-based satellite radio antenna.
0. 128. A terminal interface subsystem according to claim 127, wherein the wireless communications radio antenna and the satellite radio antenna are substantially co-located.
0. 129. A terminal interface subsystem according to claim 127, wherein the wireless communications radio antenna and the satellite radio antenna are located at substantially separate locations.
0. 130. A terminal interface subsystem according to claim 127, wherein the wireless communications radio antenna comprises a plurality of wireless communications radio antennas.
0. 131. A terminal interface subsystem according to claim 127, wherein the interface converter provides unidirectional communications.
0. 132. A terminal interface subsystem according to claim 127, wherein the interface converter provides bidirectional communications.
0. 133. A terminal interface subsystem according to claim 127, further comprising:
a first low noise amplifier coupled to the satellite radio antenna;
a first demodulation and regeneration unit having an input coupled to an output of the first low noise amplifier;
a first modulator having an input coupled to an output of the first demodulation and regeneration unit; and
a first power amplifier having an input coupled to an output of the first modulator and an output coupled to the wireless communications radio antenna.
0. 134. A terminal interface subsystem according to claim 133, further comprising a first interference reducer coupled to the first demodulation and regeneration unit.
0. 135. A terminal interface subsystem according to claim 133, further comprising:
a second low noise amplifier coupled to the wireless communications radio antenna;
a second demodulation and regeneration unit having an input coupled to an output of the second low noise amplifier;
a second modulator having an input coupled to an output of the second demodulation and regeneration unit; and
a second power amplifier having an input coupled to an output of the second modulator and an output coupled to the satellite radio antenna.
0. 136. A terminal interface subsystem according to claim 135, further comprising a second interference reducer coupled to the second demodulation and regeneration unit.
0. 137. A terminal interface subsystem according to claim 135, wherein the second modulator is operative to control power of a signal transmitted from the satellite radio antenna responsive to the first demodulation and regeneration unit.
0. 138. A terminal interface subsystem according to claim 133, wherein the first modulator is operative to control power of a signal transmitted from the wireless communications radio antenna responsive to the second demodulation and regeneration unit.
0. 139. A terminal interface subsystem according to claim 127, further comprising:
a low noise amplifier coupled to the wireless communications radio antenna;
a demodulation and regeneration unit having an input coupled to an output of the low noise amplifier;
a modulator having an input coupled to an output of the demodulation and regeneration unit; and
a power amplifier having an input coupled to an output of the modulator and an output coupled to the satellite radio antenna.
0. 141. A method according to claim 140, wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises:
conveying a first radio signal from the communications satellite to the base station using a first radio interface; and
conveying a second radio signal from the first radio signal from the base station to a wireless terminal using a second radio interface, the second radio signal including information from the first radio signal.
0. 142. A method according to claim 141, wherein the first and second radio interfaces are the same.
0. 143. A method according to claim 140, wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises:
conveying a first radio signal from a wireless terminal to the base station using a first radio interface; and
conveying a second radio signal from the base station to the communications satellite using a second radio interface, the second radio signal including information from the first radio signal.
0. 144. A method according to claim 143, wherein the first and second radio interfaces are the same.
0. 145. A method according to claim 140, wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises conveying the terminal communications via a satellite antenna co-located with the base station.
0. 146. A method according to claim 140, wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises conveying terminal communications between the communications network and a plurality of base stations.
0. 147. A method according to claim 140, wherein the communications network comprises a wireless communications network, and wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises conveying the terminal communications between the communications satellite and a satellite gateway coupled to a base station controller of the wireless communications network.
0. 148. A method according to claim 140, wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises transferring information from a plurality of wireless communications channels to a lesser number of satellite communications channels.
0. 149. A method according to claim 140, wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises transferring information from a single satellite communication channel to a plurality of wireless communications channels.
0. 150. A method according to claim 140, further comprising controlling transmission power for signals transmitted to the communications satellite responsive to signals received from the communications satellite.
0. 151. A method according to claim 140, further comprising controlling transmission power for signals transmitted to wireless terminals responsive to signals received from wireless terminals.
0. 152. A method according to claim 140, wherein conveying terminal communications between the communications network and the base station via a communications satellite comprises:
receiving a radio signal from a wireless terminal at the wireless communications radio antenna;
low noise amplifying the received radio signal;
demodulating the amplified radio signal and regenerating the demodulated signal to recover a bitstream or other datastream in a format suitable for modulation and transmission to the communications satellite;
modulating the bitstream or datastream;
amplifying the modulated signal; and
transmitting the amplified signal from the satellite radio antenna.

Notice: More than one reissue application has been filed for the reissue of U.S. Pat. No. 6,856,787. The reissue applications are application Ser. No. 11/431,160 (the present application), application Ser. No. 12/266,713(a first divisional of the present application) and application Ser. No. 12/329,137(a second divisional of the present application).

The present application claims priority to U.S. Provisional Application Ser. No. 60/356,264 entitled “WIRELESS COMMUNICATIONS SYSTEMS AND METHODS USING SATELLITE-LINKED REMOTE TERMINAL INTERFACE SUBSYSTEMS,” filed Feb. 12, 2002, the disclosure of which is incorporated herein by reference in its entirety.

The present invention relates to wireless communications apparatus and methods, and more particularly, to wireless communications system and methods using satellite and terrestrial components.

FIG. 1 illustrates a conventional terrestrial wireless communications system 100, and more particularly, a system conforming to the GSM standards. The system 100 includes a mobile switching center (MSC) 110, a base station controller (BSC) 120, and at least one base transceiver station (BTS) 130. The BTS 130 includes radio transceivers that communicate with cellular terminals 50, while the BSC 120 manages radio resources for one or more BTSs and provides a connection between the BTSs and the MSC 110. The MSC 110 typically acts like a telephone switching node, and typically provides additional functions related to registration and mobility management for the cellular terminals 50. The MSC 110 is typically coupled to a public switched telephone network (PSTN) 10, which provides communications links between the cellular terminals 50 served by the wireless system 100 and other terminals (e.g., landline telephones). It will be appreciated that other wireless communications systems may provide similar functionality, but may, for example, use other groupings of functions referred to by different nomenclature.

Cellular satellite communications systems and methods are also widely used to provide wireless communications. Cellular satellite communications systems and methods generally employ at least one space-based component, such as one or more satellites that are configured to wirelessly communicate with a plurality of radiotelephones or other types of cellular terminals. The overall design and operation of cellular satellite communications systems and methods are well known to those having skill in the art, and need not be described further herein.

Hybrids of satellite and terrestrial systems may also be used. For example, as is well known to those having skill in the art, terrestrial networks can enhance cellular satellite communications system availability, efficiency and/or economic viability by terrestrially reusing at least some of the frequency bands that are allocated to cellular satellite communications systems. In particular, it is known that it may be difficult for cellular satellite communications systems to reliably serve densely populated areas, because the satellite signal may be blocked by high-rise structures and/or may not penetrate into buildings. As a result, the satellite spectrum may be underutilized or unutilized in such areas. The use of terrestrial retransmission can reduce or eliminate this problem.

Moreover, the capacity of the overall system can be increased significantly by the introduction of terrestrial retransmission, since terrestrial frequency reuse can be much denser than that of a satellite-only system. In fact, capacity can be enhanced where it may be mostly needed, i.e., densely populated urban/industrial/commercial areas. As a result, the overall system can become much more economically viable, as it may be able to serve a much larger subscriber base. One example of terrestrial reuse of satellite frequencies is described in U.S. Pat. No. 5,937,332 to the present inventor Karabinis entitled Satellite Telecommunications Repeaters and Retransmission Methods.

According to some embodiments of the present invention, a wireless communications system includes a satellite gateway coupled to a communications network and operative to communicate with a communications satellite. The system further includes a terrestrial terminal interface subsystem operative to communicate with the satellite gateway via the communications satellite using a first radio interface and to communicate with wireless terminals over a geographic area using a second radio interface. For example, in some embodiments, the communications network comprises a wireless communications network, and the satellite gateway is configured to communicate with a base station controller of the wireless communications network, such that the terrestrial terminal interface subsystem may provide one or more satellite-linked terrestrial base stations.

In some embodiments, the terrestrial terminal interface subsystem comprises an interface converter operative to convert between the first and second radio interfaces. The interface converter may be operative to transfer information from a plurality of terrestrial wireless communications channels to a lesser number of satellite communications channels. The interface converter may also be operative to transfer information from a single satellite communication channel to a plurality of terrestrial wireless communications channels.

According to further embodiments of the present invention, the terrestrial terminal interface subsystem includes a satellite radio antenna and a terrestrial radio antenna co-located at a single terrestrial base station. The terrestrial terminal interface subsystem may also comprise a plurality of terrestrial base stations located at respective ones of a plurality of geographically distributed sites and served by a single satellite link.

In yet additional embodiments, the communications satellite is further operative to communicate with wireless terrestrial terminals without use of the terrestrial terminal interface subsystem. In particular, the terrestrial terminal interface subsystem or the satellite or both may communicate with wireless terminals. For example, in some embodiments, the communications satellite is operative to receive information intended for wireless terminals from the satellite gateway and to convey the received information to the wireless terminals without use of the terrestrial terminal interface subsystem, while the terrestrial terminal interface subsystem is operative to receive information from wireless terminals and to convey the received information to the communications network without use of the communications satellite. In this manner, for example, “receive only” terrestrial base stations may be used to provide uplinks from wireless terminals to a communications network, while downlinks are provided directly from the satellite to the wireless terminals. In other embodiments, the communications satellite is operative to receive information from wireless terminals without use of the terrestrial terminal interface subsystem and to convey the received information to the satellite gateway, while the terrestrial terminal interface subsystem is operative to receive information intended for wireless terminals from the communications satellite and to convey the received information to terrestrial terminals. In this manner, for example, “transmit-only” terrestrial base stations may be used to provide downlinks from a communications network to wireless terminals, while uplinks may be provided directly from the wireless terminals to the satellite.

According to some method embodiments of the present invention, communications between a communications network and a plurality of wireless terminals served by a terrestrial base station may be provided by conveying terminal communications between the communications network and the terrestrial base station via a communications satellite. The communication via the satellite can be bidirectional or unidirectional.

The present invention may be embodied in variety of forms, including, but not limited to, wireless communications systems, components of wireless communications systems, combinations of components of wireless communications systems, and wireless communications methods. For example, the present invention may be embodied as earth-based components and combinations thereof configured to interoperate with space-based components, as spaced-based components, and as combinations of earth-based and space-based components.

FIG. 1 illustrates a conventional terrestrial wireless communications system.

FIG. 2 is a schematic diagram illustrating a wireless communications systems and methods according to some embodiments of the present invention.

FIG. 3 is a schematic diagram illustrating a wireless communications system and methods according to further embodiments of the present invention.

FIG. 4 is a schematic diagram illustrating a terrestrial terminal interface subsystem and methods according to some embodiments of the present invention.

FIG. 5 is a schematic diagram illustrating a wireless communications system and methods according to further embodiments of the present invention.

FIG. 6 is a schematic diagram illustrating a wireless communications system and methods according to still further embodiments of the present invention.

FIG. 7 is a schematic diagram illustrating a wireless communications system and methods according to additional embodiments of the present invention.

The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which typical embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout.

As used herein, the term “cellular terminal” refers to wireless terminals including, but not limited to: radiotelephone terminals (“cell phones”) with or without a multi-line display; Personal Communications System (PCS) terminals that may combine a radiotelephone with data processing, facsimile and/or data communications capabilities; Personal Digital Assistants (PDA) that can include a radio frequency transceiver and a pager, Internet/intranet access, Web browser, organizer, calendar and/or a global positioning system (GPS) receiver; and/or conventional laptop and/or palmtop computers or other appliances, which include a radio frequency transceiver. These devices may be capable of wireless voice and/or data communications.

FIG. 2 conceptually illustrates a wireless communications system 200 according to embodiments of the present invention. The system 200 includes a satellite gateway 220 that is coupled to a communications network 210 (which may be a portion of the system 200 or an external network), which may include, but is not limited to, wireless network control components, such as BSCs and MSCs, and other gateways similar to the gateway 220. The system 200 further includes one or more remote terrestrial terminal interface subsystems 240 that communicate with the gateway 220 via a satellite 230. In particular, the terrestrial terminal interface subsystem 240 provides communications between cellular terminals 60 served by the terrestrial terminal interface subsystem 240 and the other portions 210 of the communications system 200 via the satellite 230 and the gateway 220.

As shown, the terrestrial terminal interface subsystem 240 includes a satellite antenna 241 and a terrestrial antenna 243 that are connected to an interface converter 242. The interface converter 242 is configured to receive information from cellular terminals 60 according to a first radio interface and to transmit the received information to the satellite 230 according to a second radio interface, and to receive information from the satellite 230 according to the second radio interface and to transmit the received information to the cellular terminals 60 according to the first radio interface. For example, the first radio interface may conform to a conventional standard, such as a GSM standard that uses Gaussian minimum shift keying (GMSK) modulation. The second radio interface may support a higher data rate using, for example, M-ary quadrature amplitude modulation (QAM), such that information received from or intended for cellular terminals 60 may be “concentrated” for transmission over the satellite link. In other embodiments, the first and second radio interfaces may be the same or substantially similar.

It will be appreciated that the interface converter 242 may include a variety of different components. For example, in embodiments described below with reference to FIGS. 3 and 4, the interface converter may be positioned at a remote base station and may include components to convert signals received over the satellite link into radio signals for transmission to cellular terminals, as well as components for performing complementary conversion of signals received from cellular terminals. In embodiments described below with reference to FIG. 5, the interface converter 242 may comprise components distributed among a remote BSC and base stations connected thereto. In such embodiments, the interface converter 242 may include, for example, components configured to convert between the satellite link signaling format and, for example, landline signaling formats used to communicate between the BSC and the base stations, as well as components for converting between the signaling format used for the links between the BSC and the base stations and the radio signaling format used to communicate with cellular terminals.

As also shown in FIG. 2, the remote terrestrial terminal interface subsystem 240 may serve as part of an ancillary terrestrial component of the wireless communications system 200, e.g., may function as a base station of an ancillary terrestrial network (ATN) of a satellite mobile communications system in a manner similar to that of the terrestrial base stations described in a United States Provisional Patent Application entitled “SYSTEMS AND METHODS FOR TERRESTRIAL REUSE OF MOBILE SATELLITE SPECTRUM,” U.S. Pat. No. 60/322,240, filed Sep. 14, 2001, and U.S. Patent Application entitled “SYSTEMS AND METHODS FOR TERRESTRIAL RE-USE OF MOBILE SATELLITE SPECTRUM,” U.S. Ser. No. 10/074,097, filed Feb. 12, 2002, the disclosure of each of which is incorporated herein by reference in its entirety. In particular, cellular terminals 60 may be operative to communicate with the system 200 directly through the satellite 230, or may indirectly communicate with the system 200 via the remote terrestrial terminal interface subsystem 240. It will be understood, however, that the present invention is also applicable to systems and methods in which communications between cellular terminals 60 and the satellite 230 are limited to communications via terrestrial terminal interface subsystems such as the remote terrestrial terminal interface subsystem 240, i.e., without direct communication between the cellular terminals 60 and the satellite 230.

FIG. 3 illustrates a “repeater” configuration for a wireless communications system 300 according to further embodiments of the present invention. The system 300 includes an MSC 312 and a BSC 314 that communicate with a remote terrestrial terminal interface subsystem, here a remote terrestrial base station 340, via a “repeater” including a gateway 320 and a satellite 330. The remote terrestrial base station 340 includes a first concentrator/deconcentrator 342 that sends and receives signals to and from the satellite 330 via a satellite antenna 341 over, for example, an L-band satellite link using, for example, M-ary quadrature amplitude modulation (QAM). The first concentrator/deconcentrator 342 converts signals received over the satellite link to, for example, GSM-format signals transmitted to cellular terminals via a terrestrial antenna 343 using GMSK modulation, and converts GSM format signals from the cellular terminals to M-ary QAM signals that are transmitted to the satellite 330. The gateway 320 includes a second concentrator/deconcentrator 322 that performs conversion functions complementary to those of the first concentrator/deconcentrator 342.

It will be appreciated that the satellite link through the satellite 330 may generally support a higher data rate than radio links to individual cellular terminals, due to, for example, a less obstructive radio signal propagation environment and/or less interference and/or higher available transmit power. The concentrator/deconcentrator 342, 322 takes advantage of this higher data rate capability by combining information received from or intended for terminals in a signal formatted according to a higher data rate signaling format for transfer through the satellite link.

FIG. 4 illustrates a remote terrestrial base station 400 that may be used with a wireless communication system, such as the communications system 300 of FIG. 3, according to further embodiments of the present invention. The base station 400 includes a satellite antenna 401 and a terrestrial antenna 402. Signals received from a satellite 80 via the satellite antenna 401 are processed by a bandpass filter 405 and a low noise amplifier (LNA) 410. The signal produced by the LNA 410 is processed by a demodulator & regenerator component 415 to recover information in a format, e.g., a bitstream or other datastream, suitable for remodulation and transmission to a cellular terminal 70. The demodulator & regenerator component 415 may, for example, produce decoded datastreams that correspond to GSM carriers that are to be transmitted from the terrestrial antenna 402. As shown, the demodulator & regenerator component 415 may be operatively associated with an interference reducer, such as a decision feedback canceller 420, that cancels interference in the signals received by the satellite antenna 401, e.g., interference generated by transmissions from the terrestrial antenna 402. For example, an interference reducer along the lines described in the aforementioned U.S. Ser. No. 60/322,240 and U.S. Ser. No. 10/074,097 may be used.

The information recovered from the demodulator & regenerator component 415 may then be reformatted and remodulated by a modulator component 425. The remodulated signal is then filtered and amplified by a filter 430 and a power amplifier 435 to produce a signal for transmission to the cellular terminal 70 via the terrestrial antenna 402. Power information obtained by the demodulator & regenerator component 415 may be used by a modulator component 475 to control the power of a signal transmitted to the satellite 80.

Signals received from the cellular terminal 70 via the terrestrial antenna 402 are processed by a bandpass filter 455 and an LNA 460. The signal produced by the LNA 460 is processed by a demodulator & regenerator component 465 to recover information in a format suitable for remodulation and transmission to the satellite 80. The demodulator & regenerator component 465 may, for example, produce respective datastreams that correspond to respective GSM carriers received from the terrestrial antenna 402. As shown, the demodulator & regenerator component 465 may be operatively associated with an interference reducer, such as a decision feedback canceller 470, that cancels interference in the signals received by the terrestrial antenna 402, e.g., interference generated by transmissions from the satellite antenna 401. For example, an interference reducer along the lines described in the aforementioned U.S. Ser. No. 60/322,240 and U.S. Ser. No. 10/074,097 may be used.

The information recovered from the demodulator & regenerator component 465 is remodulated in a modulator component 475, producing a remodulated signal corresponding to the multiple GSM carriers. This signal is then filtered and amplified by a filter 480 and a power amplifier 485 to produce a signal for transmission to the satellite 80 via the satellite antenna 401. As described above with reference to FIG. 3, the signal may be conveyed via the satellite 80 to a gateway, which may include a complementary radio interface conversion architecture. Power information obtained by the demodulator & regenerator component 465 may be used by the modulator component 425 to control the power of the signal transmitted to the cellular terminal 70.

FIG. 5 illustrates an alternative configuration for a wireless communications and methods system 500 according to further embodiments of the present invention. The system 500 includes an MSC 510 that is linked via a gateway 520 and a satellite 530 to a remote terrestrial terminal interface subsystem, here shown as including a remote terrestrial base station controller 540 connected to base stations 550. The remote BSC 540 is operative to control and communicate cellular terminal information with terrestrial base stations 550. The remote BSC 540 and the gateway 520 include first and second interface converters 542, 522 that provide appropriate conversion between the signaling format(s) used by the MSC 510 and base stations 550 and the signaling format used by the satellite 530. For example, the first and second interface converters 542, 522 may comprise respective concentrator/deconcentrator components.

It will be appreciated that the embodiments of FIGS. 3-5 are provided as examples of possible system and method configurations, and that other configurations also fall within the scope of the invention. In particular, it will be understood that wireless network functionality described above may be distributed in other ways among network components such as satellites, BSCs, MSCs, and base stations.

FIG. 6 illustrates a wireless communications system 600 and methods according to still further aspects of the present invention. The system 600 includes one or more receive-only terrestrial base stations 620 that receive information from terminals 90 over return service links. Information received by the base station 620 is conveyed to a BSC 610 using, for example, landline and/or radio links (e.g., microwave or satellite links). Forward service links to the terminals 90 are provided via a satellite 640 and a satellite gateway 630 that are linked to the BSC 610. The forward service links and the return service links to and from the terminals 90 may use the same frequency bands and/or signaling protocols (e.g., GSM data format with GMSK modulation), or may use respective different frequency bands and/or signaling protocols. It will be appreciated that embodiments of the present invention may use a structure complementary to that of FIG. 6. For example, transmit-only base stations fed by conventional landlines (e.g., from a BSC) could be used to provide downlinks to terminals, while uplinks from terminals are provided via a communications satellite.

FIG. 7 illustrates another “repeater” configuration for a wireless communications system 700 according to further embodiments of the present invention. The system 700 includes an MSC 712 and a BSC 714 that communicates with a remote terrestrial terminal interface subsystem, here including a remote transmit-only terrestrial base station 740, via a repeater including a gateway 720 and a satellite 730. The remote terrestrial transmit-only base station 740 includes a deconcentrator 742 that receives signals from the satellite 730 and converts the signals received over the satellite link to, for example, GSM-format signals transmitted to cellular terminals 95. The gateway 720 includes a concentrator 722 that performs conversion functions complementary to those of the deconcentrator 742. The BSC 714 is also connected to one or more receive-only base stations 750 that receive signals from terminals 95 and convey information therein to the BSC 714 using, for example, conventional cable, fiber or terrestrial microwave links. A combination of the terrestrial transmit-only base station 740 and the receive-only base station 750 may be viewed as forming a satellite-linked terrestrial terminal interface subsystem.

In the drawings and foregoing description thereof, there have been disclosed exemplary embodiments of the invention. Terms employed in the description are used in a generic and descriptive sense and not for purposes of limitation, the scope of the invention being set forth in the following claims.

Karabinis, Peter D.

Patent Priority Assignee Title
8078101, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Systems and methods for terrestrial reuse of cellular satellite frequency spectrum in a time-division duplex and/or frequency-division duplex mode
8131293, Sep 23 2003 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Systems and methods for mobility management in overlaid mobile communications systems
8145126, Aug 11 2004 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Satellite-band spectrum utilization for reduced or minimum interference
8169955, Jun 19 2006 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Systems and methods for orthogonal frequency division multiple access (OFDMA) communications over satellite links
8238819, Sep 11 2003 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Systems and methods for inter-system sharing of satellite communications frequencies within a common footprint
8340592, Mar 24 2003 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Radioterminals and operating methods that receive multiple measures of information from multiple sources
8655398, Mar 08 2004 U S BANK NATIONAL ASSOCIATION Communications systems and methods including emission detection
9037078, Nov 02 2004 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
Patent Priority Assignee Title
4901307, Oct 17 1986 QUALCOMM INCORPORATED A CORPORATION OF DELAWARE Spread spectrum multiple access communication system using satellite or terrestrial repeaters
5073900, Mar 19 1990 ATC Technologies, LLC Integrated cellular communications system
5303286, Mar 29 1991 THERMO FUNDING COMPANY LLC Wireless telephone/satellite roaming system
5339330, Mar 19 1990 ATC Technologies, LLC Integrated cellular communications system
5394561, Mar 06 1990 Intellectual Ventures I LLC Networked satellite and terrestrial cellular radiotelephone systems
5446756, Mar 19 1990 ATC Technologies, LLC Integrated cellular communications system
5448623, Oct 10 1991 THERMO FUNDING COMPANY LLC Satellite telecommunications system using network coordinating gateways operative with a terrestrial communication system
5511233, Apr 05 1994 ATC Technologies, LLC System and method for mobile communications in coexistence with established communications systems
5555257, Jan 11 1994 Ericsson GE Mobile Communications Inc. Cellular/satellite communications system with improved frequency re-use
5584046, Nov 04 1994 Cornell Research Foundation, Inc.; Cornell Research Foundation, Inc Method and apparatus for spectrum sharing between satellite and terrestrial communication services using temporal and spatial synchronization
5612703, Mar 19 1990 ATC Technologies, LLC position determination in an integrated cellular communications system
5619525, Jun 06 1995 THERMO FUNDING COMPANY LLC Closed loop power control for low earth orbit satellite communications system
5631898, Jan 11 1994 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
5761605, Oct 11 1996 BROADBAND INVESTMENTS, LTD Apparatus and method for reusing satellite broadcast spectrum for terrestrially broadcast signals
5765098, Jan 02 1995 Agence Spatiale Europeenne Method and system for transmitting radio signals between a fixed terrestrial station and user mobile terminals via a network of satellites
5812947, Jan 11 1994 Ericsson Inc. Cellular/satellite communications systems with improved frequency re-use
5832379, Mar 19 1990 ATC Technologies, LLC Communications system including control means for designating communication between space nodes and surface nodes
5835857, Mar 19 1990 ATC Technologies, LLC Position determination for reducing unauthorized use of a communication system
5848060, Jan 11 1994 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
5852721, Jun 08 1994 U S BANK NATIONAL ASSOCIATION Method and apparatus for selectively retrieving information from a source computer using a terrestrial or satellite interface
5878329, Mar 19 1990 ATC Technologies, LLC Power control of an integrated cellular communications system
5884142, Apr 15 1997 THERMO FUNDING COMPANY LLC Low earth orbit distributed gateway communication system
5887258, Oct 28 1996 Airbus Operations SAS Device for allowing the use in an aircraft of radio communication means
5907541, Sep 17 1997 Lockheed Martin Corp. Architecture for an integrated mobile and fixed telecommunications system including a spacecraft
5926758, Aug 26 1996 LEO ONE IP, L L C Radio frequency sharing methods for satellite systems
5930708, Mar 21 1996 Northrop Grumman Systems Corporation Communications satellite router-formatter
5937332, Mar 21 1997 HIGHBRIDGE PRINCIPAL STRATEGIES, LLC, AS COLLATERAL AGENT Satellite telecommunications repeaters and retransmission methods
5940753, Oct 06 1997 ATC Technologies, LLC Controller for cellular communications system
5991345, Sep 22 1995 Qualcomm Incorporated Method and apparatus for diversity enhancement using pseudo-multipath signals
5995832, Mar 19 1990 ATC Technologies, LLC Communications system
6011951, Aug 22 1997 HANGER SOLUTIONS, LLC Technique for sharing radio frequency spectrum in multiple satellite communication systems
6023605, Mar 19 1997 Fujitsu Limited Dual layer satellite communications system and geostationary satellite therefor
6052558, Apr 28 1997 CDC PROPRIETE INTELLECTUELLE Networked repeater
6052560, Oct 15 1997 Ericsson Inc Satellite system utilizing a plurality of air interface standards and method employing same
6052586, Aug 29 1997 HIGHBRIDGE PRINCIPAL STRATEGIES, LLC, AS COLLATERAL AGENT Fixed and mobile satellite radiotelephone systems and methods with capacity sharing
6055425, Nov 11 1996 Nokia Telecomunications Oy Aeronautical cellular network
6067442, Oct 10 1991 THERMO FUNDING COMPANY LLC Satellite communications system having distributed user assignment and resource assignment with terrestrial gateways
6072430, Apr 09 1997 ICO Services LTD Satellite terminal position determination
6085094, Aug 27 1998 Microsoft Technology Licensing, LLC Method for optimizing spectral re-use
6091933, Jan 03 1997 THERMO FUNDING COMPANY LLC Multiple satellite system power allocation by communication link optimization
6097752, Jun 06 1995 THERMO FUNDING COMPANY LLC Closed loop power control for low earth orbit satellite communications system
6101385, Oct 09 1997 THERMO FUNDING COMPANY LLC Satellite communication service with non-congruent sub-beam coverage
6108561, Mar 19 1991 ATC Technologies, LLC Power control of an integrated cellular communications system
6134437, Jun 13 1997 Ericsson Inc Dual-mode satellite/cellular phone architecture with physically separable mode
6157811, Jan 11 1994 Ericsson Inc. Cellular/satellite communications system with improved frequency re-use
6157834, Dec 29 1997 HANGER SOLUTIONS, LLC Terrestrial and satellite cellular network interoperability
6160994, Dec 19 1996 THERMO FUNDING COMPANY LLC Interactive fixed and mobile satellite network
6169878, Oct 11 1996 BROADBAND INVESTMENTS, LTD Apparatus and method for transmitting terrestrial signals on a common frequency with satellite transmissions
6198730, Oct 13 1998 CDC PROPRIETE INTELLECTUELLE Systems and method for use in a dual mode satellite communications system
6198921, Nov 16 1998 PACWEST HOLDING CORPORATION Method and system for providing rural subscriber telephony service using an integrated satellite/cell system
6201967, Sep 09 1996 DBSD SERVICES LIMITED Communications apparatus and method
6233463, Sep 04 1996 THERMO FUNDING COMPANY LLC Automatic satellite terrestrial mobile terminal roaming system and method
6240124, Jun 06 1995 THERMO FUNDING COMPANY LLC Closed loop power control for low earth orbit satellite communications system
6253080, Jul 08 1999 THERMO FUNDING COMPANY LLC Low earth orbit distributed gateway communication system
6256497, Apr 01 1997 DBSD SERVICES LIMITED Interworking between telecommunications networks
6324405, Sep 09 1996 ICO Services LTD Communications apparatus and method for mobile platforms having a plurality of users
6339707, Jun 02 1997 Hughes Electronics Corporation Method and system for providing wideband communications to mobile users in a satellite-based network
6418147, Jan 21 1998 THERMO FUNDING COMPANY LLC Multiple vocoder mobile satellite telephone system
6449461, Jul 15 1996 Mobile Satellite Ventures, LP System for mobile communications in coexistence with communication systems having priority
6522865, Aug 10 1999 ATC Technologies, LLC Hybrid satellite communications system
6570858, Nov 01 1999 CDC PROPRIETE INTELLECTUELLE Satellite-based communications system with terrestrial repeater and method therefor
6603967, Sep 03 1997 RPX Corporation Call routing in a radio system
6628919, Aug 09 2000 Hughes Electronics Corporation Low-cost multi-mission broadband communications payload
6684057, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Systems and methods for terrestrial reuse of cellular satellite frequency spectrum
6735437, Jun 26 1998 Hughes Electronics Corporation Communication system employing reuse of satellite spectrum for terrestrial communication
6775251, Sep 17 1998 THERMO FUNDING COMPANY LLC Satellite communication system providing multi-gateway diversity and improved satellite loading
6785543, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Filters for combined radiotelephone/GPS terminals
6813493, Mar 01 2001 RPX Corporation Cellular mobile telephone system that can be used on board a vehicle
6856787, Feb 12 2002 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Wireless communications systems and methods using satellite-linked remote terminal interface subsystems
6859652, Aug 02 2000 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Integrated or autonomous system and method of satellite-terrestrial frequency reuse using signal attenuation and/or blockage, dynamic assignment of frequencies and/or hysteresis
6879829, May 16 2003 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT SYSTEMS AND METHODS FOR HANDOVER BETWEEN SPACE BASED AND TERRESTRIAL RADIOTERMINAL COMMUNICATIONS, AND FOR MONITORING TERRESTRIALLY REUSED SATELLITE FREQUENCIES AT A RADIOTERMINAL TO REDUCE POTENTIAL INTERFERENCE
6889042, Oct 28 1998 Alcatel Cellular mobile telephone system usable on board a passenger transport vehicle
6892068, Aug 02 2000 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Coordinated satellite-terrestrial frequency reuse
6937857, May 28 2002 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Systems and methods for reducing satellite feeder link bandwidth/carriers in cellular satellite systems
6975837, Jan 21 2003 The DIRECTV Group, Inc. Method and apparatus for reducing interference between terrestrially-based and space-based broadcast systems
6999720, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Spatial guardbands for terrestrial reuse of satellite frequencies
7006789, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Space-based network architectures for satellite radiotelephone systems
7031702, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Additional systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
7039400, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Systems and methods for monitoring terrestrially reused satellite frequencies to reduce potential interference
7062267, Sep 14 2001 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Methods and systems for modifying satellite antenna cell patterns in response to terrestrial reuse of satellite frequencies
7639981, Nov 02 2004 U S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT Apparatus and methods for power control in satellite communications systems with satellite-linked terrestrial stations
20020122408,
20020146979,
20020151303,
20020177465,
20030003815,
20030022625,
20030054762,
20030054815,
20030068978,
20030149986,
20030153308,
20040072539,
20040102156,
20040121727,
20040142660,
20040192200,
20040192293,
20040192395,
20040203393,
20040203742,
20040240525,
20050026606,
20050037749,
20050041619,
20050064813,
20050079816,
20050090256,
20050118948,
20050136836,
20050164700,
20050164701,
20050170834,
20050181786,
20050201449,
20050208890,
20050221757,
20050227618,
20050239399,
20050239403,
20050239404,
20050239457,
20050245192,
20050260947,
20050260984,
20050265273,
20050272369,
20050282542,
20050288011,
20060040613,
20060040657,
20060040659,
20060094352,
20060094420,
20060105707,
20060111041,
20060135058,
20060135060,
20060135070,
EP506255,
EP597225,
EP748065,
EP755163,
EP762669,
EP797319,
EP831599,
EP998062,
EP1059826,
EP1193989,
FR2803713,
WO154314,
WO57578,
WO9428684,
WO9821838,
///////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 13 2002KARABINIS, PETER D Mobile Satellite Ventures, LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0367180841 pdf
Jun 16 2005Mobile Satellite Ventures, LPATC Technologies, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0367180874 pdf
Mar 30 2006Mobile Satellite Ventures LPBANK OF NEW YORK, THESECURITY AGREEMENT0208310189 pdf
Mar 30 2006MSV FINANCE CO BANK OF NEW YORK, THESECURITY AGREEMENT0208310189 pdf
May 09 2006ATC Technologies, LLC(assignment on the face of the patent)
Oct 01 2010ATC Technologies, LLCWILMINGTON TRUST FSB, AS COLLATERAL TRUSTEESECURITY AGREEMENT0251260120 pdf
Jun 03 2011LIGHTSQUARED SUBSIDIARY LLCWILMINGTON TRUST FSB, AS COLLATERAL TRUSTEESECURITY AGREEMENT0264380603 pdf
Jun 03 2011LIGHTSQUARED INC OF VIRGINIAWILMINGTON TRUST FSB, AS COLLATERAL TRUSTEESECURITY AGREEMENT0264380603 pdf
Jun 03 2011ATC Technologies, LLCWILMINGTON TRUST FSB, AS COLLATERAL TRUSTEESECURITY AGREEMENT0264380603 pdf
Jun 03 2011LIGHTSQUARED LPWILMINGTON TRUST FSB, AS COLLATERAL TRUSTEESECURITY AGREEMENT0264380603 pdf
Dec 07 2015ATC Technologies, LLCJEFFERIES FINANCE LLCSECURITY AGREEMENT SECOND LIEN 0375730963 pdf
Dec 07 2015ATC Technologies, LLCCredit Suisse AG, Cayman Islands BranchSECURITY AGREEMENT FIRST LIEN 0375730939 pdf
May 27 2020ATC Technologies, LLCJEFFERIES FINANCE LLCSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0537550916 pdf
Oct 22 2020Credit Suisse AG, Cayman Islands BranchCORTLAND CAPITAL MARKET SERVICES LLCASSIGNMENT OF SECURITY INTEREST0542140165 pdf
Oct 23 2020ATC Technologies, LLCU S BANK NATIONAL ASSOCIATION, AS COLLATERAL TRUSTEEFIRST LIEN PATENT SECURITY AGREEMENT0542620295 pdf
Oct 23 2020CORTLAND CAPITAL MARKET SERVICES LLCLIGADO NETWORKS LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0542970724 pdf
Oct 23 2020ATC Technologies, LLCU S BANK NATIONAL ASSOCIATION, AS COLLATERAL TRUSTEESECOND LIEN PATENT SECURITY AGREEMENT0542620207 pdf
Oct 23 2020JEFFERIES FINANCE LLCATC Technologies, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0542970444 pdf
Oct 23 2020ATC Technologies, LLCU S BANK NATIONAL ASSOCIATIONU S ASSIGNMENT OF AND AMENDMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENT0542980001 pdf
Oct 23 2020LIGADO NETWORKS LLCU S BANK NATIONAL ASSOCIATIONU S ASSIGNMENT OF AND AMENDMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENT0542980001 pdf
Oct 23 2020JEFFERIES FINANCE LLCU S BANK NATIONAL ASSOCIATIONU S ASSIGNMENT OF AND AMENDMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENT0542980001 pdf
Oct 23 2020CORTLAND CAPITAL MARKET SERVICES LLCATC Technologies, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0542970724 pdf
Dec 23 2022ATC Technologies, LLCU S BANK NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0622300806 pdf
Mar 02 2023U S BANK NATIONAL ASSOCIATION, AS EXISTING COLLATERAL AGENTU S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENTU S ASSIGNMENT OF AND AMENDMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENTS0629520826 pdf
Dec 12 2024U S BANK NATIONAL ASSOCIATIONU S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENTASSIGNMENT OF AND AMENDMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENTS0696310485 pdf
Dec 12 2024LIGADO NETWORKS LLCU S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENTASSIGNMENT OF AND AMENDMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENTS0696310485 pdf
Dec 12 2024ATC Technologies, LLCU S BANK TRUST COMPANY, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENTASSIGNMENT OF AND AMENDMENT TO INTELLECTUAL PROPERTY SECURITY AGREEMENTS0696310485 pdf
Date Maintenance Fee Events
Aug 15 2012M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 15 2016M1553: Payment of Maintenance Fee, 12th Year, Large Entity.
Jun 23 2017ASPN: Payor Number Assigned.


Date Maintenance Schedule
Mar 29 20144 years fee payment window open
Sep 29 20146 months grace period start (w surcharge)
Mar 29 2015patent expiry (for year 4)
Mar 29 20172 years to revive unintentionally abandoned end. (for year 4)
Mar 29 20188 years fee payment window open
Sep 29 20186 months grace period start (w surcharge)
Mar 29 2019patent expiry (for year 8)
Mar 29 20212 years to revive unintentionally abandoned end. (for year 8)
Mar 29 202212 years fee payment window open
Sep 29 20226 months grace period start (w surcharge)
Mar 29 2023patent expiry (for year 12)
Mar 29 20252 years to revive unintentionally abandoned end. (for year 12)