A liquid crystal display module includes a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates, an illuminating device disposed behind the liquid crystal display panel, an upper frame, and a lower frame. The upper and lower frames fix therebetween the liquid crystal display panel and the illuminating device as an integral unit in cooperation with each other. The upper frame is provided with at least one recessed portion in a sidewall thereof, the at least one recessed portion is set back in a direction parallel with major surfaces of the substrates from the sidewall, and a bottom of the at least one recessed portion is provided with a tapped hole adapted for engagement with a screw for mounting the liquid crystal display module to external equipment.
|
1. A liquid crystal display module comprising:
a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates;
an illuminating device disposed behind said liquid crystal display panel;
an upper frame; and
a lower frame, said upper frame and said lower frame fixing therebetween said liquid crystal display panel and said illuminating device as an integral unit in cooperation with each other, and
said upper frame being provided with at least one recessed portion in a sidewall thereof, said at least one recessed portion being set back in a direction parallel with major surfaces of said pair of substrates from said sidewall, and
a bottom of said at least one recessed portion being provided with a tapped hole adapted for engagement with a screw for mounting said liquid crystal display module to external equipment.
9. A liquid crystal display module comprising:
a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates;
an illuminating device disposed behind said liquid crystal display panel;
an upper frame; and
a lower frame, said upper frame and said lower frame fixing therebetween said liquid crystal display panel and said illuminating device as an integral unit in cooperation with each other, and
said upper frame being provided with at least one recessed portion in a sidewall thereof, said at least one recessed portion being set back in a direction parallel with major surfaces of said pair of substrates from said sidewall,
a bottom of said at least one recessed portion being provided with a hole adapted for passing therethrough a screw for mounting said liquid crystal display module to external equipment, and
a portion of said lower frame facing said hole being provided with a tapped hole adapted for engagement with said screw.
0. 22. A liquid crystal display device comprising:
an upper frame element;
a liquid crystal panel;
a backlight unit disposed behind said liquid crystal panel; and
a light diffusing plate disposed between said liquid crystal panel and said backlight unit,
wherein said backlight unit comprises a lower frame element, a reflective plate disposed over said lower frame element and a plurality of linear lamps arranged over said reflective plate,
wherein a plurality of screw-receiving holes are formed in a bottom and a side wall of said lower frame element,
wherein said upper frame element is fixed with said sidewall of said lower frame element by screws, and said bottom of said lower frame element is fixed with an outer frame element by screws, and
wherein a space is formed to face said screw-receiving holes in said lower frame element, and
wherein a power unit circuit board is disposed at a rear side of said outer frame element,
said power unit circuit board not being overlapped with said plurality of screw-receiving holes in said bottom of lower frame element.
0. 28. A liquid crystal display device comprising:
a liquid crystal panel;
a backlight unit disposed behind said liquid crystal panel; and
a light diffusing plate disposed between said liquid crystal panel and said backlight unit, wherein
said backlight unit comprises a frame element, a reflective plate disposed over said frame element and a plurality of linear lamps arranged over said reflective plate,
said frame element is formed with a screw-receiving hole,
at least one spaced area is formed between said frame element and said reflective plate, and
a distance between a portion of said frame element formed with said screw-receiving hole and said reflective plate is longer than a distance between said frame element and said reflective plate in said at least one spaced area as measured right under a corresponding one of said linear lamps, and
wherein a power unit circuit board is disposed at a rear side of said outer frame element,
said power unit circuit board not being overlapped with said plurality of screw-receiving holes in said bottom of lower frame element.
0. 34. A liquid crystal display device comprising:
an upper frame element;
a liquid crystal panel;
a backlight unit disposed behind said liquid crystal panel; and
a light diffusing plate disposed between said liquid crystal panel and said backlight unit, wherein
said backlight unit comprises a lower frame element, a reflective plate disposed over said lower frame element and a plurality of linear lamps arranged over said reflective plate,
said liquid crystal panel is disposed between said upper frame element and said lower frame element,
a plurality of screw-receiving holes are formed in a bottom and a sidewall of said lower frame-element, wherein said upper frame element is fixed with said sidewall of said lower frame element by screws,
said bottom of said lower frame element is fixed with an outer frame element by screws, and
screws inserted in said screw-receiving holes of said lower frame element are not in contact with said reflective plate, and
a power unit circuit board is disposed at a rear side of said outer frame element,
said power unit circuit board not being overlapped with said plurality of screw-receiving holes in said bottom of lower frame element.
0. 35. A liquid crystal display device comprising:
an upper frame element;
a liquid crystal panel;
a backlight unit disposed behind said liquid crystal panel; and
a light diffusing plate disposed between said liquid crystal panel and said backlight unit, wherein
said backlight unit comprises a lower frame element, a reflective plate disposed over said lower frame element and a plurality of linear lamps arranged over said reflective plate,
said liquid crystal panel is disposed between said upper frame element and said lower frame element,
four screw receiving holes are formed in a bottom of said lower frame element, and each of said four screw-receiving holes are located at a first quadrant, second quadrant, third quadrant, or fourth quadrant where a center of said lower frame element is an origin relative to the first, second, third and fourth quadrants,
said bottom of said lower frame element is fixed with an outer frame element by screws,
said four screw receiving holes are not overlapped with a power unit circuit board connecting said liquid crustal panel, and
screws inserted from said outer frame side toward said lower frame side in said screw-receiving holes of said lower frame element are not in contact with said reflective plate.
2. A liquid crystal display module according to
3. A liquid crystal display module according to
4. A liquid crystal display module according to
5. A liquid crystal display module according to
6. A liquid crystal display module according to
7. A liquid crystal display module according to
8. A liquid crystal display monitor including said liquid crystal display module according to
10. A liquid crystal display module according to
11. A liquid crystal display module according to
12. A liquid crystal display module according to
13. A liquid crystal display module according to
14. A liquid crystal display module according to
15. A liquid crystal display module according to
16. A liquid crystal display monitor including said liquid crystal display module according to
0. 17. A liquid crystal display module comprising:
a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates;
an illuminating device disposed behind said liquid crystal display panel;
an upper frame; and
a lower frame,
said upper frame and said lower frame fixing therebetween said liquid crystal display panel and said illuminating device as an integral unit in cooperation with each other, and
said lower frame being provided with at least one tapped hole in a rear surface thereof adapted for engagement with a screw for mounting said liquid crystal display module to external equipment.
0. 18. A liquid crystal display module according to
0. 19. A liquid crystal display module according to
0. 20. A liquid crystal display module according to
0. 21. A liquid crystal display monitor including said liquid crystal display module according to
0. 23. The liquid crystal display device according to claim 22, wherein said plurality of screw-receiving holes are adapted to be used for fixing a substrate behind said lower frame element.
0. 24. The liquid crystal display device according to claim 22, wherein at least a portion of said reflective plate touches said lower frame element.
0. 25. The liquid crystal display device according to claim 22, wherein said linear lamps are cathode fluorescent lamps.
0. 26. The liquid crystal display device according to claim 22, wherein
said reflective plate is formed with portions concave toward said liquid crystal panel and portions convex toward said liquid crystal panel, and
said cathode fluorescent lamps are disposed over said portions concave toward said liquid crystal panel, respectively.
0. 27. The liquid crystal display device according to claim 26, wherein
each of said portions convex toward said liquid crystal panel is disposed between corresponding two adjacent ones of said cathode fluorescent lamps, and
said space provided between said hole-forming portion of said frame element and said reflective plate is formed between a corresponding one of said portions convex toward said liquid crystal panel of said reflective plate and said frame element.
0. 29. The liquid crystal display device according to claim 28, wherein said screw-receiving hole is adapted to be used for fixing a substrate behind said frame element.
0. 30. The liquid crystal display device according to claim 28, wherein at least a portion of said reflective plate touches said frame element.
0. 31. The liquid crystal display device according to claim 28, wherein said linear lamps are cathode fluorescent lamps.
0. 32. The liquid crystal display device according to claim 28, wherein said reflective plate is formed with portions concave toward said liquid crystal panel and portions convex toward said liquid crystal panel, and wherein said cathode fluorescent lamps are disposed over said portions concave toward said liquid crystal panel, respectively.
0. 33. The liquid crystal display device according to claim 32, wherein each of said portions convex toward said liquid crystal panel is disposed between corresponding two adjacent ones of said cathode fluorescent lamps.
0. 36. A liquid crystal display device according to claim 34, wherein said four screw receiving holes are radially located from the center of said lower frame element.
0. 37. A liquid crystal display device according to claim 28, wherein said plurality of screw receiving holes is four.
0. 38. A liquid crystal display device according to claim 34, wherein said plurality of screw receiving holes is four.
|
The present invention relates to a liquid crystal display module and a liquid crystal display monitor mounting the liquid crystal display module.
The liquid crystal display devices have been widely used as a display device capable of displaying high-definition color images for a notebook personal computer and a display monitor. The liquid crystal display device comprises a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of transparent substrates, an illuminating device for visualizing latent images electronically formed in the liquid crystal display panel, and an optically compensating sheet disposed between the liquid crystal display panel and the illuminating device. These components can be assembled as an integral unit which is capable of being mounted into a notebook personal computer or a liquid crystal display monitor, and which is commonly called a liquid crystal display module.
Among the well-known liquid crystal display devices, one type is a simple-matrix type liquid crystal display device incorporating a simple-matrix type liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates each formed with parallel strip electrodes on their inner surfaces arranged such that the parallel strip electrodes on one of the pair of substrates intersect those on the other of the pair of substrates, and another type is an active-matrix type liquid crystal display device incorporating a liquid crystal display panel provided with switching elements on one of a pair of substrates sandwiching a liquid crystal layer such that each of the switching elements selects a corresponding one of pixels of the liquid crystal display panel.
The active-matrix type liquid crystal display panel is divided into a so-called vertical electric field type (commonly called the TN type) which is represented by the TN (Twisted Nematic) type and uses a liquid crystal display panel having plural strip electrodes formed on each of a pair of upper and lower substrates for selecting pixels, and a so-called horizontal electric field type (commonly called IPS (In-Plane Switching) type) which uses a liquid crystal display panel having plural electrodes formed only on one of a pair of upper and lower substrates for selecting pixels.
In the TN type liquid crystal display panel, the liquid crystal molecules are aligned to twist by 90 degrees, for example, between a pair of upper and lower substrates, a pair of polarizers are disposed on the outer surfaces of the upper and lower substrates of the liquid crystal display panel, respectively, with their absorption axes oriented in the cross-Nicole arrangement, and the absorption axis of the entrance-side polarizer is aligned in parallel with or perpendicularly to a rubbing direction of the entrance-side substrate.
In the TN-type active-matrix type liquid crystal display panel, when a voltage is not applied across the liquid crystal layer, the linearly polarized light entering the liquid crystal layer through the entrance-side polarizer propagates along the twist of the liquid crystal molecules of the liquid crystal layer, if the transmission axis of the exit-side polarizer is coincident with the azimuthal angle of the plane of polarization of the linearly polarized light leaving the liquid crystal layer, all the linearly polarized light exits from the liquid crystal display panel 1 to produce a white display (the so-called normally open mode), but, on the other hand, when a voltage is across the liquid crystal layer, a director which is a unit vector representing a direction of the average alignment of the axes of the liquid crystal molecules of the liquid crystal layer is perpendicular to the major surface of the substrate, therefore the azimuthal angle of the plane of polarization of the linearly polarized light entering the liquid crystal layer is not changed, and consequently, the azimuthal angle of the plane of polarization of the linearly polarized light leaving the liquid crystal layer becomes coincident with that of the absorption axis of the exit-side polarizer, and produces a black display (For further detail, see “Basics and Application of Liquid Crystal,” Industrial Research Association, Tokyo, 1991.).
On the other hand, in the IPS type liquid crystal display panel which has plural electrodes and wiring therefor for selecting pixels formed only on one of a pair of substrates, switches the liquid crystal molecules in planes parallel with the major surface of the substrates by applying a voltage between adjacent electrodes (a pixel electrode and a counter electrode) on the substrate, the polarization axes of the polarizers are arranged so as to produce a black display when no voltage is applied between the adjacent electrodes (the so-called normally closed mode).
In the IPS type liquid crystal display panel, the liquid crystal molecules in an initial state are in a homogeneous orientation in which the axes of the liquid crystal molecules are parallel with the major surfaces of the substrates, and the director of the liquid crystal molecules are parallel with or inclined at a small angle with a direction of the electrode wiring in planes parallel with the major surfaces of the substrates when no voltage is applied between the adjacent electrodes, and if a voltage is applied between the adjacent electrodes, the director of the liquid crystal molecules rotates toward a direction perpendicular to the direction of the electrode wiring according to the applied voltage. When the director is inclined at 45 degrees with respect to a direction of the director where no voltage is applied between the adjacent electrodes, the liquid crystal layer having a voltage thereacross serves to rotate the the azimuthal angle of plane of polarization through 90 degrees like a half-wave plate such that the azimuthal angle of plane of polarization of the light becomes coincident with the transmission axis of the exit-side polarizer, resulting in production of a white display.
The IPS type liquid crystal display panel has advantages that hue and contrast of a display vary little with viewing angles and consequently, their viewing angles are increased (See Japanese Patent Application National Publication No. Hei 5-505, 247 published on Aug. 5, 1993 which corresponds to WO91/10936 of PCT).
The most commonly used system for producing a full color display in the liquid crystal display devices using the above-explained types of liquid crystal display panels is one using color filters. In this system, one pixel corresponding to one dot capable of producing a color display is subdivided into three subpixels provided with three color filters corresponding to three primary colors, red (R), green (G) and blue (B), for example, respectively.
Recently, the liquid crystal display devices have been increased in screen size and in display resolution, and hence the liquid crystal display modules incorporated into the liquid crystal display device have been increased in weight. As for an external shape of the liquid crystal display modules, there has been a strong demand for reduction of a border area around a useful display area of a notebook personal computer or a liquid crystal display monitor incorporating such liquid crystal display modules. This is attributable to a demand that the outside dimensions of the notebook personal computer or the liquid crystal display monitor be made as small as possible. Hereinafter, the notebook personal computer and the liquid crystal display monitor may be referred to as the liquid crystal display monitor and the like.
The small outside dimensions can mean a superior saving in space, and as for design, the screen area of the liquid crystal display monitor appears larger if its border area around its useful display area is made smaller.
One of problems to be solved in design for realization of reduction of a border area around a useful display area is how to mount a liquid crystal display module on a display section of a personal computer, a liquid crystal display monitor or the like.
In a liquid crystal display module MDL, a liquid crystal display panel PNL and an illuminating device (a backlight) are fixed together by an upper frame SHD shaped from a metal material to be provided with a shielding function and to serve as an upper case and a lower frame (here a molded case MCA) which serves as a lower case. This backlight is of the so-called edge light type comprising a light guide made of a transparent plate and a line light source disposed at its edge, but only a light guide GLB is shown in
Incidentally, the lower frame is not limited to the molded case MCA shaped from a resin material as shown in
A front surface of the upper frame SHD in the form of a rectangular peripheral frame is formed with a recessed portion ALC set back from the front surface in a direction perpendicular to it, and a mounting hole (a hole for receiving a screw) HLD is made in a bottom of the recessed portion ALC. A mounting screw SCR passed through the mounting hole HLD engages with a tapped hole NAT made in a screw-receiving boss BOS provided to a housing CAS of the monitor or the like to fix the module and the housing together.
Incidentally, the molded case MCA shaped from a resin material is used as the lower frame in
However, with such a mounting structure, there is a limit to reduction of the width W of a border area of the upper frame SHD, a bead or the like needs to be formed around the mounting hole HLD to add to the strength of the portion around it, and consequently, it is difficult to realize the reduction of a border area around a useful display area of the liquid crystal display module.
In another exemplary conventional mounting structure, screw-receiving holes are made in sidewalls of a liquid crystal display module, and the module is secured to a housing of a liquid crystal display monitor or the like by screws extending from the housing into the module and engaging with the screw-receiving holes. In this mounting structure, mounting bosses (members for covering screws, or naves) need to be provided to the housing of the liquid crystal display monitor or the like, therefore the outside dimensions of the housing are increased, and consequently, it is difficult to satisfy the demand that the outside dimensions of the housing of the liquid crystal display monitor and the like be made as small as possible.
As explained above, in the conventional mounting structure for securing the liquid crystal display module to the housing of the liquid crystal display monitor and the like, the width of a border area of the upper frame needs to be wide enough to secure the mechanical strength of tapped holes and portions around the tapped holes, and consequently, it is difficult to realize the required reduction of the width of a border area of the upper frame and the required reduction of the outside dimensions of housings of the monitors and the like.
It is an object of the present invention to eliminate the above-explained problems with the prior art and thereby to provide a liquid crystal display module provided with a novel mounting structure for mounting the liquid crystal display module on a liquid crystal display monitor and the like which is capable of realizing the reduction of the width of a border area of the upper frame of the liquid crystal display module and the reduction of the outside dimensions of housings of a liquid crystal display monitor and the like, and to provide a liquid crystal display monitor mounting the liquid crystal display module.
To accomplish the above-mentioned object, in an embodiment of the liquid crystal display module in accordance with the present invention, the liquid crystal display module is provided with a recessed portion in its outermost sidewall and a screw-receiving hole made in the recessed portion for side mounting. Placement of the screw-receiving hole in the sidewall of the liquid crystal display module makes possible the reduction of a border area around a useful display area of the liquid crystal display module. In the structure of mounting the liquid crystal display module on a display section of a liquid crystal display monitor and the like, placement of a mounting boss in a portion of a housing of the liquid crystal display monitor corresponding to the recessed portion suppresses enlargement of the outside dimensions of the liquid crystal display monitor and the like.
The boss is placed into the recessed portion of the liquid crystal display module, a screw is put into the liquid crystal display module through the mounting boss from the side of the liquid crystal display monitor, and the screw fixes the liquid crystal display module to the liquid crystal display monitor. This mounting structure eliminates the need for increasing the outside dimensions of the liquid crystal display monitor. In this structure, provision of a tapped hole in a molded frame of the liquid crystal display module makes possible the side mounting as in the case of the conventional mounting structure.
If the mounting boss is fabricated integrally with the housing of the liquid crystal display monitor in advance, an additional component is not necessary and the assembly is facilitated. Placement of the tapped holes in the molded frame having the greatest volume in the liquid crystal display module facilitates absorption of external vibrations and shocks. The tapped hole can be made directly in the molded frame, but preferably a metal member formed with the tapped hole, that is, a so-called insert, is embedded in the molded frame beforehand, thereby the mounting strength is increased, and consequently, this mounting structure is capable of maintaining the firm mounting external vibrations and shocks.
The present invention is not limited to the side mounting type, but is also applicable to the rear mounting type in which a liquid crystal display module is fixed to a housing of the liquid crystal display monitor or the like at the rear of the liquid crystal display module. In this case, tapped holes are made in the rear surface of a molded case of the liquid crystal display module. The tapped holes can be made directly in the molded case, or may be made in an insert embedded in the molded case. The reduction of a border area around a useful display area is facilitated because there is no necessity for making tapped holes or the like in the sidewall of the liquid crystal display module, and consequently, the outside dimensions of the liquid crystal display monitor or the like can be reduced. In a case where a downlight type illuminating device (a downlight type backlight) is used in the liquid crystal display module, if the tapped holes are made in portions of the molded case corresponding to peaks of a corrugated reflective plate of the backlight, the liquid crystal display module can be fixed to the housing of the liquid crystal display monitor or the like without increasing the thickness of the liquid crystal display module.
The following explains the representative configurations of the liquid crystal display module and the liquid crystal display monitor (including application to TV receiver sets and the like in addition to computer terminals) in accordance with the present invention.
In accordance with an embodiment of the present invention, there is provided a liquid crystal display module comprising: a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates; an illuminating device disposed behind the liquid crystal display panel; an upper frame; and a lower frame, the upper frame and the lower frame fixing therebetween the liquid crystal display panel and the illuminating device as an integral unit in cooperation with each other, and the upper frame being provided with at least one recessed portion in a sidewall thereof, the at least one recessed portion being set back in a direction parallel with major surfaces of the pair of substrates from the sidewall, and a bottom of the at least one recessed portion being provided with a tapped hole adapted for engagement with a screw for mounting the liquid crystal display module to external equipment.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display module comprising: a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates; an illuminating device disposed behind the liquid crystal display panel; an upper frame; and a lower frame, the upper frame and the lower frame fixing therebetween the liquid crystal display panel and the illuminating device as an integral unit in cooperation with each other, and the upper frame being provided with at least one recessed portion in a sidewall thereof, the at least one recessed portion being set back in a direction parallel with major surfaces of the pair of substrates from the sidewall, a bottom of the at least one recessed portion being provided with a hole adapted for passing therethrough a screw for mounting the liquid crystal display module to external equipment, and a portion of the lower frame facing the hole being provided with a tapped hole adapted for engagement with the screw.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display module comprising: a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates; an illuminating device disposed behind the liquid crystal display panel; an upper frame; and a lower frame, the upper frame and the lower frame fixing therebetween the liquid crystal display panel and the illuminating device as an integral unit in cooperation with each other, and the lower frame being provided with at least one tapped hole in a rear surface thereof adapted for engagement with a screw for mounting the liquid crystal display module to external equipment.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display monitor comprising: a liquid crystal display module including a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates, a first frame and a second frame, the first and second frames fixing the liquid crystal display panel therebetween in cooperation with each other, the first frame being provided with a first sidewall extending along a periphery of the pair of substrates and in a direction of a thickness of the liquid crystal display panel outside of the second frame, the first sidewall being provided with at least one recessed portion set back inwardly from the first sidewall; and a housing having a mounting structure facing the at least one recessed portion, the mounting structure being provided with a screw directed toward the at least one recessed portion such that the liquid crystal display panel is fixed to the housing.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display monitor comprising: a liquid crystal display module including a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates, a first frame and a second frame, the first and second frames fixing the liquid crystal display panel therebetween in cooperation with each other, the first frame being provided with a sidewall extending along a periphery of the pair of substrates and in a direction of a thickness of the liquid crystal display panel outside of the second frame; and a housing having a mounting structure facing an outer surface of the first frame and mounting the liquid crystal display panel to the housing, the mounting structure being provided with at least one screw directed toward the sidewall of the first frame for affixing the liquid crystal display panel to the mounting structure, wherein each of the sidewall of the first frame and the mounting structure is provided with a hole for passing each of the at least one screw therethrough, a sidewall of the second frame is provided with a tapped hole for engagement with the at least one screw, and a thickness of the sidewall of the second frame at least in the vicinity of the tapped hole is greater than that of the sidewall of the first frame in the vicinity of the hole provided therein.
In accordance with another embodiment of the present invention, there is provided a liquid crystal display monitor comprising: a liquid crystal display module including a first frame, a liquid crystal display panel having a liquid crystal layer sandwiched between a pair of substrates, an illuminating device disposed behind the liquid crystal display panel, and a second frame arranged in the order named, the first and second frames fixing the liquid crystal display panel and the illuminating device therebetween in cooperation with each other; a housing having a mounting structure facing a rear surface of the second frame and mounting the liquid crystal display panel to the housing, the mounting structure being provided with at least one hole for passing at least one screw therethrough for affixing the liquid crystal display panel to the mounting structure, the rear surface of the second frame being provided with at least one tapped hole for engagement with each of the at least one screw, and a thickness of the rear surface of the second frame in the vicinity of the at least one tapped hole being greater than that of the remainder of the rear surface.
The present invention is not limited to the above configurations, but various changes and modifications may be made without departing from the nature and spirit of the invention. Other objects and configurations of the present invention will be apparent upon consideration of the following detailed description and the drawings.
In the accompanying drawings, in which like reference numerals designate similar components throughout the figures, and in which:
The embodiments of the present invention will now be explained in detail by reference to the drawings.
In
In this embodiment, the upper frame SHD constituting a liquid crystal display module MDL is provided with a recessed portion ALC at each of the four corners of the outermost sidewall such that the recessed portions ALC have a bottom set back horizontally in
Behind the screw-receiving holes HLD are the molded case MCA which serves as a lower frame, and the molded case MCA is formed with tapped holes (not shown) at portions of the molded case MCA facing the respective screw-receiving holes HLD.
In mounting the liquid crystal display module MDL on a case of the liquid crystal display monitor or the like (hereinafter a monitor case) CAS, a screw SCR is inserted into a respective screw-receiving hole HLD of the liquid crystal display module MDL from its side facing a boss BOS provided to the monitor case CAS, and is engaged with a respective tapped hole of the molded case MCA such that the liquid crystal display module is fixed to the monitor case.
The present embodiment makes possible reduction of a border area around a useful display area of the liquid crystal display module MDL. Enlargement of the outside dimensions of the liquid crystal display monitor and the like is suppressed by placement of the mounting bosses BOS on portions of the monitor case CAS of the liquid crystal display monitor corresponding to the recessed portions ALC.
When the recessed portions ALC are set back by 5 mm, for example, from the sidewall of the liquid crystal display module MDL, the bosses BOS are provided on the monitor case CAS of the liquid crystal display monitor or the like such that they extend by 5 mm toward the liquid crystal display module. The bosses BOS are inserted into the recessed portions ALC of the liquid crystal display module MDL, and the screws SCR are inserted into the bosses BOS and then are engaged with the liquid crystal display module MDL.
This mounting structure eliminates the need for enlarging the outside dimensions of the liquid crystal display monitor. The provision of the tapped holes in the molded case MCA of the liquid crystal display module MDL makes possible the mounting of the liquid crystal display module by the side mount system as in the case of the prior art.
Throughout this specification and the appended claims, when the boss is referred to, it is to be understood as including the boss fabricated integrally with the monitor case CAS, the boss which is fabricated separately from the monitor case CAS and then is fixed to the monitor case CAS, and the boss which is fabricated separately from the monitor case CAS and is used as a sleeve without being fixed to the monitor case CAS.
However, if the bosses are fabricated integrally with the monitor case CAS of the liquid crystal display monitor or the like in advance, additional components are not necessary, and also its assembling operation is facilitated. Further, placement of the tapped holes in the molded case MCA having the greatest volume in the liquid crystal display module MDL facilitates absorption of external vibrations and shocks.
In this embodiment, the upper frame SHD constituting a liquid crystal display module MDL is provided with a recessed portion ALC at each of the four corners of the outermost sidewall such that the recessed portions ALC have a bottom set back vertically in
Behind the screw-receiving holes HLD are the molded case MCA which serves as a lower frame, and the molded case MCA is formed with tapped holes NAT at portions of the molded case MCA facing the respective screw-receiving holes HLD.
Mounting of the liquid crystal display module MDL on a case of the liquid crystal display monitor and the like will be explained by reference to
The present embodiment makes possible reduction of a border area around a useful display area of the liquid crystal display module MDL. Enlargement of the outside dimensions of the liquid crystal display monitor and the like is suppressed by placement of the mounting bosses BOS on portions of the monitor case CAS of the liquid crystal display monitor corresponding to the recessed portions ALC.
When the recessed portions ALC are set back by 5 mm, for example, from the sidewall of the liquid crystal display module MDL as in the case of the first embodiment shown in
This mounting structure eliminates the need for enlarging the outside dimensions of the liquid crystal display monitor. The provision of the tapped holes NAT in the molded case MCA of the liquid crystal display module MDL makes possible the mounting of the liquid crystal display module by the side mount system as in the case of the prior art.
If the bosses BOS are fabricated integrally with the monitor case CAS of the liquid crystal display monitor or the like in advance, additional components are not necessary, and also its assembling operation is facilitated. Further, placement of the tapped holes in the molded case MCA having the greatest volume in the liquid crystal display module MDL facilitates absorption of external vibrations and shocks.
In this embodiment, the upper frame SHD constituting a liquid crystal display module MDL is provided with two recessed portions ALC at each of the left-hand and right-hand sides of its outermost sidewall such that the recessed portions ALC have a bottom set back horizontally in
Behind the screw-receiving holes HLD are the molded case MCA which serves as a lower frame, and the molded case MCA is formed with tapped holes NAT at portions of the molded case MCA facing the screw-receiving holes HLD.
In mounting the liquid crystal display module MDL on a case of the liquid crystal display monitor or the like, screws SCR are inserted into the screw-receiving holes HLD of the liquid crystal display module MDL from their sides facing the bosses provided to the monitor case as in the case of
The present embodiment also makes possible reduction of a border area around a useful display area of the liquid crystal display module MDL. Enlargement of the outside dimensions of the liquid crystal display monitor and the like is suppressed by placement of the mounting bosses on portions of the monitor case of the liquid crystal display monitor corresponding to the recessed portions ALC.
When the recessed portions ALC are set back by 5 mm, for example, from the sidewall of the liquid crystal display module MDL as in the embodiments explained in connection with
This mounting structure eliminates the need for enlarging the outside dimensions of the liquid crystal display monitor. The provision of the tapped holes NAT in the molded case MCA of the liquid crystal display module MDL makes possible the mounting of the liquid crystal display module by the side mount system as in the case of the prior art.
If the bosses are fabricated integrally with the monitor case of the liquid crystal display monitor or the like in advance, additional components are not necessary, and also its assembling operation is facilitated. Further, placement of the tapped holes NAT in the molded case MCA having the greatest volume in the liquid crystal display module MDL facilitates absorption of external vibrations and shocks.
In this embodiment, the upper frame SHD constituting a liquid crystal display module MDL is provided with two recessed portions ALC at each of the top and bottom sides of its outermost sidewall such that the recessed portions ALC each have a bottom set back vertically in
Behind the screw-receiving holes HLD are the molded case MCA which serves as a lower frame, and the molded case MCA is formed with tapped holes NAT at portions of the molded case MCA facing the screw-receiving holes HLD.
In mounting the liquid crystal display module MDL on a case of the liquid crystal display monitor or the like, screws SCR are inserted into the screw-receiving holes HLD of the liquid crystal display module MDL from their sides facing the bosses provided to the monitor case as in the case of
The present embodiment also makes possible reduction of a border area around a useful display area of the liquid crystal display module MDL. Enlargement of the outside dimensions of the liquid crystal display monitor and the like is suppressed by placement of the mounting bosses on portions of the monitor case of the liquid crystal display monitor corresponding to the recessed portions ALC.
When the recessed portions ALC are set back by 5 mm, for example, from the sidewall of the liquid crystal display module MDL as in the embodiments explained in connection with
This mounting structure eliminates the need for enlarging the outside dimensions of the liquid crystal display monitor. The provision of the tapped holes NAT in the molded case MCA of the liquid crystal display module MDL makes possible the mounting of the liquid crystal display module by the side mount system as in the case of the prior art.
If the bosses are fabricated integrally with the monitor case of the liquid crystal display monitor or the like in advance, additional components are not necessary, and also its assembling operation is facilitated. Further, placement of the tapped holes NAT in the molded case MCA having the greatest volume in the liquid crystal display module MDL facilitates absorption of external vibrations and shocks.
In this embodiment, the upper frame SHD constituting a liquid crystal display module MDL is provided with two recessed portions ALC similar to those in
Behind the screw-receiving holes HLD are the molded case MCA which serves as a lower frame as in the previous embodiments, and the molded case MCA is formed with tapped holes at portions of the molded case MCA facing the screw-receiving holes HLD.
In mounting the liquid crystal display module MDL on a case of the liquid crystal display monitor or the like, screws SCR are inserted into the screw-receiving holes HLD of the liquid crystal display module MDL from their sides facing the bosses provided to the monitor case as in the case of
The present embodiment also makes possible reduction of a border area around a useful display area of the liquid crystal display module MDL. Enlargement of the outside dimensions of the liquid crystal display monitor and the like is suppressed by placement of the mounting bosses on portions of the monitor case of the liquid crystal display monitor corresponding to the recessed portions ALC.
When the recessed portions ALC are set back by 5 mm, for example, from the sidewall of the liquid crystal display module MDL as in the embodiments explained in connection with
This mounting structure eliminates the need for enlarging the outside dimensions of the liquid crystal display monitor. The provision of the tapped holes in the molded case MCA of the liquid crystal display module MDL makes possible the mounting of the liquid crystal display module by the side mount system as in the case of the prior art.
If the bosses are fabricated integrally with the monitor case of the liquid crystal display monitor or the like in advance, additional components are not necessary, and also its assembling operation is facilitated. Further, placement of the tapped holes in the molded case MCA having the greatest volume in the liquid crystal display module MDL facilitates absorption of external vibrations and shocks.
In the liquid crystal display panel PNL constituting the liquid crystal display module MDL in the embodiment explained in connection with
In this structure, the border area of the upper frame SHD is restricted by the widths of the printed circuit boards FPC1 and FPC2 only, and consequently, this facilitates reduction of the border area of the upper frame SHD.
In the above embodiments, the number of the screw-receiving holes is selected to be four, but is not limited to four, and provision of at least two screw-receiving holes makes possible the mounting of the liquid crystal display module on the monitor case of the liquid crystal display monitor or the like.
By cutting out or retracting only portions of the printed circuit boards corresponding to the screw-receiving holes, the liquid crystal display module having reduced a border area around its useful display area is realized, and consequently, the liquid crystal display monitor or the like is obtained which is capable of limiting an increase in its outside dimensions.
A module receiving member MC shaped from a metal plate as shown in
The bosses BOS are placed in the recessed portions ALC formed at the four corners of the liquid crystal display module MDL, and the screws SCR are inserted into the recessed portions ALC through the screw-receiving holes HLDM made in the module receiving member MC, and then are engaged with the tapped holes made in the molded case such that the liquid crystal display module MDL is fixed to the module receiving member MC.
With this configuration, the liquid crystal display module having reduced a border area around its useful display area can be mounted on the liquid crystal display monitor without increasing its outside dimensions, and consequently, the liquid crystal display monitor is realized which has a large screen and features a saving of space.
The liquid crystal display module MDL housed within the dish-shaped module receiving member MC is housed within the monitor case CAS constituting a display section of the liquid crystal display monitor.
The liquid crystal display module MDL is provided with a recessed portion ALC for mounting at each of two adjacent corners of one (a left-hand side in
Incidentally, disposed behind the liquid crystal display module MDL are an interface board I/F and a power supply board mounting a power supply circuit PWU.
The mounting structure for the above-describe liquid crystal display module is such that the screws are inserted into the liquid crystal display module from the module receiving member MC side to be engaged with the liquid crystal display module so as to fix the liquid crystal display module to the module receiving member MC.
However, the liquid crystal display modules may be fixed to the module receiving member MC by securing the module receiving member MC to the rear of the liquid crystal display module by screws inserted from the bottom of the dish-shaped module receiving member MC by using the liquid crystal display modules described subsequently in connection with
Further, the increase in the thickness of the liquid crystal display monitor is suppressed by making a large opening in the bottom of the module receiving member MC (removing portions such as a central portion of the bottom excluding portions formed with the tapped holes) or by providing in the bottom of the module receiving member MC a recessed portion set back outwardly or inwardly from the bottom of the module receiving member MC, and thereby placing the interface board, the power supply board and others in the large opening or the recessed portion.
In the liquid crystal display monitor shown in
Exemplary concrete configurations of tapped holes made in the molded case of the liquid crystal display module will now be explained by reference to
In this embodiment, the liquid crystal display module is provided with an intermediate molded frame MMC and a rear frame BP made of a metal plate disposed behind the molded case MCA which serves as the lower frame. The metal inserts INT are embedded in the intermediate molded case MMC. The metal inserts INT can be embedded at the time of molding the intermediate molded case MMC, therefore the operation of assembling the liquid crystal display monitor is facilitated, and this embodiment provides the same advantages as those provided by the previous embodiments. If the thickness of portions of the intermediate molded case MMC where the metal inserts are embedded is made approximately equal to the length of the metal insert INT as in the molded case MCA shown in
The liquid crystal display module is mounted to a display section of the liquid crystal display monitor by inserting screws SCR into the tapped holes NAT made in the rear frame BP from its liquid crystal display monitor side and then engaging the screws with the tapped holes NAT.
The configuration of this embodiment eliminates the need for disposing a mounting structure at the sidewalls of the liquid crystal display module which interferes with the reduction of a border area around a useful display area of the liquid crystal display module, therefore do not increase the outside dimensions of the liquid crystal display monitor, and also the reduction of a border area around a useful display area of the liquid crystal display module per se is easily realized, and consequently, the present embodiment provides the liquid crystal display monitor having a display screen appearing visually large.
The liquid crystal display panel PNL, the light diffusing plate SCT and the downlight type illuminating device MCA are held in place by the molded case MCA, and are assembled together with the upper frame SHD as an integral unit.
The liquid crystal display module MDL is fixed to the liquid crystal display monitor by inserting screws SCR into the tapped holes NAT made in portions of the lower frame MCA corresponding to the peaks of the corrugated reflective plate REF from the end of the tapped holes NAT facing the monitor case CAS of the liquid crystal display monitor, and engaging the screws SCR with the tapped holes NAT.
As explained above, in this embodiment, the tapped holes NAT are positioned at positions of the lower frame corresponding to spaces below the peaks of the corrugated reflective plate REF, and consequently, this arrangement eliminates the need for increasing the thickness of the liquid crystal display module for the purpose of mounting the liquid crystal display module. Further, like the embodiment shown in
In this embodiment, the tapped holes NAT are made directly in the molded case MCA, but instead the inserts can be embedded in the molded case MCA beforehand as in the embodiments shown in
The above-described embodiments in accordance with the present invention are capable of realizing the reduction of a border area around a useful display area of the liquid crystal display module, and realizing the reduction of the outside dimensions of the housings (cases) of the liquid crystal display monitor or the like.
An example of a circuit configuration and a driving scheme for the liquid crystal display panel to which the present invention is applicable will now be explained by reference to
Source electrodes of the thin film transistors TFT are connected to the pixel electrodes, a liquid crystal layer is disposed between the pixel electrodes and a common electrode (not shown) fabricated on a substrate arranged to face another substrate having the pixel electrodes fabricated thereon, and therefore a liquid crystal capacitance CLC (not shown) is connected between each of the source electrodes of the thin film transistors TFT and the common electrode in the equivalent circuit.
If a positive bias voltage is applied to the gate electrode of the thin film transistor TFT, the thin film transistor TFT conducts, and if a negative bias is applied to the gate electrode, the thin film transistor TFT does not conduct. Further, a storage capacitance Cadd is connected between the source of the thin film transistor TFT and a gate signal line of a scanning line immediately preceding the gate signal line of the scanning line associated with the thin film transistor.
Source and drain designations depend upon the polarity of a bias voltage between them, the polarity of the bias voltage in this liquid crystal display device is reversed during operation, and therefore it should be noted that the roles of the source and drain electrodes are interchanged during the operation.
In
The drain drivers DDR are mounted on a multilayer flexible printed circuit board folded back behind the liquid crystal display panel PNL. The interface board (not shown) mounting the display control device CRL and the power supply circuit PWU is disposed behind the gate drivers GDR arranged around the short side of the liquid crystal display panel PNL. This arrangement is adopted to satisfy the need for making the width of information processing equipment as small as possible.
A carry signal output from one of the drain drivers DDR is input to a succeeding one of the drain drivers DDR.
The drain driver 211 comprises a data latch section for display data and an output-voltage generating circuit. A gray-scale reference voltage generating section 208, a multiplexer 209, a common-electrode voltage generating section 202, a common-electrode driver 203, a level shift circuit 207, a gate-on voltage generating section 204, a gate-off voltage generating section 205 and a DC-Dc converter 212 are provided in the power supply circuit PWU.
The display control device CRL shown in
Incidentally, in a system using LVDS signals (Low Voltage Differential Signals) for transferring display data from the main body, LVDS signal from the main computer are converted into original signals by an LVDS receiving circuit mounted on the interface board PCB, and then are supplied to the gate driver ICs and the drain driver ICs.
First, signals from a main body of information processing equipment go from a connector (an interface connector) disposed at approximately the center of the interface board I/F on the left-hand side of the notebook personal computer to a display control IC element (TCON, see
Application of the liquid crystal display device in accordance with the present invention is not limited to the above-explained notebook personal computer and liquid crystal display monitor, but the present invention is also applicable to a monitor of a desktop personal computer, a liquid crystal TV receiver set, or a display device of other equipment.
The mounting structure in accordance with the present invention eliminates the restriction on the width and the external shape of a display section of information processing equipment, and provides a small-size and low power-consumption information processing equipment.
A space required for fixing the liquid crystal display module can be reduced, and thereby a portion of a display section can be reduced which does not contribute to displaying, that is, a border area around a useful display area of the display section. Further, a useful display area of the liquid crystal display module MDL can be increased.
The present invention has been explained concretely based upon the embodiments, but the present invention is not limited to the above-described embodiments, and it is needless to say that various changes and modifications may be made without departing from the nature and spirit of the present invention. For example, the above embodiments have been described as applying the present invention to the active matrix type liquid crystal display devices, but the present invention is equally applicable to a simple-matrix type or other type liquid crystal display devices.
As explained above, the mounting structure in accordance with the present invention is capable of mounting the liquid crystal display module to a display section of equipment such as the notebook personal computer and the liquid crystal display monitor with suppressing sufficiently the increase in the border area around a useful display area of the liquid crystal display monitor and ensuring sufficient mounting strength. By realizing the reduction of the border area around a useful display area of the liquid crystal display monitor and that of outside dimensions of a housing (a case) of the liquid crystal display monitor or the like, the present invention provides the liquid crystal display module superior in space saving and capable of enlarging a screen size visually and the liquid crystal display monitor incorporating the liquid crystal display module.
Suzuki, Nobuyuki, Ogawa, Kazuhiro, Mishima, Yasuyuki, Morishita, Shunsuke, Ueda, Kazunari
Patent | Priority | Assignee | Title |
9395749, | Jun 04 2007 | LG Electronics Inc. | Display apparatus |
Patent | Priority | Assignee | Title |
2455885, | |||
5207504, | Jul 03 1991 | Method and apparatus for tuning strip flourescent light fixtures | |
5293262, | Mar 15 1988 | Mitsubishi Denki Kabushiki Kaisha | Liquid crystal display device having heat-insulating members and driving circuit boards attached to rear edges of light box |
5835173, | Nov 28 1993 | Smartlight Ltd | Transparency viewing device comprising passive matrix LCD |
6166788, | Dec 30 1997 | SAMSUNG DISPLAY CO , LTD | Display module having LCD panel attached to front housing having an opening, to be visible through the opening |
6330148, | Jan 13 1999 | LG DISPLAY CO , LTD | Flat panel display module for computer |
6373537, | Apr 08 1997 | LG DISPLAY CO , LTD | Computer having liquid crystal display between frames attached at the edges |
6421231, | Mar 13 1999 | DISPLAY VECTORS LLC | Display unit and portable computer using the same |
6424391, | Jun 29 1999 | JAPAN DISPLAY CENTRAL INC | Flat-panel display device |
6525790, | Jul 15 1999 | HTC Corporation | Liquid crystal module mounting structure |
6594143, | Dec 11 1998 | VISTA PEAK VENTURES, LLC | Liquid crystal module mounting structure and mobile terminal mounted with the same |
JP5505247, | |||
WO9110936, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 18 2002 | Hitachi, LTD | Hitachi Displays, Ltd | COMPANY SPLIT | 027465 | /0263 | |
Oct 20 2005 | Hitachi, Ltd. | (assignment on the face of the patent) | / | |||
Jun 30 2010 | HITACHI, DISPLAYS, LTD | Hitachi Displays, Ltd | ATTACHED ARE 1 THE COMPANY SPLIT DOCUMENTS IN JAPANESE WITH ENGLISH TRANSLATION THEREOF AND 2 THE CERTIFICATE OF COMPANY SPLIT DOCUMENT IN JAPANESE WITH ENGLISH TRANSLATION, WHICH TOGETHER CONVEY 50% OWNERSHIP OF THE REGISTERED PATENTS AS LISTED IN THE ATTACHED TO EACH OF THE RECEIVING PARTIES SEE PAGE 10, EXHIBIT 2-1, SECTION 1 OF THE ENGLISH TRANSLATION OF THE COMPANY SPLIT PLAN | 027615 | /0589 | |
Jun 30 2010 | HITACHI, DISPLAYS, LTD | IPS ALPHA SUPPORT CO , LTD | ATTACHED ARE 1 THE COMPANY SPLIT DOCUMENTS IN JAPANESE WITH ENGLISH TRANSLATION THEREOF AND 2 THE CERTIFICATE OF COMPANY SPLIT DOCUMENT IN JAPANESE WITH ENGLISH TRANSLATION, WHICH TOGETHER CONVEY 50% OWNERSHIP OF THE REGISTERED PATENTS AS LISTED IN THE ATTACHED TO EACH OF THE RECEIVING PARTIES SEE PAGE 10, EXHIBIT 2-1, SECTION 1 OF THE ENGLISH TRANSLATION OF THE COMPANY SPLIT PLAN | 027615 | /0589 | |
Oct 01 2010 | IPS ALPHA SUPPORT CO , LTD | PANASONIC LIQUID CRYSTAL DISPLAY CO , LTD | MERGER SEE DOCUMENT FOR DETAILS | 027482 | /0140 |
Date | Maintenance Fee Events |
Apr 08 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 26 2014 | 4 years fee payment window open |
Oct 26 2014 | 6 months grace period start (w surcharge) |
Apr 26 2015 | patent expiry (for year 4) |
Apr 26 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 26 2018 | 8 years fee payment window open |
Oct 26 2018 | 6 months grace period start (w surcharge) |
Apr 26 2019 | patent expiry (for year 8) |
Apr 26 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 26 2022 | 12 years fee payment window open |
Oct 26 2022 | 6 months grace period start (w surcharge) |
Apr 26 2023 | patent expiry (for year 12) |
Apr 26 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |