A read-only data storage and retrieval device is presented having no moving parts and requiring very low power. Addressing can be accomplished sequentially where the address increments automatically or can be accomplished randomly. High density storage is achieved through the use of a highly symmetric diode matrix that is addressed in both coordinate directions; its symmetry makes the Dual-addressed Rectifier storage (DRS) Array very scaleable, particularly when made as an integrated circuit. For even greater storage flexibility, multiple digital rectifier storage arrays can be incorporated into the device, one or more of which can be made removable and interchangeable.
|
0. 31. An information-storage circuit, the circuit comprising:
a plurality of row storage lines;
a plurality of column storage lines overlapping the plurality of row storage lines;
a plurality of storage locations, wherein each storage location is disposed proximate to a point of intersection between a row storage line and a column storage line;
a plurality of nonlinear storage elements, wherein each nonlinear storage element is disposed at a storage location;
a plurality of row decoder lines electrically connected to the plurality of row storage lines;
a plurality of column decoder lines electrically connected to the plurality of column storage lines;
a plurality of nonlinear row address elements connected to the plurality of row decoder lines;
a plurality of nonlinear column address elements connected to the plurality of column decoder lines;
a plurality of row address lines connected to the plurality of nonlinear row address elements, wherein a number of the row address lines is less than a number of the row decoder lines;
a plurality of column address lines connected to the plurality of nonlinear column address elements, wherein a number of the column address lines is less than a number of the column decoder lines;
wherein a row address applied to the plurality of row address lines causes the plurality of nonlinear row address elements to select a row decoder line, the selected row decoder line selects a row storage line to which it is connected, a column address applied to the plurality of column address lines causes the plurality of nonlinear column address elements to select a column decoder line, the selected column decoder line selects a column storage line to which it is connected, and the intersection between the selected row storage line and the selected column storage line comprises the storage location defined by the row address and the column address.
0. 1. A digital logic device comprising one or more electronic information storage means, and addressing means for accessing said storage means, wherein each said electronic information storage means comprises:
a plurality of generally parallel conductive means;
a second plurality of generally parallel conductive means that is generally perpendicular to and overlapping with the first said plurality of generally parallel conductive means;
a plurality of bits of potential information storage where a bit of said plurality of bits is present in the general vicinity of each point of intersection of each conductive means of the first said plurality of generally parallel conductive means with each conductive means of the second said plurality of generally parallel conductive means, and where the state of any said bit is determined by the presence or absence of a rectifying conductive means at each said general vicinity of said point of intersection;
means for selecting a conductive means of one plurality of generally parallel conductive means, and means for biasing the generally parallel conductive means of the other plurality of generally parallel conductive means such that each said rectifying conductive means present between a conductive means of said biased plurality of generally parallel conductive means to a conductive means of the other said plurality of generally parallel conductive means is potentially forward biased;
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of generally parallel conductive means by shifting the voltage of those biased conductive means that are to be disabled; and
wherein said addressing means comprises:
means for controlling said means for electronically selecting conductive means of one said plurality of generally parallel conductive means and for electronically selecting conductive means of the other said plurality of generally parallel conductive means.
0. 2. The digital logic device of
means for biasing the generally parallel conductive means of the said one plurality of generally parallel conductive means such that each said rectifying conductive means present between a conductive means of said biased plurality of generally parallel conductive means and a conductive means of the other said plurality of generally parallel conductive means is potentially forward biased; and
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of generally parallel conductive means by shifting the voltage of those biased conductive means that are to be disabled.
0. 3. The digital logic device of
0. 4. The digital logic device of
0. 5. The digital logic device of
0. 6. The digital logic device of
0. 7. The digital logic device of
0. 8. The digital logic device of
0. 9. The digital logic device of
0. 10. The digital logic device of
0. 11. The digital logic device of
0. 12. The digital logic device of
0. 13. The digital logic device of
0. 14. An electronic information storage device comprising:
a plurality of generally parallel conductive means;
a second plurality of generally parallel conductive means that is generally perpendicular to and overlapping with the first said plurality of generally parallel conductive means;
a plurality of bits of potential information storage where a bit of said plurality of bits is present in the general vicinity of each point of intersection of each conductive means of the first said plurality of generally parallel conductive means and each conductive means of the second said plurality of generally parallel conductive means, and where the state of any said bit is determined by the presence or absence of a rectifying conductive means at each said general vicinity of said point of intersection;
means for selecting a conductive means of one plurality of generally parallel conductive means, and means for biasing the generally parallel conductive means of the other plurality of generally parallel conductive means such that each said rectifying conductive means present between a conductive means of said biased plurality of generally parallel conductive means and a conductive means of the other said plurality of generally parallel conductive means is potentially forward biased; and
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of generally parallel conductive means by shifting the voltage of those biased conductive means that are to be disabled.
0. 15. The storage device of
means for biasing the generally parallel conductive means of the said one plurality of generally parallel conductive means such that each said rectifying conductive means present between a conductive means of said biased plurality of generally parallel conductive means and a conductive means of the other said plurality of generally parallel conductive means is potentially forward biased; and
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of generally parallel conductive means by shifting the voltage of those biased conductive means that are to be disabled.
0. 16. The storage device of
0. 17. The storage device of
0. 18. The storage device of
0. 19. The storage device of
0. 20. The storage device of
0. 21. The storage device of
0. 22. The storage device of
0. 23. The storage device of
0. 24. The storage device of
0. 25. An electronic information storage device comprising a plurality of storage means where each storage means comprises:
a plurality of generally parallel conductive means;
a second plurality of generally parallel conductive means that is generally perpendicular to and overlapping with the first said plurality of generally parallel conductive means;
a plurality of bits of potential information storage where a bit of said plurality of bits is present in the general vicinity of each point of intersection of each conductive means of the first said plurality of generally parallel conductive means and each conductive means of the second said plurality of generally parallel conductive means, and where the state of any said bit is determined by the presence or absence of a rectifying conductive means at each said general vicinity of said point of intersection;
means for selecting a conductive means of one plurality of generally parallel conductive means, and means for biasing the generally parallel conductive means of the other plurality of generally parallel conductive means such that each said rectifying conductive means present between a conductive means of said biased plurality of generally parallel conductive means and a conductive means of the other said plurality of generally parallel conductive means is potentially forward biased; and
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of generally parallel conductive means by shifting the voltage of those biased conductive means that are to be disabled;
where at least one of said plurality of generally parallel conductive means is common to more than one said storage means.
0. 26. The storage device of
means for biasing the generally parallel conductive means of the said one plurality of generally parallel conductive means such that each said rectifying conductive means present between a conductive means of said biased plurality of generally parallel conductive means and a conductive means of the other said plurality of generally parallel conductive means is potentially forward biased; and
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of generally parallel conductive means by shifting the voltage of those biased conductive means that are to be disabled.
0. 27. A semiconductor information storage device comprising:
a plurality of generally parallel conductive means;
a second plurality of generally parallel conductive means that is generally perpendicular to and overlapping with the first said plurality of generally parallel conductive means where one of said two pluralities of generally parallel conductive means is generally a surface layer of the semiconductor; and
a plurality of bits of potential information storage where a bit of said plurality of bits is present in the general vicinity of each point of intersection of each conductive means of the first said plurality of generally parallel conductive means and each conductive means of the second said plurality of generally parallel conductive means, and where the state of any said bit is determined by the presence or absence of a rectifying conductive means at each said general vicinity of said point of intersection, and where any said presence or absence of a rectifying conductive means is determined by the leaving in place or the removal, respectively, of a portion of the surface layer conductive means.
0. 28. An electronic array of selectable points comprising:
a plurality of conductive means;
a second plurality of conductive means;
a plurality of selectable points where a point of said plurality of selectable points is present in the general vicinity of each point of intersection of each conductive means of the first said plurality of conductive means and each conductive means of the second said plurality of conductive means;
means for selecting a conductive means of one plurality of conductive means, and means for biasing the conductive means of the other plurality of conductive means such that each said selectable point present between a conductive means of said biased plurality of conductive means and a conductive means of the other said plurality of conductive means is potentially forward biased; and
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of conductive means by shifting the voltage of those biased conductive means that are to be disabled.
0. 29. The electronic array of selectable points of
means for biasing the conductive means of the said one plurality of conductive means such that each said selectable point present between a conductive means of said biased plurality of conductive means and a conductive means of the other said plurality of conductive means is potentially forward biased; and
means for selecting a biased conductive means by electronically disabling conductive means within said biased plurality of conductive means by shifting the voltage of those biased conductive means that are to be disabled.
0. 30. The electronic array of selectable points of
0. 32. The information-storage circuit of claim 31, wherein each of the plurality of nonlinear storage elements comprises a diode.
0. 33. The information-storage circuit of claim 31, wherein each of the plurality of nonlinear row address elements comprises a diode.
0. 34. The information-storage circuit of claim 31, wherein each of the plurality of nonlinear column address elements comprises a diode.
0. 35. The information-storage circuit of claim 31, wherein at least one storage location is programmed with data comprising at least one of music, video, computer software, a computer application, reference data, text, or a diagram.
0. 36. The information-storage circuit of claim 31, further comprising logic circuitry connected to the plurality of column address lines configured to apply a plurality of column addresses to the plurality of column address lines simultaneously.
0. 37. The information-storage circuit of claim 31, further comprising logic circuitry connected to the plurality of column address lines configured to substantially halt the flow of electrical current to at least one of the plurality of column address lines.
0. 38. The information-storage circuit of claim 31, wherein the circuit is disposed within a removable memory storage device.
0. 39. The information-storage circuit of claim 31, further comprising counter circuitry connected to at least one of the plurality of row address lines or the plurality of column address lines.
0. 40. The information-storage circuit of claim 31, further comprising shift register circuitry connected to at least one of the plurality of row address lines or the plurality of column address lines.
0. 41. The information-storage circuit of claim 40, further comprising counter circuitry connected to and disposed between the shift register circuitry and at least one of the plurality of row address lines or the plurality of column address lines.
0. 42. The information-storage circuit of claim 41, wherein the shift register circuitry loads a row address into the counter circuitry, and the counter circuitry applies the row address to at least one of the plurality of row address lines.
0. 43. The information-storage circuit of claim 31, wherein each of the plurality of nonlinear storage elements comprises a programmable material.
0. 44. The information-storage circuit of claim 43, wherein said programmable material comprises a fusible link.
0. 45. The information-storage circuit of claim 43, wherein said programmable material comprises a charge-storage material.
0. 46. The information-storage circuit of claim 31, wherein a center-to-center distance between the nonlinear storage elements is less than approximately 0.45 microns.
0. 47. The information-storage circuit of claim 31, further comprising, disposed around the plurality of storage locations,
a package configured to interface with an electronic device.
0. 48. The information-storage device of claim 47, further comprising interface logic circuitry connected to at least one of the plurality of row storage lines or the plurality of column storage lines.
0. 49. The information-storage device of claim 47, wherein the package is connected to an electronic device selected from the group consisting of a computer, a microprocessor, a microcomputer chip, and a digital logic device.
0. 50. The information-storage circuit of claim 47, wherein at least one storage location is programmed with data comprising at least one of music, video, computer software, a computer application, reference data, text, or a diagram.
0. 51. The information-storage device of claim 47, wherein the package is removable and interchangeable to the electronic device.
0. 52. The information-storage device of claim 51, further comprising interface logic circuitry connected to at least one of the plurality of row storage lines or the plurality of column storage lines, wherein at least one storage location is programmed with data comprising at least one of music, video, computer software, a computer application, reference data, text, or a diagram.
|
This application is a continuation of U.S. patent application Ser. No. 09/821,182, filed Mar. 29, 2001, now U.S. Pat. No. RE41,733, which is a reissue of U.S. patent application Ser. No. 08/863,156, filed May 27, 1997, now U.S. Pat. No. 5,889,694, which is a continuation-in-part of U.S. patent Application Ser. No. 08/610,992 entitled “Dual Addressed Rectifier Storage Device”, filed Mar. 5, 1996, now U.S. Pat. No. 5,673,218, issued Sep 30, 1997. Reissue application Ser. No. 11/780,300, filed Jul. 19, 2007 is also a resissue of U.S. Pat. No. 5,889,694. The entire disclosure of each of these applications is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to electronic data retrieval devices, and more particularly to electronic digital logic devices having semiconductor mass storage capabilities by virtue of their data being stored in highly symmetrical arrays of diodes.
2. Prior Art
Most present day devices having mass storage capabilities rely on such moveable media as magnetic disks, optical compact disks, digital tape or the like. Some devices having large storage Capabilities have utilized large numbers of read-only memory (ROM) devices.
Many read-only memory (ROM) devices have been disclosed having a wide variety of implementations. In many of these devices the bit storage means is accomplished through the application of gates or transistors. But, a subset of these ROM devices has accomplished the bit, storage means through the use of a matrix of diodes, as was disclosed by Robb in U.S. Pat. No. 3,245,051. Many of these ROM device is include diode matrix storage means utilizing a set of conductors that act as selectors and a second orthogonal set of conductors that act as data outputs.
In U.S. Pat. No. 4,070,654, one set of generally parallel conductors acts as the Selection Input Lines and a second set of generally parallel conductors that is orthogonal to and overlapping with the first acts as the Digit Output Lines. A bit of information is represented at each point of intersection of the Selection Input lines with the Digit Output Lines by the presence or absence of a diode at that point, where the presence or absence of a diode distinguishes the logical state of the stored information bit at that point of intersection. A selection circuit selects one line of the Selection Input Lines such that the state of all of the Digit Output Lines is then controlled to the extent that each of those Digit Output Lines is connected to that selected Selection Input Line through a diode. All of the digit Output Lines are read in parallel. A disadvantage is that as the matrix is increased in size, the complexity of the selection logic that drives the selection circuits (such that one line is selected out of the many Selection Input Lines) grows exponentially. But as this matrix increases in size, so too will the number of Digit Output Lines that will have to be simultaneously supplied with current and that current will vary depending upon the state of the bits at those various locations. Also, as the number of simultaneously driven Digit Output Lines increases, some means of selecting the subset of desired data bits would have to be added.
In U.S. Pat. No. 4,661,927, some of the problems of the exponential growth in the complexity of the addressing circuitry and of the loading on the selected addressing lines are dealt with. Addressing is accomplished by using diode-transistor logic (DTL) for the input addressing. The transistors of the DTL selection circuits act as buffer-drivers between the address selection means and the bit storage means thereby providing the current needed to source a growing number of data bit output lines. However, the transistors in this DTL circuitry add complexity to the overall circuit which will reduce packing densities and add an additional problem—that of leakage currents in those transistors—that requires additional compensating circuitry that further reduces packing densities. The use of dummy diode loads for balancing data dependent loading variations reduces packing densities even further.
In U.S. Pat. No. 4,884,238, the problem of loading is dealt with by utilizing FET switches to disconnect all but the desired Digit Output line. The selected bit is present at the intersection of two selected orthogonal conducting lines. In this way, the number of bits simultaneously selected does not grow with the size of the array and the problem of loading can be controlled. But, such a design still requires a large number of FET transistors and the addressing means to control those FET transistors and the interconnection wiring to connect said addressing means with said FET transistors which will reduce packing densities. While the addressing means could be of the same DTL type to keep said addressing means small, the large number of buffering transistors to select the various conductive lines will remain large (at least one FET per conductive line and, on about half of the lines, two FET's). Furthermore, this inclusion of FET transistors may make the device subject to damage from static electrical discharges that might make it less practical for use in a consumer product where the consumer may handle these devices.
In U.S. Pat. No. 4,347,585, Eardley discloses a dual-addressed device wherein the selected diode is at the intersection of a column line and a row line (where the column lines are connected to the diodes' cathodes and the row lines are connected to the diodes' anodes) such that the voltage potential of one column line is lowered and the voltage potential of one row line is raised thereby forward biasing the diode, if any, at the point of intersection of the two lines. One of the features of this device over the prior art (as discussed in that patent) is the circuitry for the selection logic; Eardley discloses means for line selection comprising high speed transistor driver circuits. The disclosed device also requires two types of Schottky barrier diode devices. As a result, it is anticipated that the disclosed device will suffer from several problems, particularly when one attempts to scale up the device to extremely high storage densities. These problems may include transistor current leakage becoming noticeable as the number of transistors increases and device yields becoming reduced as the complexity of multiple semiconductor fabrication steps and nore complex device interconnect circuitry increases. These problems may prevent the kind of size scaling that could result in devices in the Gigabit range that would be necessary to create memory chips that could replace today's CD-ROMs.
As will be shown below, the Dual-addressed Rectifier Storage DRS) Array comprised by the present invention solves many of the Problems associated with the above mentioned inventions while staining high data packing densities by simultaneously using both orthogonal sets of conductors to address the data bits without the need for transistor switches on each conductive line. It does this by having a diode-logic addressing mechanism directly controlling the voltage levels on the conductive lines. Also, by extending the application of the diode array to perform the functions of addressing, storage, and bit sensing, symmetry is increased and this higher symmetry results in higher packing densities.
In U.S. Pat. No. 4,070,654, among others, a means is disclosed for programming the information into a semiconductor diode array by selectively etching away openings through the oxide layer that insulates the plurality of doped conductors from the orthogonal plurality of metalized conductors on the surface such that each opening enabled contact between the respective conductor of each plurality thereby forming a diode representing a toggled bit of stored information at that array location. The present invention discloses a means for constructing the semiconductor device up to the final metalization etch step before programming the data thereby enabling the programming of data to be performed much later in the manufacturing process.
Mass storage devices comprising moveable media such as magnetic disks, optical compact disks, digital tape, or the like, have motors and other mechanical parts that are prone to breaking or wearing out, can suffer audio disruption when subjected to vibrations, are too heavy to be carried during certain activities such as jogging, and consume significant electrical power (due to the operation of the mechanical components). Devices utilizing ROM chips are limited in their capacities due to the limited storage densities of present day ROM chips. The present invention eliminates or reduces all of these drawbacks because it uses DRS Arrays and, as a result, has the high storage densities of a CD-ROM without having mechanical parts.
Instead of a CD-ROM and its associated mechanical components, this device comprises one or more Dual-addressed Rectifier Storage (DRS) Arrays which are read-only memory (ROM) devices that utilize an array of rectifiers for its storage means. Like the predecessors to the DRS Array, the logical state of stored data is determined by the presence or absence of rectifiers at the points of intersection of two orthogonal and overlapping sets of generally parallel conductive lines. The present invention uses both sets of generally parallel conductive lines for addressing but senses the logical state of the addressed data by sensing the loading on the selected lines.
The DRS Array comprises a cross-point selection means that enables the selection of a single point of intersection from within an array by applying a forward voltage across that point; this selection means will find applications in Read Only Memory (ROM) as shown in the present device, One-Time Programmable Read Only Memory (OTPROM), Random Access Memory (RAM), and LED matrix displays.
More specifically, the DRS Array comprises an array of Rectifiers (where the column lines are connected to the cathodes of said rectifiers and the row lines are connected to the anodes of said rectifiers) wherein the row lines and column lines are pulled through resistive means to either the positive supply or to ground, respectively, such that, absent any addressing circuitry, all of the rectifiers in the array would be forward biased. The addition of addressing circuitry will selectively connect those row lines and column lines to either ground or the positive supply such that the voltage potential between any row line and column line would be dropped to the point that an interconnected rectifier no longer would be forward biased. Any line whose voltage is pulled close to either ground or to the positive supply and away from that voltage that would result from the resistive means alone will be referred to as Being “disabled.”
Selection of a line in both sets of generally parallel lines is accomplished by a diode addressing array similar to that disclosed in U.S. Pat. No. 4,661,927 but, instead of using diode-transistor logic (DTL) means to do this addressing, no transistor buffer-driver stage is used, thereby greatly reducing circuit complexity while eliminating a source of possible current leaks. This is possible by taking advantage of the forward voltage drop characteristics of a rectifier to control the voltage levels. The present device does not attempt to drive a heavily loaded selected line (where all of the orthogonal output lines that are connected to the selected line through diodes comprise that loading) that might require such a buffer-driver stage; the only load is that rectifier connection to the selected orthogonal line. One result of this disabling means is a greatly simplified selection circuit on both orthogonal sets in the array. The addressing means, the storage means, and the bit sensing means are all formed in the same rectifier array structure in a highly simple and symmetric design that is ideal for high packing densities.
The present invention comprises DRS Arrays that could be removable and interchangeable so that one could pop them in and out according to their current musical interest or desire. A DRS Array is expected to be able to hold the equivalent of an entire CD-ROM or more on a single one inch (or smaller) square of silicon, unlike conventional read only memory chips (ROM's) which would require about 50 ROM chip if each contained about 10 Megabytes of data. By contrast, the present invention would be very small and compact.
While most present day mass storage devices rely on such moveable media as magnetic disks, optical compact disks, digital tape or the like, the present invention, through the use of the DRS array, eliminates the mechanical components of such devices. In so doing, the present invention reduces the risk of mechanical failures, the problems of bulkiness, and the consumption of electrical power. The many possible variations on the DRS Array make it a very versatile storage medium ranging from a stand-alone array chip, to an array chip with an incorporated sequentially loaded address sequencer, to a microcomputer chip that utilizes the DRS Array for its program memory, to a personal stereo unit utilizing a removable DRS Array instead of a music CD-ROM, to a pocket sized video player utilizing a removable DRS Array module containing compressed video data.
Refer now to the drawings which show a preferred embodiment of the invention.
Software running in the microcomputer, A, would cause that microcomputer to sequentially read 4 bytes of data from the DRS Array, D, every 25 μSec and move that data to the two 16-bit digital to analog converters, E. The result of this process would be 16 bit stereo sampled at 40 KHz thereby matching the audio of current CD-ROM technology. Software running in the microcomputer could also cause information read from the DRS Array (such as musical artist, title of the audio tracks, playing time, and the like) to be displayed on the LCD display. Software running in the microcomputer could also read from the keypad to affect the operation of that running software and cause it to jump to a specific address in the DRS Array at which point it would continue to read sequentially (such as to skip or repeat certain audio tracks, play the tracks contained in the DRS Array in random order, or the like).
The data contained in the DRS Array need not be limited to musical data. Video data, computer software or applications, reference data such as text, diagrams or the like, or a variety of other information could be stored. Of course, in many of these possible data types, the exact configuration as shown in
Refer now to
Throughout the remainder of this description, references will made to the positions of different parts of the DRS Array; this is for ease of looking at the figures only, and is not meant to imply physical location of components in an actual device. Also in this description, transistors in the fully on state will be referred to as being saturated. Switching transistors into and out of saturation is typically slower than switching them into and out of a nearly saturated state (although nearly saturated will generally work as well). Circuitry to keep transistors from becoming fully saturated is desirable but not required and has been omitted for the purpose of keeping the descriptions and figures uncluttered.
Refer now to
Rows are drawn running horizontally in this figure and Columns are drawn running vertically. The Storage Rows, P, are connected to the Row Resistors, R. Also connecting to the Storage Rows, P, at various points are the anodes of the Storage Rectifiers, K, the anodes of the Row Addressing Rectifiers, L, and the anodes of the Storage Bit Sensing Rectifiers, U. Connecting to the Addressing Columns, N, are the cathodes of the Row Addressing Rectifiers, L. Connecting to the Storage Bit Sensing Column, M, are the cathodes of the Storage Bit Sensing Rectifiers, U.
The Storage Columns, O, are connected to the Column Resistors, S. Also connecting to the Storage Columns at various points are the cathodes of the Storage Rectifiers, K, and the cathodes of the Column Addressing Rectifiers, T. Connecting to the Addressing Rows, Q, at various points are the anodes of the Column Addressing Rectifiers, T.
To understand the operation of the device, first consider what the operation of the device would be absent the row addressing means (the Row Addressing Rectifiers, L, and the Addressing columns, N) and the column addressing means (the Column addressing Rectifier, T, and the Addressing Rows, Q) and the bit sensing means (the Storage Bit Sensing Rectifiers, U, and the storage Bit Sensing Column, M). What would be left are the Storage Rows, P, which are each pulled to the positive supply through the Row Resistors, R, and the Storage Columns, O, which are each pulled to ground through the Column Resistors, S. The result would be that any rectifier present among the Storage Rectifiers, K, would be forward biased and the forward voltage drop of any said Storage rectifier would be centered around the voltage level of one-half of the positive supply (the Row Resistors, R, and the Column Resistors, S, are of equal resistance values and therefore form a voltage divider having a center voltage level of one-half of the positive supply). The resistive means, Row Resistors, R, and the Column Resistors, S, could be constructed through the use of resistors or their equivalent, the use of transistors (bipolar or FET) biased in their linear region (between being completely turned off and being saturated), the use of “leaky” diodes, or the like.
Next, consider the impact of the Row Addressing Rectifiers, L, and the Addressing Columns, N. The Addressing Columns, N, work in complementary pairs labeled by address designation An and its complement −An (where n indicates the Nth address line). Addressing is performed by pulling an Addressing Column near to ground or near to the positive supply and its complementary Addressing Column near to the positive supply or near to ground respectively. (Allowing an Addressing Column to float instead of pulling it close to the positive supply would work, too.) When an Addressing Column is pulled near to ground, any of the Row Addressing Rectifiers whose cathodes are connected to said Addressing Column will be forward biased and the voltage drop across those rectifiers will determine the resulting voltage on the Storage Rows connected to said forward biased Row Addressing Rectifiers. Storage Rows whose voltages are pulled down in this way are called “disabled.” The voltage level on said disabled Storage Rows would be equal to the near to ground voltage on the Addressing Column plus the forward voltage across said forward biased Row Addressing Rectifier.
Next, consider the impact of adding the Column Addressing rectifiers, T, and the Addressing Rows, Q. The Addressing Rows, Q, work in complementary pairs labeled by address designation An and its complement −An (where n indicates the Nth address line). addressing is performed by pulling an Addressing Row near to ground or near to the positive supply and its complementary Addressing Row near to the positive supply or near to ground respectively. (allowing an Addressing Row to float instead of pulling it close to ground would work, too.) When an Addressing Row is pulled to the positive supply, any of the Column Addressing Rectifiers whose anodes are connected to said Addressing Row will be forward biased and the voltage drop across those rectifiers will determine the resulting voltage on the Storage Columns connected to said forward biased Column Addressing Rectifiers. Storage Columns whose voltages are pulled up in this way are called “disabled.” The voltage level on said disabled Storage Column would be equal to the near to the positive supply voltage on the Addressing Row minus the forward voltage across said forward biased Column Addressing Rectifier.
Disabling the Storage Rows by pulling their voltages down and disabling the Storage Columns by pulling their voltages up will reverse bias any Storage Rectifiers at the intersection of said disabled Storage Rows with said disabled Storage Columns. The Storage Rectifier, if any, at the intersection of the remaining enabled Storage Row with the remaining enabled Storage Column will be forward biased and the forward voltage drop of said Storage Rectifier, if any, would be centered around the voltage level of one-half of the positive supply. This would place the voltage level on the enabled Storage Row at one-half of the positive supply plus one-half of the forward voltage drop across said Storage Rectifier. Also, this would place the voltage level on the enabled Storage Column at one-half of the positive supply less one-half of the forward voltage drop across said Storage Rectifier. If no Storage Rectifier was present at the intersection of the remaining enabled Storage Row with the remaining enabled Storage Column then the voltage on that enabled Storage Row would be the positive supply and the voltage on that enabled Storage Column would be ground. (It should be noted that it does not matter if the storage rectifiers between the disabled rows and the disabled columns are forward biased because, as will be seen below, the storage bit sensing circuitry will not sense those Rows that have been shifted to the disabled voltage level.)
The Storage Bit Sensing Column, M, is to be biased to a voltage level just below the positive supply minus one rectifier forward voltage drop. Recalling that a disabled Storage Row will be at a voltage level equal to a near to ground voltage plus a rectifier's forward voltage, this means that the Storage Bit Sensing Rectifiers, U, between the Storage Bit Sensing Column, M, and each of the disabled Storage Rows will be reverse biased and conduct no current; this will account for the state of all of the Storage Bit Sensing Rectifiers, U, except the one connected between the Storage Bit Sensing Column, M, and the one enabled Storage Row. If a rectifier is present at the intersection of the enabled Storage Row with the enabled Storage Column then that enabled Storage Row, then the voltage level on that enabled Storage Row would be at one-half of the positive supply plus one-half of a rectifier's forward voltage which would not be sufficient to forward bias the Storage Bit Sensing RectiFier and no current will flow to the output, OUT. On the other hand, if no rectifier is present at the intersection of the enabled Storage Row with the enabled Storage Column then that enabled Storage Row, absent any Storage Bit Sensing Rectifier, would be at the Voltage potential of the positive supply; this is sufficient to forward bias the Storage Bit Sensing Rectifier and current will flow to the output, OUT. Naturally, this assumes that the voltage level of the positive supply is sufficiently high to forward bias the various rectifiers as described. Also, it is preferable to keep the positive supply to as low a voltage as possible in order to minimize power dissipation and to minimize the reverse voltages on the Storage Bit Sensing Rectifiers, U, thereby reducing the potential current leakage through those Storage Bit Sensing Rectifiers that might tend to offset the output current. This leakage current would be fairly constant and equal to the leakage of a rectifier reverse biased by an amount equal to the difference between the bias voltage on the output and the voltage on a disabled Storage Row multiplied by the number of disabled Storage Rows and, as such, could be corrected for if necessary. For example, an opposite current of equal magnitude could be injected into the Storage Bit Sensing Column.
As shown in
Also as shown in
Refer now to
Following the addressing of another complementary pair of addressing transistors controlled by address line A3, one will see that transistors Q11 and Q12 will be turned off through resistors R19 and R20 when A3 is at a high logic state (a high enough voltage that the base emitter junctions of Q11 and Q12 are not forward biased) or floating. When transistor Q11 is turned off, transistor Q13 will be turned on through resistor R21 to ground. One will also see that transistors Q11 and Q12 will be turned on through resistors R19 and R20 when A3 is at a low logic state. When transistor Q11 is turned on, it will cause the voltage on the base of Q13 to come within 0.2 v of the positive supply and thereby turning off Q13. The result is that the complementary addressed Addressing Row, −A3, will be pulled to within 0.2 v of the positive supply when A3 is low and Q12 is turned on, or the directly addressed Addressing Row, A3, will be pulled to within 0.2 v of the positive supply when A3 is high and Q13 is turned on.
The output driver circuit, Z, achieves the voltage biasing of the Storage Bit Sensing Column, M, while providing gain to the output current. The three rectifiers, D33, D34, and D35, serve to set the voltage on the emitter of transistor Q1 at three rectifier forward voltage drops below the positive supply. Assuming that the forward voltage drop across the base-emitter junction of transistor Q1 is the same as the forward voltage drop of the rectifiers, this would require that the base of that transistor be at a voltage level no less than two rectifier forward voltage drops below the positive supply in order for its collector to draw current, which in turn would require that the one enabled Storage Row be at a voltage level no less than one rectifier forward voltage drop below the positive supply in order for the collector of transistor Q1 to draw current. Naturally, it is not necessary that the forward voltage drop across the base-emitter junction of transistor Q1 would be the same as the forward voltage drop of the rectifiers and one skilled in the art will know of other ways to bias the Storage Bit Sensing Column.
The circuit used to describe the operation of a DRS Array and shown in
Some variation on this idea will be apparent.
Also shown in
Another variation might be to use differently made components. For example, in the above explanation, silicon rectifiers having a forward voltage of about 0.7 v and transistors having base-emitter forward voltages also of about 0.7 v were assumed. But, other types of rectifiers and transistors could be used having lower or higher forward voltages. In another variation, the Storage Rectifiers used could be the base-emitter junctions of NPN transistors (having all of their collectors tied together in the same way one would tie together the outputs of opened-collector gates in a logical AND configuration); this would make it possible to eliminate all of the Storage Bit Sensing Rectifiers, transistor Q1, resistor R9 and rectifiers D33, D34 and D35 and instead sense the current sunk on the combined collectors. Since no more than one Storage Rectifier will be conducting at any time, current being sunk on the combined collectors would indicate that a Storage Rectifier (a base-emitter junction) exists at the point of intersection of the enabled Storage Row and the enabled Storage Column. Other variations could include, memory cells comprising a fusible link resulting in a One Time Programmable Read Only Memory (OTPROM) device (see U.S. Pat. Nos. 4,312,046 and 4,385,368), or memory cells comprising charge-storage devices to create a Random Access Memory (RAM) device (see U.S. Pat. Nos. 3,626,389 and 3,838,405).
The above description of the preferred embodiment makes reference to a variation on the resistive means—that of using “leaky” diodes.
Other variations might include reversing the polarity and types of some of the components. Because of the symmetry of the DRS array, many of the techniques shown in one area of the device can be implemented in the opposite area with only a reversal of polarities. for example, one skilled in the art will recognize that The Storage Bit Sensing Rectifiers could be connected to the Storage Columns if transistor Q1 was of the PNP type, rectifiers D33, D34, and D35 were reversed in polarity and connected in series to ground instead of to the positive supply, and resistor R9 was connected to the positive supply instead of to ground; in this variation, the collector of transistor Q1 would be a current source instead of a current sink.
In another variation the means of row or column selection by disabling certain rows or columns might be used in combination with other selection means disclosed in the prior or subsequent art.
It is believed that Dual-addressed Rectifier Storage Arrays will typically be fabricated as an integrated circuit; a possible layout of the Rows, the Columns, and the rectifiers are shown in
The addressing components might also be modified when constructing a DRS Array as an integrated circuit. The pair of resistors directly connected between each address input and the bases of the two addressing transistors could be replaced by a single resistor (as shown in
A variation on the semiconductor manufacturing of a DRS Array might be to dope N-type regions into a P-type wafer thereby reversing the polarity of the metal-on-silicon junction rectifiers (the Rows and the Columns would be reversed). Another variation would spread out the Addressing Columns across the width of the chip—alternating Addressing Columns with one or more Storage Columns—instead of grouping those Addressing Columns at the left side of the chip; this will spread out those Lines carrying most of the current in the circuit thereby more evenly distributing the power dissipation across the chip (the same technique could be done with the Rows). Another variation would be to construct the device with p-n junction rectifiers or a combination on metal-on-silicon junction rectifiers and p-n junction rectifiers.
Another variation might enable programming the stored data during the metalization etching step. Referring to
Economic concerns may drive several other possible variations on the semiconductor manufacturing of a DRS Array. It is expected that a significant part of the cost to manufacture these devices will be in the packaging where the greater the number of electrical connections between the package and the controlling device, the greater the cost of that packaging; a package with more leads will be more expensive and more prone to mechanical failures. As a result, it is believed that steps will be taken to reduce the number of package leads needed. One skilled in the art will quickly realize the circuitry needed to implement any of the following variations. One possibility would be to address the lower address lines directly but to retain the higher address lines internally; in other words, the latch shown in
Finally, a variation on the digital logic device comprising one or more DRS Arrays of which one or more may be removable which themselves comprise the above mentioned serially loaded counter logic. By limiting the manufacture of such devices to having output in analog format only, the risks to the makers of programming (e.g., music and video programs) will be reduced. With CD-ROM technology, the output from some CD-ROM readers is in a digital format. As a result, any copy made will be of the same quality as the original. This potentially results in significant lost revenue as the users of this technology could casually make copies for friends and relatives that cannot be distinguished from the originals (this was not the case with prior technologies such as cassette tapes and video tapes where each successive copy degraded somewhat). By limiting the manufacture of devices comprising DRS Arrays that are addressed via serially loaded counters to analog output only, the same degradation of copies will occur thereby reducing some of the risks to the makers of programming by causing the copies to be less desirable than the originals. While devices comprising DRS Arrays that are addressed via serially loaded counters could be limited to analog output only, they could still include means for reading DRS Arrays in other formats (i.e., DRS Arrays directly addressed via many address lines), however, devices comprising DRS Arrays that are directly addressed via many address lines and which give digital access to the information stored therein would not include means for reading DRS Arrays that are addressed via serially loaded counters.
It is believed that minor flaws in the semiconductor wafer will mostly impact the operation of the metal-on-silicon junction rectifiers when they are reverse biased by lowering the reverse breakdown voltage. Since the DRS Arrays are expected to be operated at low voltage levels, large reverse voltages are considered unlikely in normal operation. As a result, the impact of these minor flaws are not expected to impact the operation of the device and high device manufacturing yields are anticipated. However, the addressing transistors will likely be adversely affected by such flaws. There will likely be a trade-off between the increased cost of manufacture resulting from lowered device yields (as a result of the impact of semiconductor flaws on the increased complexity of the addressing circuit) and the savings on packaging (as a result of reducing the number of device leads).
The selection of a line by disabling all undesired lines could be utilized in many related electronic devices. The rectifiers at the storage locations could be fabricated as Light Emitting Diodes LED's) with such a rectifier present at every storage location. In this way, the device could be used as a display panel where a given display pixel could be turned on by selecting that bit location; the display panel would be scanned, selecting and illuminating bit locations in sequence while skipping bit locations that are to remain dark. Also, using a technique such as pulse width modulation, which is well known to one skilled in the art, one could even control the duration of a pulse of light emitted at any given pixel location and thereby control the perception of the intensity of the light emitted.
The high expected storage densities come from the symmetry the design—the Storage Bit Sensing Rectifiers, The Addressing Rectifiers, and the Storage Rectifiers are all constructed in the same way. The result of this is that they can all be made at the same time with the same semiconductor manufacturing steps. By using metal-on-silicon junction rectifiers, the primary components in the circuit are essentially constructed vertically on the semiconductor's surface instead of horizontally as might conventionally be done resulting in a very efficient use of the semiconductor “real estate”. The scaling up of the device is expected to be easily accomplished. For example, on a one inch square chip, if the Anode Lines and the Cathode Lines are placed at roughly 0.45 micron center to center spacing, then a DRS Array that is roughly 65,536 by 65,536 Lines could be made. This is the equivalent of about 4,294,967,296 bits or about 536,870,912 bytes or about the capacity of a present day CD ROM. State of the art technology at the time of this writing is below 1 micron line widths. It is envisioned that the present invention could be used anywhere that one would use a CD-ROM drive or player or anywhere a large amount of information is needed.
The foregoing description of an example of the preferred embodiment of the invention and the variations thereon have been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2709042, | |||
3091754, | |||
3245051, | |||
3308433, | |||
3373406, | |||
3576549, | |||
3626389, | |||
3701119, | |||
3721964, | |||
3806896, | |||
3838405, | |||
3942071, | Nov 03 1973 | Ferranti, Limited | Gas-discharge display device driving circuits |
4010453, | Dec 03 1975 | International Business Machines Corporation | Stored charge differential sense amplifier |
4070654, | Sep 26 1975 | Hitachi, Ltd. | Bipolar read-only memory |
4090190, | May 20 1971 | Read only memory | |
4240151, | Feb 10 1975 | Hitachi, Ltd. | Semiconductor read only memory |
4308595, | Dec 19 1979 | International Business Machines Corporation | Array driver |
4312046, | Oct 04 1979 | Intersil Corporation | Vertical fuse and method of fabrication |
4322822, | Jan 02 1979 | High density VMOS electrically programmable ROM | |
4342102, | Jun 18 1980 | Signetics Corporation | Semiconductor memory array |
4347585, | Jun 09 1980 | International Business Machines Corporation | Reproduce only storage matrix |
4385368, | Nov 24 1980 | Micron Technology, Inc | Programmable read only memory |
4394752, | Sep 26 1980 | International Business Machines Corporation | Decoding and selection circuit for a monolithic memory |
4404480, | Feb 01 1982 | Sperry Corporation | High speed-low power gallium arsenide basic logic circuit |
4419741, | Jan 28 1980 | RCA Corporation | Read only memory (ROM) having high density memory array with on pitch decoder circuitry |
4442507, | Feb 23 1981 | Unisys Corporation | Electrically programmable read-only memory stacked above a semiconductor substrate |
4479200, | Dec 29 1981 | Fujitsu Limited | Semiconductor memory device |
4525921, | Sep 16 1980 | Irvine Sensors Corporation | High-density electronic processing package-structure and fabrication |
4534008, | Apr 27 1982 | Siemens Aktiengesellschaft | Programmable logic array |
4554640, | Jan 30 1984 | Lattice Semiconductor Corporation | Programmable array logic circuit with shared product terms |
4561070, | Jul 01 1983 | Raytheon Company | Integrated circuit memory |
4608672, | Jul 14 1983 | Honeywell Inc. | Semiconductor memory |
4646128, | Sep 16 1980 | Irvine Sensors Corporation | High-density electronic processing package--structure and fabrication |
4646266, | Sep 28 1984 | ENERGY CONVERSION DEVICES, INC | Programmable semiconductor structures and methods for using the same |
4661927, | Jan 15 1985 | Atmel Corporation | Integrated Schottky logic read only memory |
4710900, | Dec 28 1984 | NEC Electronics Corporation | Non-volatile semiconductor memory device having an improved write circuit |
4721885, | Feb 11 1987 | SRI International | Very high speed integrated microelectronic tubes |
4757475, | May 20 1985 | Fujitsu Limited | Semiconductor memory device having diode matrix type decoder and redundancy configuration |
4772886, | Nov 15 1985 | ALPS Electric Co., Ltd. | Matrix driver |
4782340, | Aug 22 1986 | Energy Conversion Devices, Inc. | Electronic arrays having thin film line drivers |
4800529, | Mar 17 1986 | Fujitsu Limited | Semiconductive memory device with current control and comparison means to reduce power consumption and increase operating speed |
4845679, | Mar 30 1987 | Honeywell Inc. | Diode-FET logic circuitry |
4884238, | Mar 09 1988 | Honeywell Inc. | Read-only memory |
4920516, | May 12 1987 | Fujitsu Limited | Read only memory circuit having a precharged selected bit line |
5051865, | Jun 17 1985 | Fujitsu Limited | Multi-layer semiconductor device |
5163328, | Aug 06 1990 | OMRON HEALTHCARE CO , LTD | Miniature pressure sensor and pressure sensor arrays |
5203731, | Jul 18 1990 | GLOBALFOUNDRIES Inc | Process and structure of an integrated vacuum microelectronic device |
5296716, | Jan 18 1991 | Ovonyx, Inc | Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom |
5357471, | Mar 20 1992 | Fairchild Semiconductor Corporation | Fault locator architecture and method for memories |
5390145, | Apr 15 1993 | Fujitsu Limited | Resonance tunnel diode memory |
5397957, | Jul 18 1990 | GLOBALFOUNDRIES Inc | Process and structure of an integrated vacuum microelectronic device |
5432729, | Apr 23 1993 | APROLASE DEVELOPMENT CO , LLC | Electronic module comprising a stack of IC chips each interacting with an IC chip secured to the stack |
5441907, | Jun 27 1994 | Taiwan Semiconductor Manufacturing Company | Process for manufacturing a plug-diode mask ROM |
5463269, | Jul 18 1990 | GLOBALFOUNDRIES Inc | Process and structure of an integrated vacuum microelectronic device |
5463583, | Jun 30 1989 | Fujitsu Semiconductor Limited | Non-volatile semiconductor memory device |
5493533, | Sep 28 1994 | Atmel Corporation | Dual differential trans-impedance sense amplifier and method |
5569973, | Jul 18 1990 | GLOBALFOUNDRIES Inc | Integrated microelectronic device |
5576986, | Oct 14 1993 | FUJI ELECTRIC CO , LTD | Memory device using micro vacuum tube |
5640343, | Mar 18 1996 | GLOBALFOUNDRIES Inc | Magnetic memory array using magnetic tunnel junction devices in the memory cells |
5668032, | Jul 31 1995 | HYUNDAI ELECTRONICS AMERICA, INC | Active matrix ESD protection and testing scheme |
5673218, | Mar 05 1996 | HGST NETHERLANDS B V ; HGST, INC | Dual-addressed rectifier storage device |
5675531, | Apr 05 1995 | International Business Machines Corporation | Device for information storage using field emission |
5709589, | Mar 29 1996 | Hardwood floor finishing process | |
5719589, | Jan 11 1996 | UNIVERSAL DISPLAY CORPORATION | Organic light emitting diode array drive apparatus |
5835396, | Oct 17 1996 | Three-dimensional read-only memory | |
5837564, | Nov 01 1995 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method for optimal crystallization to obtain high electrical performance from chalcogenides |
5840608, | Nov 22 1996 | United Microelectronics Corporation | High density ROM and a method of making the same |
5889694, | Mar 05 1996 | HGST NETHERLANDS B V ; HGST, INC | Dual-addressed rectifier storage device |
6055180, | Jun 17 1997 | Thin Film Electronics ASA | Electrically addressable passive device, method for electrical addressing of the same and uses of the device and the method |
6075723, | Dec 15 1997 | Sony Corporation | Nonvolatile semiconductor memory device and IC memory card using same |
6117720, | Jun 07 1995 | Round Rock Research, LLC | Method of making an integrated circuit electrode having a reduced contact area |
6163475, | Feb 13 1999 | INNOMEMORY LLC | Bit line cross-over layout arrangement |
6185122, | Nov 16 1998 | SanDisk Technologies LLC | Vertically stacked field programmable nonvolatile memory and method of fabrication |
6198682, | Feb 13 1999 | INNOMEMORY LLC | Hierarchical dynamic memory array architecture using read amplifiers separate from bit line sense amplifiers |
6236587, | Sep 01 1997 | Thin Film Electronics ASA | Read-only memory and read-only memory devices |
6256767, | Mar 29 1999 | Hewlett Packard Enterprise Development LP | Demultiplexer for a molecular wire crossbar network (MWCN DEMUX) |
6259132, | Jul 08 1997 | STMicroelectronics S.r.l. | Array of electrically programmable non-volatile semiconductor memory cells comprising ROM memory cells |
6351023, | Feb 18 1998 | GLOBALFOUNDRIES Inc | Semiconductor device having ultra-sharp P-N junction and method of manufacturing the same |
6385075, | Jun 05 2001 | SAMSUNG ELECTRONICS CO , LTD | Parallel access of cross-point diode memory arrays |
6459095, | Mar 29 1999 | Hewlett-Packard Company; Regents of the University of California | Chemically synthesized and assembled electronics devices |
6462998, | Feb 13 1999 | INNOMEMORY LLC | Programmable and electrically configurable latch timing circuit |
6478231, | Jun 29 2001 | SAMSUNG ELECTRONICS CO , LTD | Methods for reducing the number of interconnects to the PIRM memory module |
6552409, | Jun 05 2001 | SAMSUNG ELECTRONICS CO , LTD | Techniques for addressing cross-point diode memory arrays |
6559468, | Mar 29 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Molecular wire transistor (MWT) |
6567295, | Jun 05 2001 | SAMSUNG ELECTRONICS CO , LTD | Addressing and sensing a cross-point diode memory array |
6586327, | Sep 27 2000 | WODEN TECHNOLOGIES INC | Fabrication of semiconductor devices |
6587394, | Jul 24 2001 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Programmable address logic for solid state diode-based memory |
6598164, | Apr 13 1998 | Western Digital Technologies, INC | Device and method for reducing piracy of digitized information |
6613650, | Jul 31 1995 | Hyundai Electronics America | Active matrix ESD protection and testing scheme |
6721223, | Jun 15 2001 | Renesas Technology Corp | Semiconductor memory device |
6744681, | Jul 24 2001 | SAMSUNG ELECTRONICS CO , LTD | Fault-tolerant solid state memory |
6839260, | Jan 18 2000 | Hitachi, LTD | Semiconductor device having different types of memory cell arrays stacked in a vertical direction |
6956757, | Jun 22 2000 | Western Digital Technologies, INC | Low cost high density rectifier matrix memory |
7054219, | Mar 31 2005 | SanDisk Technologies, Inc | Transistor layout configuration for tight-pitched memory array lines |
7088613, | May 14 2004 | MACRONIX INTERNATIONAL COMPANY, LTD | Method for controlling current during read and program operations of programmable diode |
7149934, | Apr 11 2002 | SanDisk Technologies, Inc | Error correcting memory access means and method |
7183206, | Sep 27 2000 | WODEN TECHNOLOGIES INC | Fabrication of semiconductor devices |
7190602, | Nov 16 1998 | SanDisk Technologies LLC | Integrated circuit incorporating three-dimensional memory array with dual opposing decoder arrangement |
7330369, | Apr 06 2004 | TRAN, BAO | NANO-electronic memory array |
7376008, | Aug 07 2003 | SanDisk Technologies, Inc | SCR matrix storage device |
7408798, | Mar 31 2006 | International Business Machines Corporation | 3-dimensional integrated circuit architecture, structure and method for fabrication thereof |
7460384, | Jun 22 2000 | Western Digital Technologies, INC | Low cost high density rectifier matrix memory |
7471547, | Dec 07 2004 | Polaris Innovations Limited | Memory cell array |
7548453, | Mar 28 2006 | WODEN TECHNOLOGIES INC | Memory array with readout isolation |
7548454, | Mar 28 2006 | WODEN TECHNOLOGIES INC | Memory array with readout isolation |
7554873, | Mar 21 2005 | MACRONIX INTERNATIONAL CO , LTD | Three-dimensional memory devices and methods of manufacturing and operating the same |
7593246, | Jun 22 2000 | Western Digital Technologies, INC | Low cost high density rectifier matrix memory |
7593256, | Mar 28 2006 | WODEN TECHNOLOGIES INC | Memory array with readout isolation |
20020126526, | |||
20020184459, | |||
20020191434, | |||
20020192895, | |||
20020196659, | |||
20030003633, | |||
20030026120, | |||
20030028699, | |||
20040145938, | |||
20040160805, | |||
20050067675, | |||
20050127350, | |||
20060072427, | |||
20070028150, | |||
20070242494, | |||
20070247890, | |||
20080013354, | |||
20080016414, | |||
20090109726, | |||
20090141535, | |||
20090161420, | |||
20090225579, | |||
20090225621, | |||
20090296445, | |||
DE10111454, | |||
JP298898, | |||
JP57203293, | |||
JP57203294, | |||
WO9939394, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 21 2001 | SHEPARD, DANIEL R | NUP2 Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020127 | /0319 | |
Sep 28 2004 | NUP2 Incorporated | CONTOUR SEMICONDUCTOR, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 020127 | /0251 | |
Jul 19 2007 | Contour Semiconductor, Inc. | (assignment on the face of the patent) | / | |||
Jan 18 2013 | CONTOUR SEMICONDUCTOR, INC | PERRIN, DONALD | SECURITY AGREEMENT | 029659 | /0615 | |
Jan 18 2013 | CONTOUR SEMICONDUCTOR, INC | SARAH G KURZON 2001 REVOCABLE TRUST | SECURITY AGREEMENT | 029659 | /0615 | |
Jan 18 2013 | CONTOUR SEMICONDUCTOR, INC | RUNNING DEER FOUNDATION | SECURITY AGREEMENT | 029659 | /0615 | |
Jan 18 2013 | CONTOUR SEMICONDUCTOR, INC | RUNNING DEER TRUST | SECURITY AGREEMENT | 029659 | /0615 | |
Jan 18 2013 | CONTOUR SEMICONDUCTOR, INC | STILL RIVER FUND III, LIMITED PARTNERSHIP | SECURITY AGREEMENT | 029659 | /0615 | |
Jan 18 2013 | CONTOUR SEMICONDUCTOR, INC | AMERICAN CAPITAL, LTD | SECURITY AGREEMENT | 029659 | /0615 | |
May 30 2014 | CONTOUR SEMICONDUCTOR, INC | AMERICAN CAPITAL, LTD | SECURITY INTEREST | 033063 | /0617 | |
Jun 20 2014 | AMERICAN CAPITAL, LTD | CONTOUR SEMICONDUCTOR, INC | RELEASE OF SECURITY INTEREST | 033225 | /0330 | |
Jun 20 2014 | CONTOUR SEMICONDUCTOR, INC | RUNNING DEER TRUST | SECURITY INTEREST | 033204 | /0428 | |
Jun 20 2014 | CONTOUR SEMICONDUCTOR, INC | RUNNING DEER FOUNDATION | SECURITY INTEREST | 033204 | /0428 | |
Jun 20 2014 | CONTOUR SEMICONDUCTOR, INC | PERRIN, DONALD | SECURITY INTEREST | 033204 | /0428 | |
Jun 20 2014 | CONTOUR SEMICONDUCTOR, INC | AMERICAN CAPITAL, LTD | SECURITY INTEREST | 033204 | /0428 | |
Jun 20 2014 | CONTOUR SEMICONDUCTOR, INC | STILL RIVER FUND III, LIMITED PARTNERSHIP | SECURITY INTEREST | 033204 | /0428 | |
Jun 20 2014 | CONTOUR SEMICONDUCTOR, INC | SARAH G KURZON 2001 REVOCABLE TRUST | SECURITY INTEREST | 033204 | /0428 | |
Jun 20 2014 | CONTOUR SEMICONDUCTOR, INC | Ovonyx, Inc | SECURITY INTEREST | 033204 | /0428 | |
May 15 2015 | CONTOUR SEMICONDUCTOR, INC | HGST, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE NAME AND ADDRESS OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 035748 FRAME 0909 ASSIGNOR S HEREBY CONFIRMS THE NAME AND ADDRESS OF THE ASSIGNEE SI HGST, INC ,3403 YERBA BUENA ROAD,SAN JOSE, CA 95135 | 035831 | /0594 | |
May 15 2015 | CONTOUR SEMICONDUCTOR, INC | HGST NETHERLANDS B V | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035748 | /0909 | |
May 15 2015 | RUNNING DEER TRUST | CONTOUR SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035685 | /0571 | |
May 15 2015 | RUNNING DEER FOUNDATION | CONTOUR SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035685 | /0571 | |
May 15 2015 | PERRIN, DONALD | CONTOUR SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035685 | /0571 | |
May 15 2015 | Ovonyx, Inc | CONTOUR SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035685 | /0571 | |
May 15 2015 | SARAH G KURZON 2001 REVOCABLE TRUST | CONTOUR SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035685 | /0571 | |
May 15 2015 | STILL RIVER FUND III, LIMITED PARTNERSHIP | CONTOUR SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035685 | /0571 | |
May 15 2015 | AMERICAN CAPITAL, LTD | CONTOUR SEMICONDUCTOR, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035685 | /0571 | |
Jul 12 2016 | HGST, INC | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | SECURITY AGREEMENT | 039389 | /0684 | |
Jul 19 2016 | JPMORGAN CHASE BANK, N A , AS COLLATERAL AGENT | HGST, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039689 | /0950 | |
Feb 03 2022 | JPMORGAN CHASE BANK, N A | Western Digital Technologies, INC | RELEASE OF SECURITY INTEREST AT REEL 039389 FRAME 0684 | 058965 | /0535 |
Date | Maintenance Fee Events |
Jul 27 2015 | ASPN: Payor Number Assigned. |
Jul 27 2015 | STOL: Pat Hldr no Longer Claims Small Ent Stat |
Date | Maintenance Schedule |
Apr 26 2014 | 4 years fee payment window open |
Oct 26 2014 | 6 months grace period start (w surcharge) |
Apr 26 2015 | patent expiry (for year 4) |
Apr 26 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 26 2018 | 8 years fee payment window open |
Oct 26 2018 | 6 months grace period start (w surcharge) |
Apr 26 2019 | patent expiry (for year 8) |
Apr 26 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 26 2022 | 12 years fee payment window open |
Oct 26 2022 | 6 months grace period start (w surcharge) |
Apr 26 2023 | patent expiry (for year 12) |
Apr 26 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |