A hair transplantation method and apparatus utilizes a robot, which includes a robotic arm, having a hair follicle effector associated with the robotic arm.
|
0. 110. A method of planning transplantation of hair grafts, comprising:
using an imaging system to identify a location of individual hair follicles on a surface containing hair follicles; and
selecting from the identified hair follicles a hair graft for harvesting based on a user-specified parameter, wherein selecting is accomplished at least in part with the use of a computer program.
0. 128. A method of planning transplantation of hair grafts, comprising:
identifying a plurality of individual hair follicles from data obtained by an imaging system; and
selecting from the plurality of hair follicles based on a user-specified parameter an individual hair graft to be harvested, wherein selecting is accomplished at least in part using a processor programmed to carry out a user-specified selection.
0. 116. A system for planning transplantation of hair grafts, comprising:
a computer programmed to
receive an image of a surface containing hair follicles, the image being acquired by an image acquisition device;
record locations of individual hair follicles in the image, the hair follicles being previously identified; and
carry out selection of one or more of the identified hair follicles for harvesting based on a user-specified parameter.
0. 1. A hair transplantation apparatus for harvesting at least one hair follicle from a portion of a patient's scalp comprising:
a robot, including at least one robotic arm having a first end adapted to be disposed adjacent the patient's scalp;
a hair follicle plug cutting device associated with the first end of the robotic arm, the robotic arm being adjustably maneuverable so that the plug cutting device is capable of being selectably placed proximate the patient's scalp; and
the plug cutting device being operated using a substantially automated process to harvest the at least one hair follicle.
0. 2. The hair transplantation apparatus of
0. 3. The hair transplantation apparatus of
0. 4. The hair transplantation apparatus of
0. 5. The hair transplantation apparatus of
0. 6. The hair transplantation apparatus of
0. 7. The hair transplantation apparatus of
0. 8. The hair transplantation apparatus of
0. 9. The hair transplantation apparatus of
0. 10. The hair transplantation apparatus of
0. 11. The hair transplantation apparatus of
0. 12. The hair transplantation apparatus of
0. 13. The hair transplantation apparatus of
0. 14. The hair transplantation apparatus of
0. 15. The hair transplantation apparatus of
0. 16. The hair transplantation apparatus of
0. 17. The hair transplantation apparatus of
0. 18. The hair transplantation apparatus of
0. 19. A hair transplantation apparatus for implanting at least one hair follicle into a portion of a patient's scalp comprising:
a robot, including at least one robotic arm having a first end adapted to be disposed adjacent the patient's scalp;
a hair follicle introducer associated with the first end of the robotic arm, the robotic arm being adjustably maneuverable so that the hair follicle introducer is capable of being selectably placed proximate the patient's scalp; and
the hair follicle introducer is loaded with the at least one hair follicle and then operated using a substantially automated process to implant the at least one hair follicle.
0. 20. The hair transplantation apparatus of
0. 21. The hair transplantation apparatus of
0. 22. The hair transplantation apparatus of
0. 23. The hair transplantation apparatus of
0. 24. The hair transplantation apparatus of
0. 25. The hair transplantation apparatus of
0. 26. The hair transplantation apparatus of
0. 27. The hair transplantation apparatus of
0. 28. The hair transplantation apparatus of
0. 29. The hair transplantation apparatus of
0. 30. The hair transplantation apparatus of
0. 31. The hair transplantation apparatus of
0. 32. The hair transplantation apparatus of
0. 33. The hair transplantation apparatus of
0. 34. The hair transplantation apparatus of
0. 35. The hair transplantation apparatus of
0. 36. The hair transplantation apparatus of
0. 37. A hair transplantation apparatus for implanting at least one hair follicle into a portion of a patient's scalp comprising:
a robot, including at least one robotic arm having a first end adapted to be disposed adjacent the patient's scalp;
a hair follicle introducer associated with the first end of the robotic arm, the robot being capable of registering a position of the introducer with at least a portion of the patient's scalp under consideration so that the position of the introducer is known in three-dimensional space with respect to the portion of the patient's scalp under consideration, and the robotic arm is moved to place the introducer proximate the patient's scalp using a substantially automated process; and
the hair follicle introducer is loaded with the at least one hair follicle and then operated using a substantially automated process to implant the at least one hair follicle.
0. 38. The hair transplantation apparatus of
0. 39. The hair transplantation apparatus of
0. 40. The hair transplantation apparatus of
0. 41. The hair transplantation apparatus of
0. 42. The hair transplantation apparatus of
0. 43. The hair transplantation apparatus of
0. 44. The hair transplantation apparatus of
0. 45. The hair transplantation apparatus of
0. 46. The hair transplantation apparatus of
0. 47. The hair transplantation apparatus of
0. 48. The hair transplantation apparatus of
0. 49. The hair transplantation apparatus of
0. 50. The hair transplantation apparatus of
0. 51. The hair transplantation apparatus of
0. 52. A hair transplantation apparatus for harvesting at least one hair follicle from a portion of a patient's scalp comprising:
a robot, including at least one robotic arm having a first end adapted to be disposed adjacent the patient's scalp;
a hair follicle plug cutting device associated with the first end of the robotic arm, the robot being capable of registering a position of the plug cutting device with at least a portion of the patient's scalp under consideration so that the position of the plug cutting device is known in three-dimensional space with respect to the portion of the patient's scalp under consideration, and the robotic arm is moved to place the plug cutting device proximate the patient's scalp using a substantially automated process; and
the plug cutting device being operated using a substantially automated process to harvest the at least one hair follicle.
0. 53. The hair transplantation apparatus of
0. 54. The hair transplantation apparatus of
0. 55. The hair transplantation apparatus of
0. 56. The hair transplantation apparatus of
0. 57. The hair transplantation apparatus of
0. 58. The hair transplantation apparatus of
0. 59. The hair transplantation apparatus of
0. 60. The hair transplantation apparatus of
0. 61. The hair transplantation apparatus of
0. 62. The hair transplantation apparatus of
0. 63. The hair transplantation apparatus of
0. 64. The hair transplantation apparatus of
0. 65. The hair transplantation apparatus of
0. 66. The hair transplantation apparatus of
0. 67. The hair transplantation apparatus of
0. 68. A hair transplantation apparatus for harvesting at least one hair follicle and implanting the at least one hair follicle from/into a portion of a patient's scalp comprising:
a robot, including at least one robotic arm having a first end adapted to be disposed adjacent the patient's scalp;
an instrument holder associated with the first end of the robotic arm;
a hair plug cutting device associated with the instrument holder, the robot being adjustably maneuverable so that the plug cutting device is capable of being selectably placed proximate the patient's scalp;
the plug cutting device being operated using a substantially automated process to harvest the at least one hair follicle from a first location of the patient's scalp;
a hair follicle introducer associated with the instrument holder, the robot being adjustably maneuverable so that the introducer is capable of being selectably placed proximate the patient's scalp; and
the hair follicle introducer being operated using a substantially automated process to implant the at least one hair follicle into a second location of the patient's scalp.
0. 69. The hair transplantation apparatus of
0. 70. The hair transplantation apparatus of
0. 71. The hair transplantation apparatus of
0. 72. The hair transplantation apparatus of
0. 73. The hair transplantation apparatus of
0. 74. The hair transplantation apparatus of
0. 75. The hair transplantation apparatus of
0. 76. The hair transplantation apparatus of
0. 77. The hair transplantation apparatus of
0. 78. The hair transplantation apparatus of
0. 79. The hair transplantation apparatus of
0. 80. The hair transplantation apparatus of
0. 81. The hair transplantation apparatus of
0. 82. The hair transplantation apparatus of
0. 83. The hair transplantation apparatus of
0. 84. The hair transplantation apparatus of
0. 85. The hair transplantation apparatus of
0. 86. The hair transplantation apparatus of
0. 87. The hair transplantation apparatus of
0. 88. The hair transplantation apparatus of
0. 89. The hair transplantation apparatus of
0. 90. The hair transplantation apparatus of
0. 91. A hair transplantation apparatus for harvesting at least one hair follicle and implanting the at least one hair follicle from/into a portion of a patient's scalp comprising:
a robot, including at least one robotic arm having a first end adapted to be disposed adjacent the patient's scalp;
an instrument holder associated with the first end of the robotic arm;
a hair follicle plug cutting device associated with the instrument holder, the robot being capable of registering a position of the plug cutting device with a first location of the patient's scalp so that the position of the plug cutting device is known in three-dimensional space with respect to the first location, and the robotic arm is moved to place the plug cutting device proximate the first location using a substantially automated process;
the plug cutting device being operated using a substantially automated process to harvest the at least one hair follicle;
a hair follicle introducer associated with the instrument holder, the robot being capable of registering a position of the introducer with a second location of the patient's scalp so that the position of the introducer is known in three-dimensional space with respect to the second location, and the robotic arm is moved to place the introducer proximate the second location using a substantially automated process; and
the hair follicle introducer is loaded with the at least one hair follicle and then operated using a substantially automated process to implant the at least one hair follicle.
0. 92. The hair transplantation apparatus of
0. 93. The hair transplantation apparatus of
0. 94. The hair transplantation apparatus of
0. 95. The hair transplantation apparatus of
0. 96. The hair transplantation apparatus of
0. 97. The hair transplantation apparatus of
0. 98. The hair transplantation apparatus of
0. 99. The hair transplantation apparatus of
0. 100. The hair transplantation apparatus of
0. 101. The hair transplantation apparatus of
0. 102. The hair transplantation apparatus of
0. 103. The hair transplantation apparatus of
0. 104. The hair transplantation apparatus of
0. 105. The hair transplantation apparatus of
0. 106. The hair transplantation apparatus of
0. 107. The hair transplantation apparatus of
0. 108. The hair transplantation apparatus of
0. 109. The hair transplantation apparatus of
0. 111. The method of claim 110, wherein the user-specified parameter is every Nth hair follicle.
0. 112. The method of claim 110, wherein the user-specified parameter comprises reserving hair follicles that are within a user-specified region of interest.
0. 113. The method of claim 110, wherein identifying and selecting hair follicles are computer implemented.
0. 114. The method of claim 110, further comprising acquiring one or more images of the location from which hair follicles are to be harvested.
0. 115. The method of claim 110, further comprising harvesting the selected hair graft wherein harvesting is at least partially computer controlled.
0. 117. The system of claim 116, further comprising a display coupled to the computer for displaying the locations and/or intended distribution of hair follicles.
0. 118. The system of claim 116, wherein the computer is further programmed to assist in planning implantation locations and display an image simulating an appearance of hair follicles being implanted in the implantation locations.
0. 119. The system of claim 116, further comprising an image acquisition device, including a camera.
0. 120. The system of claim 116, wherein the computer is associated with a robotic hair transplantation system.
0. 121. The system of claim 118, wherein the computer is further programmed to determine an angle of insertion of a hair follicle to be implanted.
0. 122. The system of claim 121, wherein the computer is programmed to gradually adjust the angle of insertion from one region to another.
0. 123. The method of claim 110, wherein said using an imaging system to identify a location of individual hair follicles comprises determining three-dimensional coordinates of the hair follicles.
0. 124. The method of claim 110, wherein the method is used in conjunction with a robotic hair transplantation procedure.
0. 125. The method of claim 110, further comprising determining an angular disposition of the hair follicles.
0. 126. The method of claim 110, further comprising plotting hair graft implantation locations based upon the location of the hair follicles.
0. 127. The method of claim 126, further comprising displaying an image simulating a distribution of the hair follicles and plotted hair grafts.
0. 129. The method of claim 128, wherein the user-specified parameter is every Nth hair follicle.
0. 130. The method of claim 128, wherein the user-specified parameter comprises reserving hair follicles that are within a user-specified region of interest.
0. 131. The method of claim 128, wherein identifying and selecting are computer implemented.
0. 132. The method of claim 128, further comprising acquiring one or more images of a location from which hair grafts are to be harvested.
0. 133. The method of claim 128, further comprising harvesting the selected hair grafts.
0. 134. The method of claim 128, further comprising mapping locations and three-dimensional coordinates of the plurality of hair follicles.
0. 135. The method of claim 128, wherein the method is used in conjunction with a robotic hair transplantation procedure.
|
This application More than one reissue application has been filed for the reissue of U.S. Pat. No. 7,130,717. The reissue applications are application Ser. No. 11/702,485 filed on Feb. 5, 2007, and divisional application Ser. Nos. 12/259,434, 12/259,456, and 12/259,482 (the present application), all filed on Oct. 28, 2008. U.S. Pat. No. 7,130,717 is a continuation of application Ser. No. 09/774,154, filed Jan. 30, 2001, now U.S. Pat. No. 6,58,746 6,585,746 which claims the benefit of U.S. Provisional Application No. 60/130,877 filed Apr. 23, 1999 under 35 U.S.C. §119 to PCT Application PCT/00/10596, filed Apr. 20, 2000. application Application Ser. No. 09/774,154 is hereby incorporated by reference.
1. Field of the Invention
This invention relates generally to a method and apparatus for hair transplantation, and, more particularly, to a method and apparatus for hair transplantation which utilize a robot.
2. Description of the Related Art
Hair transplantation is presently a widely-performed procedure. Typically, it involves implanting many individual hair grafts. The individual grafts may be micrografts or minigrafts. In a “Megasession”, or hair transplantation session, a large number of grafts, usually from 1000 to 2000 grafts, are implanted. Micrografts may contain one to two hair follicles and minigrafts may contain from three to five hair follicles Generally, the number of grafts done depends on the degree of baldness and density of hair desired for the transplantation.
The transplantation technique generally requires removal of an elliptical-shaped flap of scalp from the occiput, or back of the patient's head. The tiny micro and/or minigrafts may be removed from the flap of the patient's scalp which has been removed. The incision made to remove the flap is stitched together, and normally leaves a well-concealed scar. The new grafts, which might be micro or mini-grafts are then inserted in very small slits, or openings, formed in the patient's scalp where it is desired to have the grafts implanted. Usually, the grafts are implanted approximately 1.5 mm. from each other into the bald area of the patient's scalp to be treated. Generally, the slits, or small openings, formed in the patient's scalp to receive the grafts, heal very well, normally without leaving any scars.
The Megasession procedure generally takes a complete workday of from five to eight hours to complete, depending upon the number of grafts to be transplanted. Normally, one team of physicians and/or physicians assistants and/or nurses work together form the micro and/or minigrafts from the flap of removed scalp. They carefully trim the flap of scalp into the desired number of micro and/or minigrafts, each micro and/or minigraft containing at least one hair follicle. This step is generally referred to as the harvesting step and requires the use of very sharp, fine knives, or scalpels, and the use of magnification devices, such as magnifying loops, by the first surgical team. Generally, a second surgical team forms the slits, or openings in the patient's scalp which are to receive the hair grafts, and each hair graft, or plug, is individually placed within each incision, or opening, by the second surgical team. The angle of insertion and the distribution of the recipient sites generally reflects the experience and art of the individual surgeon performing the procedure.
The disadvantages associated with the foregoing described Megasession hair transplantation technique, are that it is a long, laborious, and tedious procedure, which may begin at 7:30 am and not be completed until 2:00 pm to 5:00 pm, dependent upon the number of grafts, or plugs, to be transplanted and the efficiency of the teams. Furthermore, because of the labor intensiveness of the procedure, and the fact that all the individuals involved in the procedure are highly skilled and well trained and experienced, the procedure can be a very expensive procedure, the cost varying from $2000 to $12,000 dollars or more, dependent upon the number of hair grafts, or plugs, to be implanted.
Accordingly, prior to the development of the present method and apparatus for hair transplantation, there has been no hair transplantation technique which is not a long, laborious, tedious, uneconomical procedure, and is not overly labor intensive. Therefore, the art has sought a hair transplantation technique which is less long, laborious, tedious, and more economical, and which technique is less labor intensive.
The present invention is directed to overcoming, or at least reducing the effects of, one or more of the problems set forth above.
In accordance with the invention, the foregoing advantages have been achieved through the present hair transplantation method and apparatus for implanting at least one hair follicle into a portion of a patient's scalp. The hair transplantation apparatus of the present invention includes: a robot, including at least one robotic arm having a first end adapted to be disposed adjacent the patient's scalp; a hair follicle effector associated with the first end of the robotic arm, the robotic arm being adjustably maneuverable so that the hair follicle effector is capable of being selectably placed proximate the patient's scalp and operated to implant the at least one hair follicle into a portion of the patient's scalp; and the hair follicle effector being moved and operated to implant the at least one hair follicle into a portion of the patient's scalp. A feature of the present invention is that the hair follicle effector may be either a single hair follicle insertion device which includes a needle, or a multiple hair follicle insertion device which includes multiple needles.
Another feature of the present invention is that the apparatus may include a video system adapted to be associated with the patient's scalp and adapted to identify at least one location on the scalp where the at least one hair follicle is to be implanted. The video system may include a camera and a distance measuring device to measure the distance from the patient's scalp to the camera. Another feature of the present invention is that a plug cutting device may be associated with the first end of the at least one robotic arm, the plug cutting device being adapted to remove a plug of the patient's scalp, the plug containing at least one hair follicle. The plug cutting device may be a single hair follicle insertion device which includes a needle. Another feature of the present invention is that a plug trimming device may be associated with the first end of the at least one robotic arm, the plug trimming device being adapted to trim a portion of a flap, removed from the patient's scalp, into a plurality of plugs of the patient's scalp, each plug containing at least one hair follicle. An additional feature of the present invention includes a stereotactic frame, adapted to be releaseably secured to the patient's head, for restraining the patient's head with respect to a stereotactic robot.
In accordance with the invention, the foregoing advantages have also been achieved through the present method for transplanting hair by implanting at least one hair follicle into a portion of a patient's scalp, the patient's scalp having a plurality of existing hair follicles. This aspect of the present invention includes the steps of: providing a robot, the robot including at least one robotic arm, the at least one robotic arm having a first end; associating a hair follicle effector with the first end of the robotic arm, the robotic arm being adjustably maneuverable so that the hair follicle effector is capable of being selectably placed proximate the patient's scalp; loading the hair follicle effector with at least one existing hair follicle; disposing the first end of the robotic arm adjacent to the patient's scalp; moving the hair follicle effector toward the patient's scalp; and operating the hair follicle effector to implant the at least one existing hair follicle into a portion of the patient's scalp.
Another feature of this aspect of the present invention may include the step of utilizing as the hair follicle effector either a single hair follicle insertion device which includes a needle, or a multiple hair follicle insertion device which includes multiple needles. A further feature of this aspect of the present invention may include, prior to implanting the at least one existing hair follicle, the steps of: providing a video system; associating the video system with the patient's scalp; scanning the patient's scalp with the video system to determine the locations of the existing hair follicles and the location of the patient's scalp in three dimensions. An additional feature of the present invention may include the steps of: utilizing a stereotactic video system which includes a camera and a distance measuring sensor; and measuring the distance from the patient's scalp to the camera while the patient's scalp is being scanned.
An additional feature of this aspect of the present invention may include the step of determining the angular disposition of the existing hair follicles with respect to the patient's scalp. Another feature of this aspect of the present invention may include the step of utilizing a single hair follicle insertion device, which includes a needle, as the plug cutting device.
Another feature of this aspect of the present invention, prior to the implantation of the at least one existing hair follicle, may include the steps of: providing a plug trimming device; associating the plug trimming device with the first end of the at least one robotic arm; disposing a flap containing a plurality of existing hair follicles, previously removed from the patient's scalp, upon a support surface; and trimming the flap into a plurality of plugs of the patient's scalp, each plug containing at least one existing hair follicle. An additional feature of this aspect of the present invention may include the steps of releaseably securing a stereotactic frame to the patient's head and restraining the patient's head with respect to a stereotactic robot.
The hair transplantation method and apparatus of the present invention, when compared to previously proposed operating the hair follicle effector to implant the at least one existing hair follicle into a portion of the patient's scalp hair transplantation methods and apparatus, are believed to have the advantages of providing a shorter, less laborious, less tedious, more economical, and less labor intensive hair transplantation procedure.
The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawings, in which like reference numerals identify like elements, and in which:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
With reference to
With reference to
With reference to
With reference to
With reference to
As in the case of any stereotactic procedure, the head of the patient 100 must be fixed, or restrained. A conventional stereotactic frame, or a conventional head holder, such as one which makes three point contact with the patient's head, 220, adapted to be releaseably secured to the patient's head, for restraining the patient's head with respect to the stereotactic robot 201 may be utilized. In this regard, the stereotactic frame, or head holder, 220 is typically fixedly secured to the operating room table 221, and as known in the art, the location and disposition of the stereotactic robot 201 with respect to the operating room table 221 and frame 220, in three-dimensional space, may be readily determined. Optionally, if desired for increasing the accuracy of apparatus 200, a plurality of fiducial marks may be disposed on the stereotactic frame 220, as well as on the patient's head. The location of the patient's head with respect to the stereotactic frame, or head holder, 220, as well as the orientation of the stereotactic robot 201 with respect to the stereotactic frame, or head holder, 220 may then be readily determined, as is known in the art. It should be noted that, alternatively, the patient's head could be releaseably secured directly to the operating room table 221, without the use of a stereotactic frame. So long as there is a fixed, known relationship in three-dimensional space between stereotactic robot 201 and the patient's head, apparatus 200 of the present invention may be used.
Still with reference to
Turning now to
Stereotactic video system 300 is used in the following manner. Camera 301 is moved in controlled arcs across the patient's scalp 102 to map the location of existing hair follicles 101 (
If desired, the scanning of the patient's scalp 102 and existing hair follicles 101 may also be performed so as to determine the angular disposition of each hair follicle 101 with respect to the patient's scalp 102, including the vector the existing hair follicle 101 is oriented in relation to the patient's scalp 102. This information could be utilized, as will be hereinafter described in greater detail, when the present invention is utilized to also remove, or harvest, existing hair follicles from the patient's scalp 102, or from flap 104. In this regard, it is desirable to remove the entire hair follicle, including the hair shaft disposed above the patient's scalp 102, as well as that portion of the hair shaft and follicle disposed beneath the surface of the patient's scalp 102. To accomplish this, it is preferable to know at what angle the hair follicle, including its hair shaft, is disposed and oriented, both above and below the patient's scalp 102.
With reference to
As will be described in greater detail, the stereotactic robot 201 may be provided with a plug trimming device, or fine scalpel (not shown), which could be mounted, or associated, with the first end 203 of robotic arm 202 of stereotactic robot 201. After the flap 104 (
With reference to
As to the robotic insertion of the grafts 107, 108, into the patient's scalp 102, the hair follicle introducer 115 may be used to simultaneously make the necessary slit, or short incision, into the patient's scalp 102, by use of the needle 117 associated with the hair follicle introducer. Alternatively, a separate device, such as a suitable scalpel, or laser, could be associated with the stereotactic robot 201 to make the necessary small opening, incision, or slit in the patient's scalp which is to receive the graft 107, 108.
Hemostasis, or cessation of bleeding, may be necessary, as in the prior Megasession procedure, and hemostasis may provided such as by injecting a vasoconstrictor along with the local anesthetic at the beginning of the procedure, and/or by applying local pressure for several seconds or minutes after the graft 107, 108 is inserted in the patient's scalp. In order to minimize bleeding even more, a pneumatic band (not shown) can be placed around the patient's scalp at the beginning of the procedure. As previously discussed, single hair follicle insertion devices 115 or multiple hair follicle insertions devices could be utilized as previously described. As will be hereinafter discussed, the apparatus 200 of the present invention in addition to performing the hair transplantation method previously described may also be used, if desired, to perform additional functions; however, whether or not the following described additional functions are also performed by apparatus 200 does not detract from the usefulness of apparatus 200.
If desired, the apparatus 200 of the present invention could also be utilized to trim the flap 104 of the patient's scalp which has been previously removed from the patient. As previously described, a plug trimming device, or suitable scalpel, can be associated with the first end 203 of the robotic arm 202 of the stereotactic robot 201. The surgeon could mount the flap 104 containing the hair follicles 101 upon a suitable support surface. As previously described, after the location of the existing hair follicles 101 is determined and mapped by the stereotactic video system 300, the plug trimming device, or scalpel, could be operated and controlled by the stereotactic robot 201 to cut the grafts 107, 108 from the flap 104. Preferably, each graft 107, 108 would be cut along the longitudinal axis of the hair shaft of each hair follicle to minimize damage to the hair shaft and hair follicle. As previously described, if the angular disposition between the hair follicle and the patient's scalp has been determined the stereotactic video system 300, the stereotactic robot 201 may be programmed to operate the plug trimming device along the longitudinal axis of each hair follicle 101. Alternatively, a single hair follicle insertion device, such as device 116 of
Alternatively, if desired, the apparatus 200 of the present invention may be utilized to also directly obtain the grafts 107, 108 directly from the patient's scalp 102 without surgically removing flap 104. In this regard, as previously described, a plug cutting device 400 (
As to the transplantation of grafts 107, 108, into the patient's scalp 102, it should be noted that the bald portion of the patient's scalp 102, or recipient space, 103, can be divided into any number of individual areas, each of which can be programmed individually. The recipient space, or bald area, 103 can overlap areas of existing hair in order to insert hair follicles 101 to increase the density of hair in those areas. The density of the transplanted hair follicles can be calculated, depending upon the number of hair follicles to be implanted. The spacing between hair follicles can be done either manually, or the computer can generate a random distribution. The angle of insertion may be determined for each area individually, or the computer can generate a plan to vary the angle of insertion progressively from one side of an area to the other. If some of the hair follicles to be transplanted are finer than the other hair follicles, they can be individually identified and reserved for insertion at the hair line. A three-dimensional rendered image simulating the post-operative appearance of the patient's scalp can be presented prior to hair follicle insertion for approval of the surgeon and possibly the patient.
Although the instrument holder 112 illustrated in
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below.
Patent | Priority | Assignee | Title |
10448968, | Feb 26 2014 | Infuez, LLC | Follicle extraction system and related methods |
11395673, | Feb 26 2014 | Follicle extraction system and related methods | |
8652186, | Jun 04 2008 | VENUS CONCEPT INC | System and method for selecting follicular units for harvesting |
8983157, | Mar 13 2013 | VENUS CONCEPT INC | System and method for determining the position of a hair tail on a body surface |
8998931, | Oct 17 2011 | PILOFOCUS, INC | Hair restoration |
9107697, | Jun 04 2008 | VENUS CONCEPT INC | System and method for selecting follicular units for harvesting |
9314082, | Sep 17 2009 | PILOFOCUS, INC. | System and method for extraction of hair follicle |
9364252, | Sep 17 2009 | PILOFOCUS, INC. | Hair restoration surgery |
9420866, | Sep 14 2006 | William, Rassman | Hair harvesting apparatus |
9693799, | May 08 2013 | PILOFOCUS, INC. | System and method for aligning hair follicle |
9861386, | Oct 17 2011 | PILOFOCUS, INC. | Hair restoration |
Patent | Priority | Assignee | Title |
3867942, | |||
4004592, | May 28 1975 | Artificial hair implanting method | |
4160453, | Oct 22 1974 | Hairegenics, Inc. | Apparatus for implanting hair |
4451254, | Mar 15 1982 | Eli Lilly and Company | Implant system |
4476864, | Sep 29 1982 | SANTEC CORPORATION, A CORP OF NEW HAMPSHIRE | Combined multiple punch and single punch hair transplant cutting device |
4479291, | Jul 03 1979 | Nido, Ltd. | Hair implanting appliance |
4716901, | Sep 27 1984 | PRATT BURNERD, A CORP OF UNITED KINGDOM | Surgical appliance for forming an opening through the skin |
4751927, | May 28 1986 | Hair implantation method and device | |
4768517, | Nov 16 1987 | Method and apparatus for securing hair to skin sections by laser application | |
4807163, | Jul 30 1985 | Method and apparatus for digital analysis of multiple component visible fields | |
4969903, | Nov 13 1989 | Hair implant system | |
5036860, | Nov 24 1989 | MEDICAL DEVICE TECHNOLOGIES, INC | Disposable soft tissue biopsy apparatus |
5050608, | Jul 12 1988 | MIZUHO IKAKOGYO CO , LTD | System for indicating a position to be operated in a patient's body |
5078140, | May 08 1986 | Imaging device - aided robotic stereotaxis system | |
5183053, | Apr 12 1991 | ACUDERM, INC | Elliptical biopsy punch |
5251127, | Feb 01 1988 | XENON RESEARCH, INC | Computer-aided surgery apparatus |
5331472, | Sep 14 1992 | Method and apparatus for measuring hair density | |
5381743, | Jan 31 1991 | Moll Automatische Naehsysteme GmbH i.g. | Device for making seams on three-dimensional objects |
5395368, | May 20 1993 | Ellman International, Inc | Multiple-wire electrosurgical electrodes |
5417683, | Jul 13 1994 | Mini-graft hair implanting device for implanting multiple clumps of hair follicles at one time | |
5439475, | Jul 03 1990 | Tissue grafting method using an apparatus with multiple tissue receiving receptacles | |
5483961, | Mar 19 1993 | COMPASS INTERNATIONAL, INC | Magnetic field digitizer for stereotactic surgery |
5490850, | May 20 1993 | Ellman International, Inc | Graft harvesting hair transplants with electrosurgery |
5562613, | Jul 02 1991 | InterMED, Inc. | Subcutaneous drug delivery device |
5578054, | Aug 31 1994 | Method for hair transplantation | |
5584841, | May 19 1995 | Instrument for implanting hair grafts | |
5584851, | May 09 1995 | ECONOMIC DEVELOPMENT BANK OF P R | Hair transplant instrument and method for transplanting hair grafts |
5611810, | Aug 31 1994 | James E., Arnold | Hair transplantation apparatus |
5611811, | Apr 29 1994 | Star-Wood, Inc. | Micro and mini hair transplant device |
5662661, | May 13 1994 | Medicamat S.A. | Instrument for cutting calibrated hair grafts |
5693064, | Nov 04 1994 | Dermal punch for hair transplantation and methods | |
5733278, | Nov 30 1994 | Laser Industries Limited | Method and apparatus for hair transplantation using a scanning continuous-working CO2 laser |
5782843, | Apr 25 1994 | Apparatus for implanting hair-roots, and a device for placing hair-roots on a conveyor belt for use in the apparatus | |
5782851, | Apr 10 1996 | Hair transplantation system | |
5782853, | Sep 13 1996 | Surgical handle for surgical blades and punches | |
5792163, | Jan 03 1996 | Linear punch | |
5792169, | Feb 28 1995 | Method and apparatus for forming multiple cavities for placement of hair grafts | |
5817105, | May 29 1996 | BANK OF MONTREAL | Image-guided surgery system |
5817120, | Feb 10 1997 | Hair implanting instrument | |
5827217, | Sep 04 1996 | TISSUE HARVEST SYSTEMS, LLC | Process and apparatus for harvesting tissue for processing tissue and process and apparatus for re-injecting processed tissue |
5827297, | Oct 01 1992 | Medicamat S.A. | Device for transplanting small diameter hair grafts |
5858019, | Oct 15 1997 | Graft site cutter | |
5865744, | Sep 16 1996 | Method and system for delivering therapeutic agents | |
5873888, | Apr 24 1997 | Surgical instrument for the transplantation of self-grown hair | |
5893853, | Jan 31 1997 | Method for transplanting grafts of skin having at least one hair | |
5895403, | Oct 17 1997 | CLAAS KGaA | Surgical cutting tool |
5899916, | Feb 22 1995 | Dilator/hair implantor device | |
5951572, | Feb 28 1995 | Method, apparatus and kit for performing hair grafts | |
5961529, | Jan 12 1998 | Hourglass-shaped dermal punch and methods for its use | |
5984936, | Apr 17 1998 | Impulsive cutter and process for hair graft preparation | |
5989273, | Jan 18 1995 | Apparatus for producing hair transplantation donor strips and methods | |
5989279, | Apr 10 1996 | Hair implantation device | |
5997550, | Jul 13 1998 | Method of increasing available hair grafts | |
6013087, | Sep 26 1996 | BANK OF MONTREAL | Image-guided surgery system |
6027512, | May 28 1998 | Hair follicle harvesting device | |
6056736, | Oct 29 1998 | Device and method for loading hair grafts into a cartridge | |
6059807, | Mar 17 1998 | Apex Medical Products, LLC | Device for implanting small-diameter capillary grafts |
6110189, | Feb 28 1995 | Device and method for implanting hair grafts | |
6120521, | Feb 22 1995 | Dilator/hair implantor device | |
6341831, | Mar 09 1999 | Pearl I, LLC | Skin decoration apparatus and method |
6434416, | Nov 10 1998 | Olympus Corporation | Surgical microscope |
6445943, | Sep 15 1994 | GE Medical Systems Global Technology Company, LLC | Position tracking and imaging system for use in medical applications |
6461369, | Aug 05 1999 | Hair transplanter | |
6547782, | Jun 13 1991 | International Business Machines, Corp. | System and method for augmentation of surgery |
6572625, | Sep 13 1998 | NEW HAIR INSTITUTE MEDICAL GROUP, A PROFESSIONAL CORPORATION | Hair transplant harvesting device and method for its use |
6694167, | Sep 15 1994 | GE Medical Systems Global Technology Company, LLC | System for monitoring a position of a medical instrument with respect to a patient's head |
6973931, | Oct 30 1997 | Automated hair isolation and processing system | |
6986739, | Aug 23 2001 | NSCRYPT, INC | Architecture tool and methods of use |
7806121, | Dec 22 2005 | VENUS CONCEPT INC | Follicular unit transplantation planner and methods of its use |
20010034534, | |||
20010055807, | |||
20020050518, | |||
JP10000210, | |||
WO64379, | |||
WO9825666, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 01 2005 | HOUSTON STEREOTACTIC CONCEPTS, INC | Restoration Robotics, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030126 | /0944 | |
Oct 28 2008 | RESTORATION ROBOTICS, INC. | (assignment on the face of the patent) | / | |||
Oct 11 2016 | VENUS CONCEPT INC | MADRYN HEALTH PARTNERS, LP | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 051156 | /0892 | |
May 10 2018 | Restoration Robotics, Inc | SOLAR CAPITAL LTD | SHORT-FORM PATENT SECURITY AGREEMENT | 046125 | /0518 | |
Nov 07 2019 | SOLAR CAPITAL LTD | Restoration Robotics, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 050965 | /0765 | |
Nov 07 2019 | SOLAR CAPITAL LTD | Restoration Robotics, Inc | TERMINATION OF PATENT SECURITY AGREEMENT | 050966 | /0741 | |
Nov 07 2019 | Restoration Robotics, Inc | VENUS CONCEPT INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 057910 | /0853 | |
Jan 18 2024 | VENUS CONCEPT INC | EW HEALTHCARE PARTNERS, L P | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 066354 | /0565 |
Date | Maintenance Fee Events |
Mar 15 2011 | ASPN: Payor Number Assigned. |
Apr 30 2018 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Date | Maintenance Schedule |
May 17 2014 | 4 years fee payment window open |
Nov 17 2014 | 6 months grace period start (w surcharge) |
May 17 2015 | patent expiry (for year 4) |
May 17 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 17 2018 | 8 years fee payment window open |
Nov 17 2018 | 6 months grace period start (w surcharge) |
May 17 2019 | patent expiry (for year 8) |
May 17 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 17 2022 | 12 years fee payment window open |
Nov 17 2022 | 6 months grace period start (w surcharge) |
May 17 2023 | patent expiry (for year 12) |
May 17 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |