The present invention relates to novel endosseous implants, which are designed so that the areas intended for bone soft tissue apposition exhibit a scalloped appearance, including both convex and concave patterns, to follow the naturally occurring bone morphology. Thus, the disclosed implants provide attachment possibilities for both bone and soft tissue, thereby effecting both hard- and soft-tissue preservation.

REEXAMINATION RESULTS

The questions raised in reexamination proceeding No. 90/007,836, filed Dec. 2, 2005, have been considered, and the results thereof are reflected in this reissue patent which constitutes the reexamination certificate required by 35 U.S.C. 307 as provided in 37 CFR 1.570(e) for ex parte reexaminations, or the reexamination certificate required by 35 U.S.C. 316 as provided in 37 CFR 1.997(e) for inter partes reexaminations.

Patent
   RE42391
Priority
Dec 01 1998
Filed
Feb 12 2003
Issued
May 24 2011
Expiry
Dec 01 2018
Assg.orig
Entity
Large
2
108
all paid
1. An endosseous dental implant, comprising:
a threaded shaft made from a biocompatible material, said shaft having a distal end and a proximal end;
an abutment-implant interface disposed towards the proximal end of said shaft; and
a bone-tissue apposition surface formed on said shaft and having an edge disposed adjacent to said abutment-implant interface, said edge of the bone-tissue apposition surface including at least one peak and trough configured to approximate the physiological contours of naturally occurring bone-tissue morphology and wherein said bone-tissue apposition surface comprises at least one of a roughened surface, a textured surface, or an applied biologic modifier that extends to said edge but does not extend beyond said edge.
13. A one-stage endosseous dental implant, comprising:
a threaded shaft made from a biocompatible material, said shaft having a distal end and a proximal end;
a bone-tissue apposition surface formed on said shaft and comprising an edge disposed adjacent to said an abutment-implant interface, said edge of said bone-tissue apposition surface including at least one peak and trough configured to approximate the physiological contours of naturally occurring bone-tissue morphology; and
an abutment permanently attached to the proximal end of said shaft;
wherein said bone-tissue apposition surface comprises at least one of a roughened surface, a textured surface, or an applied biologic modifier that extends to said edge but does not extend beyond said edge.
23. A one-stage endosseous dental implant system, comprising:
a threaded shaft made from a biocompatible material, said shaft having a distal end and a proximal end;
a bone-tissue apposition surface formed on said shaft and comprising an edge disposed adjacent to said an abutment-implant interface, said edge of said bone-tissue apposition surface including at least one peak and trough configured to approximate the physiological contours of naturally occurring bone-tissue morphology;
an abutment permanently attached to the proximal end of said shaft; and
a crown having a distal end configured to secure to said abutment;
wherein said bone-tissue apposition surface comprises at least one of a roughened surface, a textured surface, or an applied biologic modifier that extends to said edge but does not extend beyond said edge.
0. 63. An endosseous dental implant, comprising:
a shaft made from a biocompatible material, said shaft having a distal end and a proximal end;
an upper surface disposed towards the proximal end of said shaft;
a bone-tissue apposition surface formed on said shaft and said bone-tissue apposition surface having an edge including at least one peak and trough configured to approximate the physiological contours of naturally occurring bone-tissue morphology, wherein said bone-tissue apposition surface comprises at least one of a roughened surface, a textured surface, or an applied biologic modifier that extends to said edge but does not extend beyond said edge;
a bore having an opening on said upper surface for connecting an abutment to said shaft; and
an anti-rotational member on said shaft also for connecting an abutment to said shaft.
0. 84. An endosseous dental implant, comprising:
a shaft made from a biocompatible material, said shaft having a distal end and a proximal end, said shaft being substantially symmetrical about a straight longitudinal axis of said shaft;
an upper surface disposed towards the proximal end of said shaft;
a bone tissue/soft tissue transition region between said shaft and said upper surface; and
a bone-tissue apposition surface formed on said bone tissue/soft tissue transition region, said bone-tissue apposition surface comprising an edge with at least one peak and trough configured to approximate the physiological contours of naturally occurring bone-tissue morphology, wherein said bone-tissue apposition surface comprises at least one of a roughened surface, a textured surface, or an applied biologic modifier that extends to said edge but does not extend beyond said edge.
16. A two-stage endosseous dental implant system, comprising:
a shaft made from a biocompatible material, said shaft having a distal end and a proximal end;
a bone-tissue apposition surface formed on said shaft and an edge disposed adjacent to said an abutment-implant interface, said edge of said bone-tissue apposition surface including at least one peak and trough configured to approximate the physiological contours of naturally occurring bone-tissue morphology, wherein said bone-tissue apposition surface comprises at least one of a roughened surface, a textured surface, or an applied biologic modifier that extends to said edge but does not extend beyond said edge;
an abutment-implant interface disposed towards the proximal end of said shaft;
an abutment configured to attach to said abutment-implant interface;
a means for connecting said abutment to said shaft abutment-implant interface; and
a crown having a distal end configured to fit over said abutment.
2. The endosseous dental implant according to claim 1, wherein said edge of the bone-tissue apposition surface has a non-planar appearance.
3. The endosseous dental implant according to claim 2, wherein said edge of the bone tissue apposition surface has a highest point and a lowest point and the highest points point of said bone-tissue apposition surface is configured to substantially aligns align with the interproximal areas of the bone-tissue, and wherein the lowest points point of said bone-tissue apposition surface is configured to substantially aligns align with the buccal area of the bone-tissue.
4. The endosseous dental implant according to claim 1 further comprising:
a soft-tissue apposition surface formed on said shaft and disposed between said edge of the bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition and including an edge with at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morphology.
5. The endosseous dental implant according to claim 1 further comprising: An endosseous dental implant, comprising:
a shaft made from a biocompatible material, said shaft having a distal end and a proximal end;
an abutment-implant interface disposed towards the proximal end of said shaft;
a bone-tissue apposition surface formed on said shaft and having a boundary disposed adjacent to said abutment-implant interface, said boundary of said bone-tissue apposition surface including at least one peak and trough configured to approximate the physiological contours of naturally occurring bone-tissue morphology; and
a means for connecting an abutment to said abutment-implant interface for use in a two-stage procedure;
wherein said bone-tissue apposition surface comprises at least one of a roughened surface, a textured surface, or an applied biologic modifier that extends to said boundary but does not extend beyond said boundary.
6. The endosseous dental implant according to claim 5, wherein said abutment-implant interface has a substantially planar upper surface approximately 90° to the longitudinal axis of said shaft, and wherein said planar upper surface substantially surrounds said means for connecting.
7. The endosseous dental implant according to claim 5, wherein said abutment-implant interface has a contoured upper surface, and wherein said contoured upper surface substantially surrounds said means for connecting.
8. The endosseous dental implant according to claim 7, further comprising an abutment wherein a lower surface of the abutment substantially abuts against said contoured upper surface, thereby providing improved lateral support.
9. The endosseous dental implant according to claim 1, further comprising:
an abutment permanently attached to said abutment-implant interface for use in a one-stage procedure.
0. 10. The endosseous dental implant according to claim 9, wherein said shaft and said abutment are constructed from a single piece of material.
11. The endosseous dental implant according to claim 9, wherein said abutment has a substantially planar upper surface approximately 90° to the longitudinal axis of said shaft and wherein said planar upper surface substantially surrounds a chimney.
12. The endosseous dental implant according to claim 9, wherein said abutment has a contoured upper surface and wherein said contoured upper surface substantially surrounds a chimney.
14. The one-stage endosseous dental implant according to claim 13, wherein said abutment has a substantially planar upper surface approximately 90° to the longitudinal axis of said shaft, and wherein said planar upper surface substantially surrounds a chimney.
15. The one-stage endosseous dental implant according to claim 13, wherein said abutment has a contoured upper surface and wherein said contoured upper surface substantially surrounds a chimney.
17. The two-stage endosseous dental implant system according to claim 16, wherein said abutment-implant interface has a substantially planar upper surface substantially surrounding said means for connecting a bore, and wherein said upper planar surface is approximately 90° to the longitudinal axis of said shaft.
18. The two-stage endosseous dental implant system according to claim 17, wherein said abutment has a substantially planar upper abutment-crown interface surface.
19. The two-stage endosseous dental implant system according to claim 17, wherein said abutment has a contoured upper abutment-crown interface surface substantially surrounding a chimney, and wherein a distal end of said crown is configured such that at least an outside surface of said crown extends to and follows the contours of said upper abutment-crown interface surface, thereby providing a narrow depth between the distal end of said crown and said bone tissue apposition surface.
20. The two-stage endosseous dental implant system according to claim 16, wherein said abutment-implant interface has a contoured upper surface substantially surrounding said means for connecting a bore, and said contoured upper surface approximately matches the contour of the natural bone morphology, and wherein said abutment has a lower surface configured to substantially abut said contoured upper surface.
21. The two-stage endosseous dental implant system according to claim 20, wherein said abutment has a substantially planar upper abutment-crown interface surface.
22. The two-stage endosseous dental implant system according to claim 20, wherein said abutment has a contoured upper abutment-crown interface surface substantially surrounding a chimney, and wherein a distal end of said crown is configured such that at least an outside surface of said crown extends to and follows the contours of said upper abutment-crown interface surface, thereby providing a narrow depth between the distal end of said crown and said bone-tissue apposition surface.
24. The one-stage endosseous dental implant system according to claim 23, wherein said abutment has a substantially planar upper surface substantially surrounding a chimney, and wherein said upper planar surface is approximately 90° to the longitudinal axis of said shaft.
25. The one-stage endosseous dental implant system according to claim 23, wherein said abutment has a contoured upper surface substantially surrounding a chimney, and wherein said contoured upper surface approximately matches the contour of naturally occurring bone-tissue morphology.
26. The one-stage endosseous dental implant system according to claim 25, wherein a distal end of said crown is configured such that at least an outside surface of said crown extends to and follows the contours of said contoured upper surface, thereby providing a narrow depth between the distal end of said crown and the bone-tissue apposition surface.
0. 27. The endosseous dental implant according to claim 4, wherein said soft-tissue apposition surface comprises a polished surface.
0. 28. The endosseous dental implant according to claim 1, further comprising:
an anti-rotational feature and a bore for connecting an abutment to said abutment-implant interface for use in a two-stage procedure.
0. 29. The endosseous dental implant according to claim 28, wherein said abutment-implant interface has a substantially planar upper surface approximately 90° to the longitudinal axis of said shaft, and wherein said planar upper surface substantially surrounds said bore.
0. 30. The endosseous dental implant according to claim 28, wherein said abutment-implant interface has a contoured upper surface, and wherein said contoured upper surface substantially surrounds said bore.
0. 31. The endosseous dental implant according to claim 30, further comprising an abutment wherein a lower surface of the abutment substantially abuts against said contoured upper surface, thereby providing improved lateral support.
0. 32. The endosseous dental implant according to claim 1, wherein said bone-tissue apposition surface comprises an applied textured surface.
0. 33. The endosseous dental implant according to claim 1, wherein said bone-tissue apposition surface comprises an applied growth factor.
0. 34. The endosseous dental implant according to claim 1, wherein said bone-tissue apposition surface comprises an applied protein.
0. 35. The endosseous dental implant according to claim 1, wherein said bone-tissue apposition surface comprises an acid etched surface.
0. 36. The endosseous dental implant according to claim 1, wherein said bone-tissue apposition surface comprises a surface blasted with particles.
0. 37. The endosseous dental implant according to claim 1, wherein said edge of said bone-tissue apposition surface includes a set of peaks and troughs.
0. 38. The endosseous dental implant according to claim 1, wherein said edge of said bone-tissue apposition surface includes two peaks and two troughs.
0. 39. The endosseous dental implant according to claim 5, wherein said bone-tissue apposition surface comprises an applied textured surface.
0. 40. The endosseous dental implant according to claim 5, wherein said bone-tissue apposition surface comprises an applied growth factor.
0. 41. The endosseous dental implant according to claim 5, wherein said bone-tissue apposition surface comprises an applied protein.
0. 42. The endosseous dental implant according to claim 5, wherein said bone-tissue apposition surface comprises an acid etched surface.
0. 43. The endosseous dental implant according to claim 5, wherein said bone-tissue apposition surface comprises a surface blasted with particles.
0. 44. The endosseous dental implant according to claim 5, wherein said boundary of said bone-tissue apposition surface defines a set of peaks and troughs.
0. 45. The endosseous dental implant according to claim 5, wherein an edge of said bone-tissue apposition surface defines two peaks and two troughs.
0. 46. The endosseous dental implant according to claim 45, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface including an edge with at least two peaks and troughs configured to approximate the physiological contours of naturally occurring soft-tissue morphology, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 47. The endosseous dental implant according to claim 5, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface including an edge with at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morphology, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 48. The endosseous dental implant according to claim 5, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 49. The one-stage endosseous dental implant according to claim 13, wherein said abutment has a substantially planar upper surface approximately 90° to the longitudinal axis of said shaft.
0. 50. The one-stage endosseous dental implant according to claim 13, wherein said abutment has a contoured upper surface.
0. 51. The endosseous dental implant according to claim 13, wherein said bone-tissue apposition surface comprises an applied textured surface.
0. 52. The endosseous dental implant according to claim 13, wherein said bone-tissue apposition surface comprises an applied growth factor.
0. 53. The endosseous dental implant according to claim 13, wherein said bone-tissue apposition surface comprises an applied protein.
0. 54. The endosseous dental implant according to claim 13, wherein said bone-tissue apposition surface comprises an acid etched surface.
0. 55. The endosseous dental implant according to claim 13, wherein said bone-tissue apposition surface comprises a surface blasted with particles.
0. 56. The endosseous dental implant according to claim 13, wherein said edge of said bone-tissue apposition surface includes a set of peaks and troughs.
0. 57. The endosseous dental implant according to claim 13, wherein said edge of said bone-tissue apposition surface includes two peaks and two troughs.
0. 58. The endosseous dental implant according to claim 57, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface including an edge with at least two peaks and troughs configured to approximate the physiological contours of naturally occurring soft-tissue morphology, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 59. The endosseous dental implant according to claim 13, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface including an edge with at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morphology, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 60. The endosseous dental implant according to claim 13, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 61. The two-stage endosseous dental implant system according to claim 16, further comprising an anti-rotational member on said shaft for connecting said abutment to said shaft, wherein said anti-rotational feature is an external hex.
0. 62. The two-stage endosseous dental implant system according to claim 16, wherein said abutment includes a through-bore.
0. 64. The endosseous dental implant of claim 63, wherein said anti-rotational member is an external hex.
0. 65. The endosseous dental implant of claim 63, wherein said anti-rotational member is an internal hex formed in said upper surface.
0. 66. The endosseous dental implant of claim 63, wherein said upper surface is substantially planar and approximately 90° to the longitudinal axis of said shaft.
0. 67. The endosseous dental implant of claim 63, wherein said upper surface is contoured.
0. 68. The endosseous dental implant of claim 67, wherein said shaft includes threads.
0. 69. The endosseous dental implant of claim 67, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said upper surface, said soft-tissue apposition surface including an edge with at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morphology, and said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 70. The endosseous dental implant according to claim 69, wherein said soft-tissue apposition surface comprises a polished surface.
0. 71. The endosseous dental implant of claim 63, wherein the shaft includes threads.
0. 72. The endosseous dental implant of claim 63, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said upper surface, said soft-tissue apposition surface including an edge with at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morphology, and said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 73. The endosseous dental implant according to claim 72, wherein said soft-tissue apposition surface comprises a polished surface.
0. 74. The endosseous dental implant according to claim 63, wherein said bone-tissue apposition surface comprises an applied textured surface.
0. 75. The endosseous dental implant according to claim 63, wherein said bone-tissue apposition surface comprises an applied growth factor.
0. 76. The endosseous dental implant according to claim 63, wherein said bone-tissue apposition surface comprises an applied protein.
0. 77. The endosseous dental implant according to claim 63, wherein said bone-tissue apposition surface comprises an acid etched surface.
0. 78. The endosseous dental implant according to claim 63, wherein said bone-tissue apposition surface comprises a surface blasted with particles.
0. 79. The endosseous dental implant according to claim 63, wherein said edge of said bone-tissue apposition surface includes a set of peaks and troughs.
0. 80. The endosseous dental implant according to claim 63, wherein said edge of said bone-tissue apposition surface includes two peaks and two troughs.
0. 81. The endosseous dental implant according to claim 80, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and an abutment-implant interface, said soft-tissue apposition surface including an edge with at least two peaks and troughs configured to approximate the physiological contours of naturally occurring soft-tissue morphology, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 82. The endosseous dental implant according to claim 63, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and an abutment-implant interface, said soft-tissue apposition surface including at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morphology, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 83. The endosseous dental implant according to claim 63, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and a abutment-implant interface, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 85. The endosseous dental implant according to claim 84, wherein said edge of said bone tissue apposition surface has a highest point and a lowest point and the highest point of said edge of said bone-tissue apposition surface substantially aligns with the interproximal areas of the bone-tissue, and wherein the lowest point of said edge of said bone-tissue apposition surface substantially aligns with the buccal area of the bone-tissue.
0. 86. The endosseous dental implant according to claim 84 further comprising:
a soft-tissue apposition surface formed on said shaft and disposed between said bone-tissue apposition surface and said upper surface, said soft-tissue apposition surface having an edge including at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morphology.
0. 87. The endosseous dental implant according to claim 86, wherein said soft-tissue apposition surface comprises a polished surface.
0. 88. The endosseous dental implant according to claim 84, wherein said upper surface has a substantially planar upper surface approximately 90° to the longitudinal axis of said shaft.
0. 89. The endosseous dental implant according to claim 84, wherein upper surface has a contoured upper surface.
0. 90. The endosseous dental implant according to claim 84, further comprising:
an abutment permanently attached to said upper surface for use in a one-stage procedure.
0. 91. The endosseous dental implant according to claim 90, wherein said shaft and said abutment are constructed from a single piece of material.
0. 92. The endosseous dental implant according to claim 90, wherein said abutment has a substantially planar upper surface approximately 90° to the longitudinal axis of said shaft.
0. 93. The endosseous dental implant according to claim 90, wherein said abutment has a contoured upper surface.
0. 94. The endosseous dental implant according to claim 84, further comprising a bore having an opening on said upper surface for connecting an abutment to said shaft and an anti-rotational member comprising a plurality of interconnected sides also for connecting an abutment to said shaft.
0. 95. The endosseous dental implant according to claim 94, wherein said anti-rotational member is an external hex.
0. 96. The endosseous dental implant according to claim 94, wherein said anti-rotational member is an internal hex.
0. 97. The endosseous dental implant according to claim 84, wherein said bone-tissue apposition surface comprises an applied textured surface.
0. 98. The endosseous dental implant according to claim 84, wherein said bone-tissue apposition surface comprises an applied growth factor.
0. 99. The endosseous dental implant according to claim 84, wherein said bone-tissue apposition surface comprises an applied protein.
0. 100. The endosseous dental implant according to claim 84, wherein said bone-tissue apposition surface comprises an acid etched surface.
0. 101. The endosseous dental implant according to claim 84, wherein said bone-tissue apposition surface comprises a surface blasted with particles.
0. 102. The endosseous dental implant according to claim 84, wherein said edge of said bone-tissue apposition surface includes a set of peaks and troughs.
0. 103. The endosseous dental implant according to claim 102, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and a abutment-implant interface, said soft-tissue apposition surface including at least two peaks and troughs configured to approximate the physiological contours of naturally occurring soft-tissue morphology, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 104. The endosseous dental implant according to claim 84, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface including at least one peak and trough configured to approximate the physiological contours of naturally occurring soft-tissue morpholoogy, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 105. The endosseous dental implant according to claim 84, further comprising a soft-tissue apposition surface formed on said shaft and disposed between said edge of said bone-tissue apposition surface and said abutment-implant interface, said soft-tissue apposition surface being configured to promote, enhance or maintain soft-tissue growth or apposition.
0. 106. The endosseous dental implant according to claim 84, wherein said edge of said bone-tissue apposition surface includes two peaks and two troughs.

This is a continuation of application Ser. No. 09/203,822, filed Dec. 1, 1998, U.S. Pat. No. 6,174,167.

The present invention relates generally to the field of implant dentistry, and more particularly to the design of one- and two-stage endosseous implants.

Endosseous, i.e., intra boney, implants are commonly used to support fixed or removable prostheses where a patient's natural roots have been lost, and as a consequence, support is lacking to provide an adequate foundation onto which the dentist can rebuild a dentition. As the aging population retains more of their natural teeth, and as the younger generations want to take advantage of more conservative approaches offered by implant dentistry, e.g, using a single implant rather than cutting down adjacent teeth to support a short span bridge to replace a missing tooth, implant dentistry has gained more and more popularity and has moved into the mainstream of dentists worldwide.

The current implant design is based on an endosseous fixture, a titanium screw that acts as an artificial root: Br{dot over (a)}nemark, Tissue-Integrated Prostheses (1985). Modifications made to the endosseous fixture have centered on the macro structure of the implant (e.g., by exchanging the screw with a press-fit/cylindrical implant, a stepped screw or cylinder, or a tapered screw or cylinder), (Brunski J. B., Biomechanics Of Oral Implant,. Future Research Directions NIH Consensus Development Conference on Dental Implants, 1988; Kirsch A. et al., The IMZ Osseointegrated Implant System, Dent. Clin. North Am. 1989 (4), 33:733-791; Nimick G. A., A Multimodal Approach To Implant Prosthodontics, Dent. Clin. North Am. 1989(4), 33:869-878; Wennerberg A. et al., Design And Surface Characteristics Of 13 Commercially Available Oral Implant Systems, Id. 1993:8:622-633; Siegele D. et al., Numerical Investigations Of The Influence Of Implant Shape On Stress Distribution In The Jaw Bone, Id., 1989:4:333-340; Olsson M. et al., MkII-a Modified Self-Tapping Br{dot over (a)}nemark Implant: 3-Year Results, Id. at 1995:10:15-21; Langer B. et al., The Wide Fixture: A Solution For Special Bone Situations And A Rescue For The Compromised Implant, Part 1, Id., 1993:8:400-408; Schnitman P. A. et al., Implants For Partial Edentulism, NIH Consensus Development Conference On Dental Implants, 1988), on the micro structure (e.g., surface modifications such as use of machined titanium, blasted titanium, titanium alloy, acid-etched titanium, plasma-sprayed titanium and hydroxyappatite coating such as growth factors and proteins), (Baier R. E. et al., Future Directions In Surface Preparation Of Dental Implants, NIH Consensus Development Conference On Dental Implants, 1988; Young F. A., Future Directions In Dental Implant Materials Research, Id.; Krauser J., Hydroxylappatite-Coated Dental Implants, Dent. Clin. North Am. 1989, 33:4:879-903; Buser D. et al., Tissue Integration Of One-Stage ITI Implants: 3-Year Results Of A Longitudinal Study With Hollow-Cylinder And Hollow-Screw Implants, Int. J. Oral Maxillofac. Implants, 1991:6:405-412), on one-vs-two-stage designs, (Weber H. P. et al., Comparison Of Healed Tissues Adjacent To Submerged And Non-Submerged Unloaded Titanium Dental Implants, Clin. Oral Impl. Res. 1996:7:11-19; Busser D. et al., Tissue Integration Of One-Stage ITI Implants: 3-Year Results Of A Longitudinal Study With Hollow-Cylinder and Hollow-Screw Implants, Int. J. Oral Maxillofac Implants 1991:6:405-412), and on modifying the connection between the implant and its abutment (e.g., either internal hex, external hex, standard hex, tall hex, wide hex, etc.), (U.S. Pat. No. 4,960,381; U.S. Pat. No. 5,407,359; U.S. Pat. No. 5,209,666; U.S. Pat. No. 5,110,292).

Irrespective of the design variables discussed above, current systems have two general characteristics in common: First, the abutment-implant interface is planar; and second, the area intended for bone apposition, i.e., osseointegration, terminates parallel to the abutment-implant interface, 360 degrees around the implant.

Traditionally, endosseous implants were designed for treatment of the fully edentulous patient. In general, this particular patient population exhibits reduced bone-tissue volume, both in height and width when compared to the partially edentulous patient with recent or impending tooth loss. However, the bone-tissue morphology of partially edentulous patients significantly differs from that of fully edentulous patients, in that the naturally occurring supporting bone structures reveal a scalloped architecture around the tooth.

Currently available implant technology does not take the different bone-tissue morphologies into consideration. Heretofore use of an implant with an intended bone-tissue apposition surface parallel to a flat abutment-implant interface has led to either (1) placement of soft-tissue intended parts of the implant within bone-tissue, leading to bone-tissue resorption in these areas, and/or (2) exposure of hard-tissue intended surfaces to the soft tissue, resulting in possible peri-implant infections due to bacterial colonization around the rough surface and potential loss of the implant.

The present invention is directed towards novel endosseous implants, which are structured to better maintain hard and soft-tissue in the area where the implant exits from the bone-tissue and transverses the soft-tissue. More particularly, the implants of the present invention are designed so that areas intended for hard- and soft-tissue apposition exhibit a scalloped appearance, including convex and/or concave patterns, which approximate the naturally occurring bone morphology. Thus, the implants of the present invention provide substantially increased attachment possibilities for both bone-tissue and soft-tissue, thereby facilitating bone-tissue and soft-tissue preservation and maintenance.

The present invention will enable the surgeon to place an implant into residual bone with the surface of the implant intended for bone-tissue contact and apposition (machined or roughened, surface coated or textured, altered with biologic modifiers such as proteins and growth factors, or any combination thereof) being substantially in contact with bone-tissue, and with the surface intended for soft-tissue apposition (polished/treated with soft tissue specific surface modifications) being substantially in contact with soft-tissue.

More specifically, the implant, according to an embodiment of the present invention, is a substantially cylindrical shaft made from a biocompatible material having a distal end and a proximal end. A bone-tissue/soft-tissue transition region and a abutment-implant interface are both disposed towards the proximal end of the shaft. The bone-tissue/soft-tissue transition region is defined as the approximate region of the shaft and/or the abutment-implant interface where the implant exits the bone-tissue and transverses into the soft-tissue. The bone-tissue/soft-tissue transition region has a bone-tissue apposition surface configured to approximate the physiological contours of the alveolar bone. In a two-stage implant, the abutment-implant interface may be either substantially planar, approximately 90° to the longitudinal axis of the shaft, or contoured to approximate the contour of the alveolar bone. In a one-stage implant the abutment is permanently attached to the abutment-implant interface, or an integral part of the implant itself. The abutment, in both one-and two-stage implants, has an abutment-crown interface, which is either substantially planar or contoured to approximate the contour of the alveolar bone, and a chimney onto which the crown is secured.

An implant constructed according to the principles of the present invention facilitates hard- and soft-tissue maintenance, increases longevity of the implant and improves its aesthetic appearance. As will be readily apparent to the skilled artisan, the present invention may be applied to numerous prosthetic applications, such as, but not limited to, a single tooth replacement, an abutment for a bridge (fixed partial denture) regardless of the nature of the other abutment (natural tooth or implant), a pier abutment or an over denture abutment.

FIG. 1 depicts a frontal view of a prior art implant;

FIG. 2 depicts an interproximal view of the prior art implant in FIG. 1;

FIG. 3 depicts a frontal view an implant according to an embodiment of the present invention;

FIG. 4 depicts an interproximal view of the implant in FIG. 3;

FIG. 5A depicts a three-dimensional top frontal view of the implant in FIG. 3;

FIG. 5B depicts a three-dimensional interproximal top view of the implant in FIG. 3

A bore 51 can be provided with an opening on the upper surface of the abutment-implant interface. Connecting means 46 is well known in the art and includes, but is not limited to, internal hex 55 (FIG. 5C), external hex, standard hex, tall hex, wide hex or camlog. In an alternative embodiment of the present invention, as shown in FIGS. 6-8, abutment-implant interface 48 has at least its edges contoured to approximate the contours of the alveolar bone, thereby defining a contoured upper surface 50 (FIG. 8) surrounding connecting means 46. Also provided in this alternative embodiment is abutment 52, which has lower contoured surface 54 configured to substantially mate with contoured upper surface 50. The upper and lower contoured surfaces provide additional lateral support between abutment 52 and abutment-implant interface 48. Additionally, contoured upper surface 48 of this alternative embodiment results in a narrower depth between gum line 54 and abutment-implant interface 48 (FIGS. 6 and 7), thus enhancing longevity of the restoration as a result of decreased pocket depths. The bore 51 on the abutment-implant interface 48 corresponds with a through bore 63 in the abutment 52.

A skilled artisan will readily recognize that the principles of the present invention can be equally applied to one-stage as well as two-stage processes. For example, FIGS. 9 and 10 show one-stage implant 58, according to another embodiment of the present invention. Implant 58 includes shaft 60, distal end 62, proximal end 64 and bone-tissue/soft-tissue transition region 66 with scalloped bone-tissue apposition surface 42 and scalloped soft-tissue apposition surface 44, as substantially described above. Abutment 69 is permanently attached to the one-stage implant 58 as is well know in the art.

One-or two-stage implants, according to alternative embodiments of the present invention, may include either a planar abutment-crown interface 68 (FIGS. 3, 4, 9 and 10) or a contoured abutment-crown interface 70 (FIGS. 6, 7, 11 and 12), the latter of which substantially matches the natural contour of the alveolar bone. Contoured abutment-crown interface 70 allows for crown 38, in both one-and two-stage implants, to extend further towards the gum line, thereby resulting in a more aesthetically pleasing restoration. Chimney 72, or other means well known to the skilled artisan, is provided in both one-and two-stage implants according to the present invention for attaching crown 38 to the abutment.

Although various embodiments of the present invention have been described, the descriptions are intended to be merely illustrative. Thus, it will be apparent to the skilled artisan that modifications may be made to the embodiments as described herein without departing from the scope of the claims set forth below.

Wöhrle, Peter S.

Patent Priority Assignee Title
10537408, Mar 11 2015 Universitaet Basel; UNIVERSITAET ZUERICH Dental implant
9498305, Feb 22 2013 Endosseous dental implant and abutment for prevention of bone loss
Patent Priority Assignee Title
2112007,
3849887,
4051598, Apr 23 1974 Dental implants
4416629, Jul 06 1982 F A I R INC , A CORP OF CA Osseointerfaced implanted artificial tooth
4468200, Nov 12 1982 Feldmuhle Aktiengesellschaft Helical mandibular implant
4624673, Jan 21 1982 Joint Medical Products Corporation Device system for dental prosthesis fixation to bone
4713003, May 17 1985 GOVERNING COUNCIL OF THE UNIVERSITY OF TORONTO, THE Fixture for attaching prosthesis to bone
4812120, Nov 02 1987 Implantable percutaneous device
4856994, Jan 25 1988 Biomet 3i, LLC Periodontal restoration components
4960381, Jan 08 1987 Zimmer Dental, Inc Screw-type dental implant anchor
5004422, Nov 09 1989 Oral endosteal implants and a process for preparing and implanting them
5035619, Oct 20 1989 FIRST SOURCE FINANCIAL LLP Anatomical restoration dental implant system with improved healing cap and abutment
5049074, Mar 29 1989 ONTANI, SUGIO; YANAGISAWA, SADAKATSU; NIIJIMA, KUNIO; MITSUBISHI KASEI CORPORATION AND RESEARCH DEVELOPMENT A CORP OF JAPAN Dental implant
5125839, Sep 28 1990 Nobelpharma AB Dental implant system
5246370, Nov 27 1992 Dental implant method
5282746, Nov 04 1992 Grady C., Sellers Method of installing a dental prosthesis
5310343, Oct 14 1992 Endo-osseous implant
5316477, May 25 1993 Universal implant abutment
5328371, Oct 23 1992 Friadent GmbH Dental implant
5417568, Feb 25 1994 Gingival contoured abutment
5417569, Oct 09 1991 Multi-element dental implant
5431567, May 17 1993 Anatomical restoration dental implant system with interlockable various shaped healing cap assembly and matching abutment member
5458488, Dec 30 1991 WELLESLEY RESEARCH ASSOCIATES INC Dental implant and post construction
5464440, Jan 13 1992 LuCoCer Aktiebolag Porous implant with two sets of pores
5527182, Dec 23 1993 ADVANCED DENTAL TECHNOLOGIES Implant abutment systems, devices, and techniques
5584693, Feb 07 1994 ISE INTERNATIONAL CO , LTD Artificial dental root
5588838, Oct 28 1992 Astra Aktiebolag Fixture for use in a dental implant system
5622500, Feb 24 1994 CENTERPULSE DENTAL INC Insertion tool/healing collar/abutment
5636989, Sep 30 1993 RISDON AMS USA , INC , A DE CORP Dental implant
5667384, Jun 03 1994 Institut Straumann AG Device for forming a dental prosthesis and method of manufacturing such a device
5674069, Jan 13 1995 ATLANTIS COMPONENTS, INC Customized dental abutment
5695334, Dec 08 1995 Bendable and castable post and core
5759034, Nov 29 1996 Anatomical restoration dental implant system for posterior and anterior teeth
5779480, May 21 1996 Degussa-Huls Aktiengesellschaft Prosthetic abutment for dental implants
5876454, May 10 1993 Universite de Montreal Modified implant with bioactive conjugates on its surface for improved integration
5908298, Mar 17 1995 Enossal single tooth implant with spacer sleeve
5931675, Jul 12 1996 PERIOSEAL, INC Dental prosthesis
5989027, Dec 08 1995 Zimmer Dental, Inc Dental implant having multiple textured surfaces
5989029, Jul 08 1997 ATLANTIS COMPONENTS, INC Customized dental abutments and methods of preparing or selecting the same
6012923, Jul 30 1998 Zimmer Dental, Inc Two-piece dental abutment with removable cuff
6024567, Jul 12 1996 PERIOSEAL, INC Dental prosthesis
6142782, Jan 05 1996 SARGON LAZAROF AND MONALISA LAZAROF, CO- TRUSTEES OF THE SARGON LAZAROF AND MONALISA FAMILY TRUST Implant assembly and process for preparing a prosthetic device
6162054, Jan 28 1998 Subgingival jaw implant
6164969, Mar 21 1997 Dental implant
6174167, Dec 01 1998 Bioroot endosseous implant
6217331, Oct 03 1997 Biomet 3i, LLC Single-stage implant system
6217333, May 09 2000 Dental implant for promoting reduced interpoximal resorption
6227858, Feb 25 1997 Nobel Biocare AB Bone anchoring element
6231342, Jul 08 1997 Atlantis Components, Inc. Customized dental abutments and methods of preparing or selecting the same
6273720, Apr 20 1999 Dental implant system
6280195, Jun 11 1999 ASTRA TECH AB Method of treating a partially or totally edentulous patient
6283753, Dec 23 1993 ADVANCED DENTAL TECHNOLOGIES Implant abutment systems, devices, and techniques
6283754, Dec 01 1998 Bioroot endosseous implant
6287115, Nov 17 1998 Dental implant and tool and method for effecting a dental restoration using the same
6312260, Aug 12 1998 Nobel Biocare AB One-step threaded implant
6350126, Sep 01 2000 Bone implant
6364663, Dec 11 1998 Tooth implant and method to make it
6431867, Apr 18 2000 GITTELSON, GLENN, D D S Dental implant system
6464500, May 22 2001 Dental implant and abutment system
6527554, Jun 04 2001 Nobel Biocare Services AG Natural implant system
6547564, Jul 17 1998 ASTRA TECH AB Bone implant having circumferentially oriented roughness
6619958, Apr 09 1997 Biomet 3i, LLC Implant delivery system
6626911, Nov 11 1998 Nobel Biocare Services AG Threaded implant, and arrangement and method for such an implant
6652765, Nov 30 1994 Biomet 3i, LLC Implant surface preparation
6655961, Dec 03 2001 ASTRA TECH AB Modified dental implant fixture
6672872, Dec 03 2001 ASTRA TECH AB Modified dental implant fixture
6854972, Jan 11 2000 Dental implants and dental implant/prosthetic tooth systems
6939135, Jun 03 2002 Growth factor releasing biofunctional dental implant
7270542, Dec 03 2001 ASTRA TECH AB Modified dental implant fixture
20010021498,
20020182567,
20030031981,
20030031982,
20030068599,
20030124489,
20050014108,
20050214714,
20060188846,
20060194170,
20060246398,
CH413224,
DE250052,
DE4339060,
EP705574,
EP820737,
EP868889,
EP879580,
EP910297,
EP1013236,
FR2317904,
FR2634369,
GB1291470,
IT540713,
JP10033562,
JP125260,
JP8117250,
WO32124,
WO47127,
WO1049199,
WO150972,
WO3000909,
WO3005928,
WO3028576,
WO3059189,
WO9629020,
WO9737610,
WO9823221,
WO9842273,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Feb 19 2013M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 24 20144 years fee payment window open
Nov 24 20146 months grace period start (w surcharge)
May 24 2015patent expiry (for year 4)
May 24 20172 years to revive unintentionally abandoned end. (for year 4)
May 24 20188 years fee payment window open
Nov 24 20186 months grace period start (w surcharge)
May 24 2019patent expiry (for year 8)
May 24 20212 years to revive unintentionally abandoned end. (for year 8)
May 24 202212 years fee payment window open
Nov 24 20226 months grace period start (w surcharge)
May 24 2023patent expiry (for year 12)
May 24 20252 years to revive unintentionally abandoned end. (for year 12)