An optical apparatus comprises a planar optical waveguide having at least one set of diffractive elements and confining in at least one transverse spatial dimension optical signals propagating therein. Each diffractive element set routes, between corresponding input and output optical ports, a corresponding diffracted portion of an input optical signal propagating in the waveguide that is successively incident on the diffractive elements and is diffracted by the diffractive element set. The optical signals propagate in the waveguide in corresponding diffractive-region optical transverse modes in regions where the diffractive elements are present, and in corresponding non-diffractive-region optical transverse modes in regions where the diffractive elements are absent. The diffractive element set is adapted so as to yield an operationally acceptable level of either or both of i) optical coupling between corresponding diffractive-region and non-diffractive-region optical transverse modes, and ii) diffraction efficiency of the diffractive element set.

Patent
   RE42407
Priority
Mar 16 2000
Filed
Mar 20 2009
Issued
May 31 2011
Expiry
Mar 16 2021
Assg.orig
Entity
Large
4
134
all paid
0. 44. An optical apparatus, comprising:
an optical waveguide arranged to enable an optical signal to propagate therein, the optical waveguide further being arranged to substantially confine in at least one transverse dimension said optical signal that propagates therein; and
at least one set of diffractive elements in the optical waveguide,
wherein the optical signal propagates in the optical waveguide in a diffractive-region optical transverse mode in a first region of the optical waveguide where the at least one set of diffractive elements is present,
wherein the optical signal propagates in the optical waveguide in a non-diffractive-region optical transverse mode in a second region of the optical waveguide where the at least one set of diffractive elements is absent, and
wherein the at least one set of diffractive elements has an arrangement to provide a level of optical coupling between corresponding diffractive-region and non-diffractive-region optical transverse modes, or to provide a level of diffraction efficiency, and
wherein said arrangement includes:
diffractive elements having sufficiently large transverse extent in the confined dimension so as to substantially suppress optical coupling between diffractive-region optical modes and non-confined optical modes;
diffractive elements positioned in the confined dimension so as to spatially overlap the diffractive-region optical transverse mode at or near a spatial maximum of an amplitude thereof;
diffractive elements having sufficiently large refractive index and sufficiently large transverse extent in the confined dimension so as to yield diffractive-region optical modes that substantially spatially overlap the diffractive elements;
a waveguide core in the second region of the optical waveguide that is offset in the confined dimension relative to a waveguide core in the first region of the optical waveguide;
a waveguide core in the second region of the optical waveguide that differs in transverse extent, in the confined dimension, from a waveguide core in the first region of the optical waveguide;
a waveguide core in the second region with a refractive index higher than a refractive index of a waveguide core in the first region and lower than a refractive index of the diffractive elements;
a transition region of the optical waveguide between the first region and the second region wherein a less-than-unity fill factor for the diffractive elements increases from the second region towards the first region;
a transition region of the optical waveguide between the first region and the second region wherein number density of the diffractive elements increases from the second region towards the first region;
a transition region of the optical waveguide between the first region and the second region wherein longitudinal extent of the diffractive elements increases from the second region towards the first region;
a transition region of the optical waveguide between the first region and the second region wherein transverse extent in the confined dimension of the diffractive elements increases from the second region towards the first region; or
a transition region of the optical waveguide between the first region and the second region wherein a refractive index of the diffractive elements increases from the second region to the first region.
1. An optical apparatus, comprising a planar optical waveguide having at least one set of diffractive elements, the planar optical waveguide substantially confining in at least one transverse spatial dimension optical signals propagating therein,
wherein:
each diffractive element set routes, between corresponding input and output optical ports, a corresponding diffracted portion of an input optical signal propagating in the planar waveguide that is diffracted by the diffractive element set;
the input optical signal is successively incident on the diffractive elements;
the optical signals propagate in the planar waveguide in corresponding diffractive-region optical transverse modes in regions of the planar waveguide where the diffractive elements are present;
the optical signals propagate in the planar waveguide in corresponding non-diffractive-region optical transverse modes in regions of the planar waveguide where the diffractive elements are absent; and
the diffractive element set or the planar optical waveguide is adapted so as to yield an operationally acceptable level of (i) optical coupling between corresponding diffractive-region and non-diffractive-region optical transverse modes, or (ii) diffraction efficiency of the diffractive element set,
and wherein the adaptation of the diffractive element set or the planar optical waveguide comprises:
diffractive elements having sufficiently large transverse extent in the confined dimension so as to substantially suppress optical coupling between diffractive-region optical modes and non-confined optical modes;
diffractive elements positioned in the confined dimension so as to spatially overlap the diffracting-region optical mode at or near a spatial maximum of the amplitude thereof;
diffractive elements having sufficiently large refractive index and sufficiently large transverse extent in the confined dimension so as to yield diffractive-region optical modes that substantially spatially overlap the diffractive elements;
a planar waveguide core in a non-diffracting region of the planar waveguide that is offset in the confined dimension relative to a planar waveguide core in a diffracting region of the planar waveguide;
a planar waveguide core in a non-diffracting region of the planar waveguide that differs in transverse extent, in the confined dimension, from a planar waveguide core in a diffracting region of the planar waveguide;
a planar waveguide core in the non-diffracting region with a refractive index higher than a refractive index of a planar waveguide core in the diffracting region and lower than a refractive index of the diffractive elements;
a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein a less-than-unity fill factor for the diffractive elements increases from the non-diffracting region toward the diffracting region;
a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein number density of the diffractive elements increases from the non-diffracting region toward the diffracting region;
a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein longitudinal extent of the diffractive elements increases from the non-diffracting region toward the diffracting region;
a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein transverse extent in the confined dimension of the diffractive elements increases from the non-diffracting region toward the diffracting region; or
a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein refractive index of the diffractive elements increases from the non-diffracting region to the diffracting region.
0. 50. An apparatus, comprising:
optical waveguide means for propagating an optical signal therein and for substantially confining in at least one transverse dimension said optical signal propagating therein; and
at least one set of diffractive element means for diffracting a portion of the propagating optical signal,
wherein the optical signal propagates in the optical waveguide means in a diffractive-region optical transverse mode in a first region of the optical waveguide means where the at least one set of diffractive element means is present,
wherein the optical signal propagates in the optical waveguide means in a non-diffractive-region optical transverse mode in a second region of the optical waveguide means where the at least one set of diffractive element means is absent; and
wherein said at least one set of diffractive element means has an arrangement to provide a level of optical coupling between corresponding diffractive-region and non-diffractive-region optical transverse modes, or to provide a level of diffraction efficiency, and
wherein said arrangement includes:
diffractive elements, of said at least one set of diffractive element means, having sufficiently large transverse extent in the confined dimension so as to substantially suppress optical coupling between diffractive-region optical modes and non-confined optical modes;
diffractive elements, of said at least one set of diffractive element means, positioned in the confined dimension so as to spatially overlap the diffractive-region optical transverse mode at or near a spatial maximum of an amplitude thereof;
diffractive elements, of said at least one set of diffractive element means, having sufficiently large refractive index and sufficiently large transverse extent in the confined dimension so as to yield diffractive-region optical modes that substantially spatially overlap the diffractive elements;
a waveguide core in the second region of the optical waveguide means that is offset in the confined dimension relative to a waveguide core in the first region of the optical waveguide means;
a waveguide core in the second region of the optical waveguide means that differs in transverse extent, in the confined dimension, from a waveguide core in the first region of the optical waveguide means;
a waveguide core in the second region with a refractive index higher than a refractive index of a waveguide core in the first region and lower than a refractive index of diffractive elements of said at least one set of diffractive element means;
a transition region of the optical waveguide means between the first region and the second region wherein a less-than-unity fill factor for diffractive elements, of said at least one set of diffractive element means, increases from the second region towards the first region;
a transition region of the optical waveguide means between the first region and the second region wherein number density of diffractive elements, of said at least one set of diffractive element means, increases from the second region towards the first region;
a transition region of the optical waveguide means between the first region and the second region wherein longitudinal extent of diffractive elements, of said at least one set of diffractive element means, increases from the second region towards the first region;
a transition region of the optical waveguide means between the first region and the second region wherein transverse extent in the confined dimension of diffractive elements, of said at least one set of diffractive element means, increases from the second region towards the first region; or
a transition region of the optical waveguide means between the first region and the second region wherein a refractive index of diffractive elements, of said at least one set of diffractive element means, increases from the second region to the first region.
2. The apparatus of claim 1, wherein the adaptation comprises diffractive elements having sufficiently large transverse extent in the confined dimension so as to substantially suppress optical coupling between diffractive-region optical modes and non-confined optical modes.
3. The apparatus of claim 2, wherein a range of diffraction angles from a diffractive element, determined in part by the transverse extent of the diffractive element, are smaller than a diffraction angle for optical coupling between a diffractive-region optical mode and the non-confined optical modes.
4. The apparatus of claim 2, wherein the transverse extent of the diffractive elements is greater than or about equal to an in-waveguide wavelength of the optical signals.
5. The apparatus of claim 2, wherein the transverse extent of the diffractive elements results in a minimum diffracted amplitude at a diffracted angle substantially coinciding with a diffraction angle for optical coupling between a diffractive-region optical mode and a non-confined optical mode.
6. The apparatus of claim 2, wherein the diffractive elements each comprise multiple segments positioned along the confined dimension and sized so as to result in a minimum diffracted amplitude at a diffracted angle substantially coinciding with a diffraction angle for optical coupling between a diffractive-region optical mode and a non-confined optical mode.
7. The apparatus of claim 1, wherein the adaptation comprises diffractive elements positioned in the confined dimension so as to spatially overlap the diffracting-region optical mode at or near a spatial maximum of the amplitude thereof.
8. The apparatus of claim 7, wherein the diffractive elements are positioned substantially symmetrically along the confined dimension, so as to substantially overlap spatially the amplitude maximum of a lowest-order diffracting-region optical mode.
9. The apparatus of claim 1, wherein the adaptation comprises diffractive elements having sufficiently large refractive index and sufficiently large transverse extent in the confined dimension so as to yield diffractive-region optical modes that substantially spatially overlap the diffractive elements.
10. The apparatus of claim 9, wherein:
the planar waveguide comprises silica cladding and a silica core doped to have a larger refractive index than the cladding; and
the diffractive elements comprise silica doped to have a larger refractive index than the core.
11. The apparatus of claim 9, wherein:
the planar waveguide comprises silica cladding and a silica core doped to have a larger refractive index than the cladding; and
the diffractive elements comprise silicon oxynitride and have a larger refractive index than the core.
12. The apparatus of claim 11, wherein the diffractive elements are larger than about 0.1 μm in transverse extent in the confined dimension.
13. The apparatus of claim 11, wherein the diffractive elements have a refractive index larger than about 1.5.
14. The apparatus of claim 1, wherein the adaptation comprises a planar waveguide core in a non-diffracting region of the planar waveguide that is offset in the confined dimension relative to a planar waveguide core in a diffracting region of the planar waveguide.
15. The apparatus of claim 14, wherein the offset of the waveguide cores results in substantial alignment in the confined dimension of respective amplitude maxima of the diffractive-region optical modes and corresponding non-diffractive-region optical modes.
16. The apparatus of claim 1, wherein the adaptation comprises a planar waveguide core in a non-diffracting region of the planar waveguide that differs in transverse extent, in the confined dimension, from a planar waveguide core in a diffracting region of the planar waveguide.
17. The apparatus of claim 16, wherein the difference in transverse extent of the respective cores results in substantially similar sizes in the confined dimension of the diffractive-region optical modes and corresponding non-diffractive-region optical modes.
18. The apparatus of claim 1, wherein the adaptation comprises a planar waveguide core in the non-diffracting region with a refractive index higher than a refractive index of a planar waveguide core in the diffracting region and lower than a refractive index of the diffractive elements.
19. The apparatus of claim 18, wherein the refractive indices and transverse extents of the waveguide cores and diffractive elements result in diffractive-region optical modes and the corresponding non-diffractive-region optical modes that are substantially similar in transverse extent.
20. The apparatus of claim 1, wherein the adaptation comprises a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein a less-than-unity fill factor for the diffractive elements increases from the non-diffracting region toward the diffracting region.
21. The apparatus of claim 20, wherein spatial variation of the fill factor of the diffractive elements in the transition region of the planar waveguide is sufficiently gradual so as to result in substantially adiabatic optical coupling between diffractive-region optical modes and corresponding non-diffractive-region optical modes.
22. The apparatus of claim 1, wherein the adaptation comprises a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein number density of the diffractive elements increases from the non-diffracting region toward the diffracting region.
23. The apparatus of claim 22, wherein spatial variation of the number density of the diffractive elements in the transition region of the planar waveguide is sufficiently gradual so as to result in substantially adiabatic optical coupling between diffractive-region optical modes and corresponding non-diffractive-region optical modes.
24. The apparatus of claim 1, wherein the adaptation comprises a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein transverse extent in the confined dimension of the diffractive elements increases from the non-diffracting region toward the diffracting region.
25. The apparatus of claim 24, wherein spatial variation of the transverse extent of the diffractive elements in the transition region of the planar waveguide is sufficiently gradual so as to result in substantially adiabatic optical coupling between diffractive-region optical modes and corresponding non-diffractive-region optical modes.
26. The apparatus of claim 1, wherein the adaptation comprises a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein longitudinal extent of the diffractive elements increases from the non-diffracting region toward the diffracting region.
27. The apparatus of claim 26, wherein spatial variation of the longitudinal extent of the diffractive elements in the transition region of the planar waveguide is sufficiently gradual so as to result in substantially adiabatic optical coupling between diffractive-region optical modes and corresponding non-diffractive-region optical modes.
28. The apparatus of claim 1, wherein the adaptation comprises a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein refractive index of the diffractive elements increases from the non-diffracting region to the diffracting region.
29. The apparatus of claim 28, wherein spatial variation of the refractive index of the diffractive elements in the transition region of the planar waveguide is sufficiently gradual so as to result in substantially adiabatic optical coupling between diffractive-region optical modes and corresponding non-diffractive-region optical modes.
30. The apparatus of claim 1, wherein the optical element comprises a slab waveguide, the slab waveguide substantially confining in one transverse dimension optical fields propagating in two dimensions therein.
31. The apparatus of claim 1, wherein the optical element comprises a channel waveguide, the channel waveguide substantially confining in two transverse dimensions optical fields propagating in one dimension therein.
32. The apparatus of claim 1, wherein the planar waveguide comprises a core and lower-index cladding for substantially confining optical fields propagating therein.
33. The apparatus of claim 32, wherein the diffractive elements comprise grooves in the core, the grooves being filled with material having a refractive index larger than that of the core.
34. The apparatus of claim 32, wherein the diffractive elements comprise grooves in the core, the grooves being filled with cladding.
35. The apparatus of claim 32, wherein the diffractive elements comprise ridges of the core protruding into the cladding.
36. The apparatus of claim 32, wherein the diffractive elements comprise ridges, protruding into the cladding from the core, of material having a refractive index larger than that of the core.
37. The apparatus of claim 32, wherein the diffractive elements are positioned within the core.
38. The apparatus of claim 32, wherein the diffractive elements span the core in at least one confined dimension.
39. The apparatus of claim 1, wherein the diffractive elements comprise lithographically-formed elements.
40. The apparatus of claim 1, wherein the diffractive elements comprise localized regions of the waveguide differing from adjacent regions of the waveguide in optically-induced density.
41. The apparatus of claim 1, wherein the diffractive elements comprise localized regions of the waveguide differing from adjacent regions of the waveguide in mechanically-induced density.
42. The apparatus of claim 1, wherein the diffractive elements comprise localized regions of the waveguide differing from adjacent regions of the waveguide in dopant concentration.
43. The apparatus of claim 1, wherein the diffractive elements comprise holographically-formed elements.
0. 45. The apparatus of claim 44 wherein the at least one set of diffractive elements is arranged to route, between an input optical port and an output optical port, a portion of the optical signal that is diffracted by the at least one set of diffractive elements.
0. 46. The apparatus of claim 44 wherein said level of optical coupling includes an increased level of optical coupling.
0. 47. The apparatus of claim 44 wherein said level of optical coupling includes a lowered level of optical coupling.
0. 48. The apparatus of claim 44 wherein said level of diffraction efficiency includes an increased level of diffraction efficiency.
0. 49. The apparatus of claim 44 wherein said level of diffraction efficiency includes a lowered level of diffraction efficiency.
0. 51. The apparatus of claim 50 wherein said at least one set of diffractive element means diffracts said portion of the propagating optical signal between an input optical port and an output optical port.
0. 52. The apparatus of claim 50 wherein said level of optical coupling includes an increased level of optical coupling.
0. 53. The apparatus of claim 50 wherein said level of optical coupling includes a lowered level of optical coupling.
0. 54. The apparatus of claim 50 wherein said level of diffraction efficiency includes an increased level of diffraction efficiency.
0. 55. The apparatus of claim 50 wherein said level of diffraction efficiency includes a lowered level of diffraction efficiency.

This application claims benefit of prior-filed co-pending provisional App. No. 60/489,470 entitled “Efficient distributed Bragg structures in planar waveguides” filed Jul. 22, 2003 in the names of Dmitri Iazikov, Christoph M. Greiner, and Thomas W. Mossberg, said provisional application being hereby incorporated by reference as if fully set forth herein. This application claims benefit of prior-filed co-pending provisional App. No. 60/492,438 entitled “Mode matching of Bragg structures in planar waveguides” filed Aug. 4, 2003 in the names of Dmitri Iazikov, Christoph M. Greiner, and Thomas W. Mossberg, said provisional application being hereby incorporated by reference as if fully set forth herein.

This application is a continuation-in-part of prior-filed co-pending U.S. non-provisional application Ser. No. 10/653,876 entitled “Amplitude and phase control in distributed optical structures” filed Oct. 2, 2003 in the names of Christoph M. Greiner, Dmitri Iazikov, and Thomas W. Mossberg, now Pat. No. 6,829,417 issued Dec. 7, 2004, which is in turn a continuation-in-part of U.S. non-provisional application Ser. No. 10/229,444 entitled “Amplitude and phase control in distributed optical structures” filed Aug. 27, 2002 in the names of Thomas W. Mossberg and Christoph M. Greiner, now Pat. No. 6,678,429 issued Jan. 13, 2004. Each of said application and said patent are hereby incorporated by reference as if fully set forth herein. Application Ser. No. 10/229,444 in turn claims benefit of provisional App. No. 60/315,302 entitled “Effective gray scale in lithographically scribed planar holographic devices” filed Aug. 27, 2001 in the name of Thomas W. Mossberg, and provisional App. No 60/370,182 entitled “Amplitude and phase controlled diffractive elements” filed Apr. 4, 2002 in the names of Thomas W. Mossberg and Christoph M. Greiner, both of said provisional applications being hereby incorporated by reference as if fully set forth herein.

This application is a continuation-in-part of prior-filed co-pending non-provisional application Ser. No. 09/811,081 entitled “Holographic spectral filter” filed Mar. 16, 2001 in the name of Thomas W. Mossberg, now Pat. No. 6,879,441 issued Apr. 12, 2005, and a continuation-in-part of prior-filed co-pending non-provisional application Ser. No. 09/843,597 entitled “Optical processor” filed Apr. 26, 2001 in the name of Thomas W. Mossberg, now Pat. No. 6,965,464 issued Nov. 15, 2005, application Ser. No. 09/843,597 in turn being a continuation-in-part of said application Ser. No. 09/811,081. Said application No. 09/811,081 in turn claims benefit of: 1) provisional App. No. 60/190,126 filed Mar. 16, 2000; 2) provisional App. No. 60/199,790 filed Apr. 26, 2000; 3) provisional App. No. 60/235,330 filed Oct. 26, 2000; and 4) provisional App. No. 60/247,231 filed Nov. 10, 2000. Each of said non-provisional applications and each of said provisional applications are hereby incorporated by reference as if fully set forth herein.

The field of the present invention relates to optical devices incorporating distributed optical structures. In particular, methods and apparatus for improving efficiency and/or improved spatial mode matching are disclosed herein.

An optical apparatus comprises a planar optical waveguide having at least one set of diffractive elements. The planar optical waveguide substantially confines in at least one transverse spatial dimension optical signals propagating therein. Each diffractive element set routes, between corresponding input and output optical ports, a corresponding diffracted portion of an input optical signal propagating in the planar waveguide that is diffracted by the diffractive element set. The input optical signal is successively incident on the diffractive elements. The optical signals propagate in the planar waveguide in corresponding diffractive-region optical transverse modes in regions of the planar waveguide where the diffractive elements are present, and in corresponding non-diffractive-region optical transverse modes in regions of the planar waveguide where the diffractive elements are absent. The diffractive element set is adapted so as to yield an operationally acceptable level of either or both of i) optical coupling between corresponding diffractive-region and non-diffractive-region optical transverse modes, and ii) diffraction efficiency of the diffractive element set.

The adaptation of the diffractive element set may include one or more of the following. The diffractive elements may have sufficiently large transverse extent in the confined dimension so as to substantially suppress optical coupling between diffractive-region optical modes and non-confined optical modes (thereby increasing efficiency). The diffractive elements may be positioned in the confined dimension so as to spatially overlap the diffracting-region optical mode at or near a spatial maximum of the amplitude thereof (thereby increasing efficiency). The diffractive elements may have sufficiently large refractive index and sufficiently large transverse extent in the confined dimension so as to yield diffractive-region optical modes that substantially spatially overlap the diffractive elements (thereby increasing efficiency). A planar waveguide core in a non-diffracting region of the planar waveguide may be offset in the confined dimension relative to a planar waveguide core in a diffracting region of the planar waveguide (thereby improving mode-matching). A planar waveguide core in the non-diffracting region may differ in transverse extent, in the confined dimension, from a planar waveguide core in a diffracting region of the planar waveguide (thereby improving mode-matching). A planar waveguide core in the non-diffracting region may have a refractive index higher than a refractive index of a planar waveguide core in the diffracting region and lower than a refractive index of the diffractive elements (thereby improving mode-matching). The planar waveguide may include a transition region of the planar waveguide between the diffracting region and the non-diffracting region wherein: a less-than-unity fill factor for the diffractive elements increases from the non-diffracting region toward the diffracting region; number density of the diffractive elements increases from the non-diffracting region toward the diffracting region; transverse extent in the confined dimension of the diffractive elements increases from the non-diffracting region toward the diffracting region; longitudinal extent of the diffractive elements increases from the non-diffracting region toward the diffracting region; and/or refractive index of the diffractive elements increases from the non-diffracting region to the diffracting region (any one or more of these variations thereby improving mode-matching). These adaptations may be implemented alone or in any combination in a particular planar waveguide.

Objects and advantages pertaining to diffractive element sets in planar optical waveguides may become apparent upon referring to the disclosed embodiments as illustrated in the drawings and disclosed in the following written description and/or claims.

FIGS. 1A-1D are schematic longitudinal sections of planar waveguides.

FIGS. 2A-2B show the corresponding transverse mode profiles for the waveguides of FIGS. 1A-1D.

FIGS. 3A-3D are schematic longitudinal sections of planar waveguides.

FIG. 4 shows the corresponding transverse mode profiles for the waveguides of FIGS. 1D and 3A-3B.

FIGS. 5A-5C are schematic longitudinal sections of planar waveguides.

FIGS. 6A-6B show the corresponding transverse mode profiles for the waveguides of FIGS. 5A-5C.

FIG. 7 illustrates schematically a fabrication sequence for a planar waveguide.

FIG. 8 is a schematic longitudinal section of a planar waveguide.

FIG. 9 is a schematic longitudinal section of a planar waveguide.

FIG. 10 is a schematic longitudinal section of a planar waveguide.

FIG. 11 is a schematic longitudinal section of a planar waveguide.

FIG. 12 is a schematic longitudinal section of a planar waveguide.

FIG. 13 is a schematic top view of a planar waveguide.

FIG. 14 is a schematic longitudinal section of a planar waveguide.

The embodiments shown in the Figures are exemplary, and should not be construed as limiting the scope of the present disclosure and/or appended claims.

An optical apparatus according to the present disclosure comprises a planar optical waveguide having at least one set of diffractive elements. The planar optical waveguide substantially confines in at least one transverse dimension optical signals propagating therein, and is generally formed on or from a substantially planar substrate of some sort. The confined optical signals typically propagate as transverse optical modes supported or guided by the waveguide. These optical modes are particular solutions of the electromagnetic field equations in the space occupied by the waveguide. The planar waveguide may comprise a slab waveguide (substantially confining in one transverse dimension an optical signal propagating in two dimensions therein), or may comprise a channel waveguide (substantially confining in two transverse dimension an optical signal propagating in one dimension therein). It should be noted that the term “planar waveguide” is not used consistently in the literature; for the purposes of the present disclosure and/or appended claims, the term “planar waveguide” is intended to encompass both slab and channel waveguides.

The planar waveguide typically comprises a core surrounded by lower-index cladding (often referred to as upper and lower cladding, or first and second cladding; these may or may not comprise the same materials). The core is fabricated using one or more dielectric materials substantially transparent over a desired operating wavelength range. In some instances one or both claddings may be vacuum, air, or other ambient atmosphere. More typically, one or both claddings comprise layers of dielectric material(s), with the cladding refractive indices n1 and n2 typically being smaller than the core refractive index ncore. (In some instances in which short optical paths are employed and some degree of optical loss can be tolerated, the cladding indices might be larger than the core index while still enabling the planar waveguide to support guided, albeit lossy, optical modes.) A planar waveguide may support one or more transverse modes, depending on the dimensions and refractive indices of the core and cladding. A wide range of material types may be employed for fabricating a planar waveguide, including but not limited to glasses, polymers, plastics, semiconductors, combinations thereof, and/or functional equivalents thereof. The planar waveguide may be secured to a substrate, for facilitating manufacture, for mechanical support, and/or for other reasons. A planar waveguide typically supports or guides one or more optical modes characterized by their respective amplitude variations along the confined dimension.

The set of diffractive elements of the planar optical waveguide may also be referred to as: a set of holographic elements; a volume hologram; a distributed reflective element, distributed reflector, or distributed Bragg reflector (DBR); a Bragg reflective grating (BRG); a holographic Bragg reflector (HBR); a directional photonic-bandgap structure; a mode-selective photonic crystal; or other equivalent terms of art. Each diffractive element of the set diffracts, reflects, scatters, or otherwise redirects a portion of an incident optical signal (said process hereinafter simply referred to as diffraction). Each diffractive element of the set typically comprises some suitable alteration of the planar waveguide (ridge, groove, index modulation, density modulation, and so on), and is spatially defined by a virtual one- or two-dimensional curvilinear diffractive element contour, the curvilinear shape of the contour typically being configured to impart desired spatial characteristics onto the diffracted portion of the optical signal. Implementation of a diffractive element with respect to its virtual contour may be achieved in a variety of ways, including those disclosed in the references cited hereinabove. Each curvilinear diffractive element is shaped to direct its diffracted portion of the optical signal to an output optical port. The relative spatial arrangement (e.g. longitudinal spacing) of the diffractive elements of the set, and the amplitude diffracted from each diffractive element of the set, yield desired spectral and/or temporal characteristics for the overall diffracted optical signal routed between the input and output optical ports. It should be noted that optical ports (input and/or output) may be defined structurally (for example, by an aperture, waveguide, fiber, lens, or other optical component) and/or functionally (i.e., by a spatial location, convergence/divergence/collimation, and/or propagation direction). For a single-mode planar waveguide, such a set of diffractive elements may be arranged to yield an arbitrary spectral/temporal transfer function (in terms of amplitude and phase). In a multimode planar waveguide, modal dispersion and mode-to-mode coupling of diffracted portions of the optical signal may limit the range of spectral/temporal transfer functions that may be implemented.

The curvilinear diffractive elements of the set (or equivalently, their corresponding contours) are spatially arranged with respect to one another so that the corresponding portions of the optical signal diffracted by each element interfere with one another at the output optical port, so as to impart desired spectral and/or temporal characteristics onto the portion of the optical signal collectively diffracted from the set of diffractive elements and routed between the input and output optical ports. The diffractive elements in the set are arranged so that an input optical signal, entering the planar waveguide through an input optical port, is successively incident on diffractive elements of the set. For the purposes of the present disclosure and/or appended claims, “successively incident” shall denote a situation wherein a wavevector at a given point on the wavefront of an optical signal (i.e., a wavefront-normal vector) traces a path (i.e., a “ray path”) through the diffractive element set that successively intersects the virtual contours of diffractive elements of the set. Such wavevectors at different points on the wavefront may intersect a given diffractive element virtual contour at the same time or at differing times; in either case the optical signal is considered “successively incident” on the diffractive elements. A fraction of the incident amplitude is diffracted by a diffractive element and the remainder transmitted and incident on another diffractive element, and so on successively through the set of diffractive elements. The diffractive elements may therefore be regarded as spaced substantially longitudinally along the propagation direction of the incident optical signal, and a given spatial portion of the wavefront of such a successively incident optical signal therefore interacts with many diffractive elements of the set. (In contrast, the diffractive elements of a thin diffraction grating, e.g. the grating lines of a surface grating, may be regarded as spaced substantially transversely across the wavefront of a normally incident optical signal, and a given spatial portion of the wavefront of such a signal therefore interacts with only one or at most a few adjacent diffractive elements).

The set of diffractive elements provides dual functionality, spatially routing an optical signal between an input optical port and an output optical port, while at the same time acting to impart a spectral/temporal transfer function onto the input optical signal to yield an output optical signal. The curvilinear diffractive elements may be designed (by computer generation, for example) so as to provide optimal routing, imaging, or focusing of the optical signal between an input optical port and a desired output optical port, thus reducing or minimizing insertion loss. Simple curvilinear diffractive elements (segments of circles, ellipses, parabolas, hyperbolas, and so forth), if not optimal, may be employed as approximations of fully optimized contours. A wide range of fabrication techniques may be employed for forming the diffractive element set, and any suitable technique(s) may be employed while remaining within the scope of the present disclosure and/or appended claims. Particular attention is called to design and fabrication techniques disclosed in the references cited hereinabove. The following are exemplary only, and are not intended to be exhaustive.

Diffractive elements may be formed lithographically on the surface of a planar optical waveguide, or at one or both interfaces between core and cladding of a planar optical waveguide. Diffractive contours may be formed lithographically in the interior of the core layer and/or a cladding layer of the planar optical waveguide using one or more spatial lithography steps performed after an initial partial deposition of layer material. Diffractive elements may be formed in the core and/or cladding layers by projecting ultraviolet light or other suitable radiation through an amplitude and/or phase mask so as to create an interference pattern within the planar waveguide (fabricated at least in part with suitably sensitive material) whose fringe contours match the desired diffractive element contours. Alteration of the refractive index by exposure to ultraviolet or other radiation results in index-modulated diffractive elements. The mask may be zeroth-order-suppressed according to methods known in the art, including the arts associated with fabrication of fiber Bragg gratings. The amplitude and/or phase mask may be produced lithographically via laser writer or e-beam, it may be inter-ferometrically formed, or it may be formed by any other suitable technique. In instances where resolution is insufficient to produce a mask having required feature sizes, a larger scale mask may be produced and reduced to needed dimensions via photoreduction lithography, as in a stepper, to produce a mask at the needed scale. Diffractive elements may be formed by molding, stamping, impressing, embossing, or other mechanical processes. A phase mask may be stamped onto the core or cladding surface followed by optical exposure to create diffractive elements throughout the core and or cladding region. The optical or UV source used to write the diffractive elements in this case should have a coherence length comparable or longer than the distance from the stamped phase mask to the bottom of the core region. Stamping of the phase mask directly on the device may simplify alignment of diffractive elements with ports or other device components especially when those components may be formed in the same or another stamping process. Many approaches to the creation of refractive index modulations or gratings are known in the art and may be employed in the fabrication of diffractive element sets.

Irradiation-produced refractive index modulations or variations for forming diffractive elements will optimally fall in a range between about 10−4 and about 10−1; however, refractive index modulations or variations outside this range may be employed as well. Refractive index modulations or variations may be introduced by light of any wavelength (including ultraviolet light) that produces the desired refractive index changes, provided only that the photosensitive material employed is suitably stable in the presence of light in the desired operating wavelength range of the spectral filter. Exposure of a complete set of diffractive elements to substantially spatially uniform, refractive-index-changing light may be employed to tune the operative wavelength range of the diffractive element set. Exposure of the diffractive element set to spatially non-uniform refractive-index changing light may be employed to chirp or otherwise wavelength-modulate the spectral filter (described further hereinbelow). The sensitivity of planar waveguide materials to irradiation produced refractive index modulations may be increased using hydrogen-loading, flame-brushing, boron or other chemical doping, or other method known in the art, for example in the context of making fiber Bragg gratings.

The curvilinear shape of the diffractive element contours may be determined by a variety of standard optical imaging system design tools. Essentially, each diffractive element contour may be optimized to image the input port onto the output port in a phase coherent manner. Inputs to the design are the detailed structure of the input and output optical ports and their locations. Standard ray tracing approaches to optical element design may provide a diffractive contour at each optical distance into the planar waveguide that will provide an optimal imaging of the input signal at the input port onto the optimal output signal at the output port. Simple curves may be employed as approximations of the fully optimized contours. Diffractive element virtual contours may be spaced by an optical path difference (as described above) that provides for the field image of successive diffractive contours to be substantially in phase at a desired wavelength. If the overall response of the diffractive element set is to be apodized with amplitude and/or phase modulation (to yield a desired spectral transfer function or impulse response function), the optical spacing of successive diffractive element contours may be controlled to provide required phase differences between diffracted components at the output port, and/or the diffractive strength of the elements may be individually controlled as well (as described in detail in the references cited hereinabove).

An alternative approach to designing the diffractive element contours for a diffractive element set is to calculate interference patterns between simulated fields at a desired wavelength and with desired waveforms entering the input port and exiting the output port. In forming or writing a summed pattern for the diffractive element set, suitable discretization is applied as needed for any lithographic or UV exposure approach that is utilized for fabrication. The holographic structure may be designed by interference of computer-generated beams having the desired computer-generated temporal waveforms, with the resulting calculated arrangement of diffractive elements implemented by lithography and/or other suitable spatially-selective fabrication techniques. For example, interference between a delta-function-like pulse and a desired reference optical waveform (or its time-reverse) may be calculated, and the resulting interference pattern used to fabricate a diffractive element set that acts to either recognize or generate the desired reference optical waveform.

In an alternative method for making the diffractive element structure, the core consists of a material of appropriate index that is also photosensitive at the wavelength of the desired operational signal beams. As in traditional holography, the input and output recording beams (same wavelength as operational signal beams of the envisioned device) are overlapped in the core and the interference pattern between them is recorded. Subsequently the core material is developed and, if necessary, a cladding may be deposited or attached by other means.

The phrase “operationally acceptable” appears herein describing levels of various performance parameters of planar waveguides and diffractive element sets thereof. Such parameters may include optical coupling coefficient (equivalently, optical coupling efficiency), diffraction efficiency, undesirable optical mode coupling, optical loss, and so on. An operationally acceptable level may be determined by any relevant set or subset of applicable constraints and/or requirements arising from the performance, fabrication, device yield, assembly, testing, availability, cost, supply, demand, and/or other factors surrounding the manufacture, deployment, and/or use of a particular assembled optical device. Such “operationally acceptable” levels of such parameters may therefor vary within a given class of devices depending on such constraints and/or requirements. For example, a lower optical coupling efficiency may be an acceptable trade-off for achieving lower device fabrication costs in some instances, while higher optical coupling may be required in other instances in spite of higher fabrication costs. In another example, higher optical loss (due to scattering, absorption, undesirable optical coupling, and so on) may be an acceptable trade-off for achieving lower device fabrication cost or smaller device size in some instances, while lower optical loss may be required in other instances in spite of higher fabrication costs and/or larger device size. Many other examples of such trade-offs may be imagined. Optical devices and fabrication methods therefor as disclosed herein, and equivalents thereof, may therefore be implemented within tolerances of varying precision depending on such “operationally acceptable” constraints and/or requirements. Phrases such as “substantially adiabatic”, “substantially spatial-mode-matched”, “so as to substantially avoid undesirable optical coupling”, and so on as used herein shall be construed in light of this notion of “operationally acceptable” performance.

Diffraction Efficiency

In order to increase the overall diffraction efficiency of a set of diffractive elements without increasing the size of the device or the number of diffractive elements, the diffraction efficiency of individual diffractive elements must be enhanced. This may be achieved by positioning the diffractive element at a position where the optical mode to be diffracted has larger amplitude, by increasing the transverse extent of the diffractive element so as to overlap a larger fraction of the mode profile, and/or by using materials to form the diffractive elements having a refractive index higher than the core (the perturbation of the mode structure by the presence of the higher-index diffractive element increasing the mode amplitude that overlaps the diffractive elements). FIGS. 1A-1D and 2A-2B illustrate schematically the effect of such adaptations.

In each of FIGS. 1A-1D, the planar waveguide comprises cladding 102, core 104, diffractive elements 106, and cladding 108, shown in a longitudinal sectional view with propagation of optical signals oriented in the plane of the drawing. In the exemplary embodiments, the cladding layers comprise undoped silica (n=1.446), and the core comprises Ge-doped silica (n=1.457) about 4 μm thick. The diffractive elements 106 are about 0.265 μm wide and have a period of about 0.53 μm (resonant diffracted wavelength about 1.54 μm. The index, position, and transverse extent of the diffractive elements 106 vary among the examples. A figure of merit for comparing diffraction efficiency is L1/e, the length over which a optical signal must propagate through the waveguide before decreasing to 1/e of its initial field amplitude.

In FIG. 1A, the diffractive elements 106 comprise grooves in the surface of the core about 0.4 μm deep and filled with cladding material. The corresponding transverse mode profile 100A (in the confined direction) is shown in FIG. 2A, along with the core/cladding boundaries 101. The resulting L1/e is about 1.73 mm. In FIG. 1B, the diffractive elements are the same size and in the same position as in FIG. 1A, but the grooves are filled with doped silica (n=1.468, larger than the core index). The corresponding transverse mode profile 100B (in the confined direction) is shown in FIG. 2A. The resulting L1/e is about 1.31 mm. In FIG. 1C, the diffractive elements 106 are the same size and index as in FIG. 1B, but are positioned within the core 104 substantially symmetrically (in the confined dimension). The corresponding transverse mode profile 100C (in the confined dimension) is shown in FIG. 2B, and is considerably narrower than the profiles of FIG. 2A. The resulting L1/e is about 0.66 mm. In FIG. 1D, the diffractive elements 106 have the same index and are in the same position as in FIG. 1C, but are about 1 μm in transverse extent. The corresponding transverse mode profile 100D (in the confined dimension) is shown in FIG. 2B. The resulting L1/e is about 0.25 mm. By increasing the index of the diffractive elements, by moving them to the center of the waveguide core (presumably to overlap the maximum amplitude of a supported optical mode), and by increasing the transverse extent, a factor of about 7 improvement is achieved for the diffraction efficiency of the diffractive element set. The presence of higher index material in the diffractive elements serves to perturb the supported mode so as to increase the mode amplitude at the diffractive element. Moving the diffractive elements to the mode amplitude maximum and increasing the transverse extent of the diffractive elements also increase mode amplitude at the diffractive element, thereby also increasing diffraction efficiency. Many other combinations of materials, positions, and dimensions may be implemented increasing diffraction efficiency within the scope of this disclosure and/or the appended claims.

Still further improvement in diffraction efficiency may be achieved by employing material with an even larger refractive index to form the diffractive elements 106. In FIG. 3B, a planar waveguide is shown comprising undoped silica (n=1.446) cladding 102 and 108, Ge-doped silica (n=1.457) core 104, and silicon oxynitride (n=1.557) diffractive elements 106. The core is about 3.8 μm thick. The diffractive elements are about 1 μm deep, about 0.265 μm wide, and have a period of about 0.53 μm. In a non-diffracting region of the planar waveguide (FIG. 3A), all materials and dimensions are the same, except that the diffractive elements are missing. The resulting mode profiles are shown in FIG. 4, where profile 100 is the non-diffracting-region mode, profile 100D is the same as that shown in FIG. 1D, and trace 100E is the diffractive-region mode of the waveguide of FIG. 3B. Note that the profile 100E (supported in part by the silicon oxynitride core) is substantially narrower than the other profiles. This leads to significantly enhanced diffraction efficiency, as evidenced by L1/e of about 0.015 mm (about 15 μm). This may also lead to reduced optical coupling (i.e. optical loss) between the diffracting-region optical mode and the non-diffracting-region optical mode. This mode mismatch is addressed hereinbelow.

In addition to increasing the diffraction efficiency of a diffractive element set, increasing the transverse extent (in the confined dimension) of the diffractive elements also serves to reduce coherent optical coupling into non-confined optical modes (so-called out-of-plane modes). For a first-order diffractive element set (diffractive element period=½×in-waveguide resonant wavelength), there are no higher-order coherent out-of-plane optical modes at the resonant wavelength of the diffractive element set (although there may be some coupling of detuned optical signals into cladding modes of the waveguide). For higher-order diffractive element sets (diffractive element period=n/2×in-waveguide resonant wavelength, for n=2, 3, . . . ), there are out-of-plane optical modes to which a confined mode could be optically coupled by the diffractive element set. For example, a second-order diffractive element set may optically couple a confined mode and out-of-plane modes at ±90°. In another example, a third-order diffractive element set may optically couple a confined optical mode with out-of-plane modes at ±70° and ±110°. Other angles for other orders and/or for other waveguides may be readily calculated by those skilled in the art. Any coupling into such non-confined optical modes manifests itself as optical loss, or equivalently, reduced diffraction efficiency.

Diffraction of optical signals from diffractive elements within a planar waveguide depends not only on the spatial period of the diffractive elements, but also on their transverse extent (in the confined dimension). Each point on each diffractive element behaves as a coherent scattering source, which limit the angular dependence of the scattering. For example, for a lowest-order mode propagating in a planar waveguide, the range of angles over which light is diffracted is given approximately by ±λ/2neffd, where λ is the vacuum wavelength, neff is the effective index of the waveguide, and d is the transverse extent of the diffractive element. In the example of FIG. 5A, d is about λ/4, and a diffractive element therefore scatters light over an angular range that has significant amplitude at ±90° (FIG. 6A). Such an arrangement would not serve to substantially suppress optical coupling into out-of-plane optical modes. As d increases, the range of diffracted angles decreases. By making d sufficiently large, the range of back-diffracted angles may be made smaller than the angles available for out-of-plane coherent diffraction. For example, for d≈λ (FIG. 5B), the range of diffracted angles is about ±30° (FIG. 6B), which is sufficiently small to substantially suppress many if not all out-of-plane scattering processes.

If fabrication of diffractive elements having a transverse extent sufficiently large to substantially suppress out-of-plane diffraction is problematic, another approach is available. The diffracted angular range was calculated approximately from the first minimum in the angular dependence of scatter or diffraction. If it is not possible to suppress all likely out-of-plane mode coupling, the transverse extent of the diffractive element may be chosen so as to position a minimum of the diffracted signal angular distribution at the angle of a likely or troublesome out-of-plane diffraction process. The appropriate size may be readily calculated by those familiar with the theory of diffraction. Similarly, the diffractive element may comprise multiple segments positioned along the confined dimension of the planar waveguide (FIG. 5C; d≈λ/8 and the segments are separated by about 3λ/8 along the confined dimension), and relatively positioned and sized so as to result in a sufficiently small range of diffracted angles (FIG. 6C), or a minimum diffracted amplitude at a diffracted angle substantially coinciding with a diffraction angle for optical coupling between a diffractive-region optical mode and a non-confined optical mode.

Mode-Matching

As has already been described hereinabove, the presence of diffractive elements in a region of the planar waveguide may alter the size, shape, and/or position of a supported optical mode in that region, relative to a supported optical mode in regions lacking diffractive elements. As already noted, this phenomenon may be exploited to increase the diffraction efficiency of a diffractive element set. An optical mode supported by the planar waveguide in a diffractive region shall be referred to as a diffractive-region optical mode. Similarly, an optical mode supported by the planar waveguide in a non-diffractive region shall be referred to herein as a non-diffractive-region optical mode. Differences between the spatial characteristics of the diffractive-region and non-diffractive-region modes may reduce optical coupling therebetween due to mode mismatch, in which case an optical signal propagating between the diffracting region and the non-diffracting region of the planar waveguide would suffer an optical loss. This optical loss may be negligible for weakly diffracting elements, but becomes more severe as the diffractive elements diffract more strongly (often as a result of a larger index of refraction of the diffractive elements), or if there are multiple dissimilar regions in the planar waveguide with different sets of diffractive elements and/or non-diffractive regions in the path of the optical signal.

Mode-matching between the diffracting-region and non-diffracting-region optical modes may be improved, and optical losses reduced to an operationally acceptable level, by implementing one or more suitable adaptations of the planar waveguide. If the diffractive elements are not positioned symmetrically in the confined dimension (as is the case, for example, when the diffractive elements are formed at one core/cladding interface), the diffractive-region optical mode will be transversely displaced along the confined dimension. If the diffractive elements have a higher index than the core (grooves filled with higher-index material, for example), then the diffractive-region mode will be shifted toward the diffractive elements. If the diffractive elements have a lower index than the core (grooves filled with cladding, for example), then the diffractive-region mode will be shifted away from the diffractive elements. If the core of the diffractive and non-diffractive regions of the waveguide are at the same position along the confined dimension, the corresponding diffractive-region and non-diffractive-region modes will be transversely offset from one another, resulting in reduced optical coupling therebetween. A relative offset of the cores by the appropriate distance may bring the modes into substantial alignment, and may increase optical coupling between the modes (i.e. reduce optical loss) to an operationally acceptable level. An exemplary fabrication sequence for producing such an offset is schematically illustrated in FIG. 7, wherein the offset is formed in the lower cladding layer 102 prior to deposition of core material layer 104′ and diffractive element material layer 106′. Lithography or other spatially selective processing may be employed to form diffractive elements 106 and to form cores 104A (diffractive region) and 104B (non-diffractive region). The upper cladding layer 108 is then deposited over the cores and diffractive elements. Any suitable fabrication technique(s) may be employed. Exemplary materials and dimensions for such an embodiment, and simulation results therefor, are as follows. Cladding 102 and 108 comprise undoped silica (n=1.446); cores 104A and 104B each comprise Ge-doped silica (n=1.457) about 2 μm thick; diffractive elements 106 comprise silicon oxynitride (n=1.53) filling grooves etched into the surface of core 104A about 0.75 μm wide, 0.265 μm deep, and with a period of about 0.53 μm (resonant diffracted wavelength about 1.54 μm). With no offset between cores 104A and 104B, optical coupling between the modes is about 66% (optical loss about 1.8 dB). If the core 104B is offset by about 1 μm toward the diffractive elements 106, the optical coupling between the modes is about 93% (optical loss about 0.3 dB). Many other suitable combinations of materials, dimensions, and offset may be implemented, and shall fall within the scope of the present disclosure and/or appended claims.

The presence of diffractive elements may also change the size (i.e., transverse extent) of an optical mode in the diffracting region, relative to a mode in the non-diffracting region. If the refractive index of the diffractive elements 106 is larger than that of the core 104A, a smaller transverse mode size results, while diffractive elements having a refractive index smaller than that of the core result in a larger transverse mode size. Such mode size differences result in decreased optical coupling, or equivalently, increased optical loss. As shown schematically in the exemplary embodiment of FIG. 8, cores 104A and 104B may be formed with differing transverse extents along the confined dimension. The sizes of the cores 104A and 104B may be chosen so as to yield substantially similar transverse mode sizes for the diffracting-region and non-diffracting-region optical modes, and may increase optical coupling between the modes (i.e. reduce optical loss) to an operationally acceptable level. It should be noted that relative offset and size differences of the cores may be implemented alone or in combination.

An alternative approach for improving mode-matching between diffracting and non-diffracting regions of the planar waveguide is illustrated schematically in the exemplary embodiment of FIG. 9. Core 104A comprises core material with refractive index n1, and diffractive elements 106 comprise material with diffractive index n3. Core 104B comprises material with refractive index n2, with n1<n2<n3. By suitable choice of n1, n2, and n3 (the choices will depend on the dimensions of the diffractive elements 106 and cores 140A and 104B), the effective index of cores 104A and 104B may be made substantially equal. If they are the same thickness, then the respective optical modes will have substantially similar transverse extents, thereby increasing optical coupling and reducing optical loss.

Instead of matching the respective optical modes supported by the diffractive and non-diffractive regions of the planar waveguide, an operationally acceptable level of optical coupling between the modes may be achieved by substantially adiabatic coupling in a transition region of the planar waveguide, between the diffracting and non-diffracting regions. The perturbation of the optical mode size, position, and/or shape induced by the presence of the diffractive elements increases gradually from the non-diffracting region through the transition region toward the diffracting region over a length Ltrans. Sufficiently gradual variation of the diffractive elements results in a smooth evolution of the non-diffractive-region optical mode into the diffractive-region optical mode across the transition region, thereby reducing optical loss to an operationally acceptable level. The gradual appearance of the diffractive elements may be achieved in a variety of ways, alone or in combination. Properties of the diffractive elements that may be varied across the transition region of the planar waveguide include the transverse extent of the diffractive elements (in the confined dimension; FIG. 10), the longitudinal extent of the diffractive elements (FIG. 11), the index of refraction of the diffractive elements (FIG. 12), the fill-factor for the diffractive elements (FIG. 13), and/or the number density of the diffractive elements (FIG. 14). In all these examples, the perturbation of the optical mode by the presence of the diffractive elements is gradually increased. Any sufficiently gradual, substantially monotonic variation may be implemented for any of these diffractive element properties, including linear variation, quadratic variation, sinusoidal variation, exponential variation, logarithmic variation, gaussian variation, and so forth. Varying the fill factor, number density, and/or width are described in detail in U.S. Pat. No. 6,678,429 and application Ser. No. 10/653,876 (cited hereinabove), and these may be readily implemented with standard binary lithography techniques. Varying the transverse extent (i.e. depth) or refractive index of the diffractive elements may require more complex fabrication techniques, such as grayscale lithography, for example. It should be noted that the diffractive element set of the transition region may exhibit its own transfer function, and/or may direct optical signal to its own output port. Such output may serve some useful function in an optical apparatus. Alternatively, the diffractive element set of the transition region may be intentionally configured to substantially eliminate diffraction of optical signals within the operational wavelength range of an optical device. For example, the diffractive elements may be arranged to have a resonant wavelength output the operating wavelength range of the device. The presence of such non-resonant diffractive elements modifies the spatial properties of the planar waveguide modes without unwanted diffraction of optical signal in the transition region.

Exemplary materials and dimensions for varying the diffractive element fill factor (FIG. 13), and simulation results therefor, are as follows. Cladding 102 and 108 comprise undoped silica (n=1.446); cores 104A and 104B each comprise Ge-doped silica (n=1.457) about 3.8 μm thick; diffractive elements 106 comprise silicon oxynitride (n=1.557), are positioned symmetrically within the core 104A, are about 0.265 μm wide and about 1 μm deep, and have a period of about 0.53 μm (resonant diffracted wavelength about 1.54 μm). In the transition region, diffractive elements 106 on the core are nominally divided into 50 segments (chosen so that amplitude variation of the optical signal across a segment is negligible; filled segments should be substantially uniformly distributed along the diffractive element). Spatial periodicity of the segments of the partially-filled diffractive elements may result in undesirable diffraction maxima at other diffraction angles. In order to suppress such maxima, the angle subtended by each segment may be varies randomly and/or gradually among the diffractive elements. In the exemplary embodiment, none of the segments are filled with a diffractive element segment about 200 μm away from the diffracting region. The fraction of nominal segments that are filled with a diffractive element segment increases with a sinusoidal variation until it reaches unity at the diffracting region. With no transition region between cores 104A and 104B, optical coupling between the modes is about 80%. With the transition region, the optical coupling between the modes is essentially 100% (negligible optical loss). Many other suitable combinations of materials and dimensions may be implemented, and shall fall within the scope of the present disclosure and/or appended claims.

Exemplary materials and dimensions for varying the diffractive element number density (FIG. 14), and simulation results therefor, are as follows. Cladding 102 and 108 comprise undoped silica (n=1.446); cores 104A and 104B each comprise Ge-doped silica (n=1.457) about 2 μm thick; diffractive elements 106 comprise silicon oxynitride (n=1.53) filling grooves etched into the surface of the core about 0.75 μm deep and about 0.265 μm wide. The period of the diffractive elements 106 on the core is about 0.53 μm (resonant diffracted wavelength about 1.54 μm). In the transition region, diffractive elements 106 begin with a period of about 2.65 μm about 300 μm away from the diffracting region, and the period decreases with a sinusoidal variation until it reaches about 0.53 μm at the diffracting region. With no transition region between cores 104A and 104B, optical coupling between the modes is about 66% (optical loss about 1.8 dB). With the transition region, the optical coupling between the modes is essentially 100% (negligible optical loss). Many other suitable combinations of materials and dimensions may be implemented, and shall fall within the scope of the present disclosure and/or appended claims. In some instances it may be desirable or necessary to design the variation through the transition region so as to substantially avoid optical coupling into unwanted optical modes, particularly unwanted modes at or near the operational design wavelength of the diffractive element set.

It should be noted that many of the embodiments depicted in this disclosure are only shown schematically, and that not all the features may be shown in full detail or in proper proportion and/or location. Certain features or structures may be exaggerated relative to others for clarity. In particular, it should be noted that the numbers of diffractive elements in an actual device may typically be larger than that shown in the Figures. The numbers of diffractive elements is reduced in the Figures for clarity. It should be further noted that the embodiments shown in the Figures are exemplary only, and should not be construed as specifically limiting the scope of the written description or the claims set forth herein. It is intended that equivalents of the disclosed exemplary embodiments and methods shall fall within the scope of the present disclosure. It is intended that the disclosed exemplary embodiments and methods, and equivalents thereof, may be modified while remaining within the scope of the present disclosure.

Mossberg, Thomas W., Greiner, Christoph M., Iazikov, Dmitri

Patent Priority Assignee Title
10261257, Jan 22 2016 Seagate Technology LLC Uniform laser direct writing for waveguides
10288808, Jan 22 2016 Seagate Technology LLC Laser direct writing for non-linear waveguides
11280962, Jan 22 2016 Seagate Technology LLC Uniform laser direct writing for waveguides
9864139, Jan 22 2016 Seagate Technology LLC Uniform laser direct writing for waveguides
Patent Priority Assignee Title
3995937, Sep 06 1974 Siemens Aktiengesellschaft Tunable optical wave guide systems
4006967, Apr 23 1975 Battelle Memorial Institute Directing optical beam
4140362, Jul 14 1977 Bell Telephone Laboratories, Incorporated Forming focusing diffraction gratings for integrated optics
4387955, Feb 03 1981 United States of America as represented by the Secretary of the Air Force Holographic reflective grating multiplexer/demultiplexer
4440468, Sep 23 1980 Siemens Aktiengesellschaft Planar waveguide bragg lens and its utilization
4660934, Mar 21 1984 Kokusai Denshin Denwa Kabushiki Kaisha Method for manufacturing diffraction grating
4740951, Mar 13 1985 Commissariat a l'Energie Atomique Reversible device for the demultiplexing of several light signals in integrated optics
4743083, Dec 30 1985 Cylindrical diffraction grating couplers and distributed feedback resonators for guided wave devices
4746186, Dec 15 1983 U.S. Philips Corp. Integrated optical multiplexer/demultiplexer utilizing a plurality of blazed gratings
4773063, Nov 13 1984 University of Delaware Optical wavelength division multiplexing/demultiplexing system
4786133, Dec 31 1986 Commissariat a l'Energie Atomique Multiplexer-demultiplexer using an elliptical concave grating and produced in integrated optics
4803696, Jun 30 1987 Hughes Electronics Corporation Laser with grating feedback unstable resonator
4824193, Jul 26 1985 Matsushita Electric Industrial Co., Ltd. Holographic multiplexer/demultiplexer and its manufacturing method
4834474, May 01 1987 The University of Rochester Optical systems using volume holographic elements to provide arbitrary space-time characteristics, including frequency-and/or spatially-dependent delay lines, chirped pulse compressors, pulse hirpers, pulse shapers, and laser resonators
4846552, Apr 16 1986 The United States of America as represented by the Secretary of the Air Method of fabricating high efficiency binary planar optical elements
4852960, Mar 11 1987 BELL TELEPHONE LABORATORIES, INCORPORATED, A CORP OF NY ; AMERICAN TELEPHONE AND TELEGRAPH COMPANY, A NY CORP Narrow-linewidth resonant optical device, transmitter, system, and method
4923271, Mar 28 1989 American Telephone and Telegraph Company Optical multiplexer/demultiplexer using focusing Bragg reflectors
4938553, Mar 16 1987 Siemens Aktiengesellschaft Arrangement for an integrated optical spectrometer and the method for manufacturing the spectrometer
5040864, Nov 13 1990 Rockwell International Corporation Optical crosspoint switch module
5042898, Dec 26 1989 United Technologies Corporation Incorporated Bragg filter temperature compensated optical waveguide device
5093874, Apr 01 1991 Eastman Kodak Company Integrated electro-optical scanner with photoconductive substrate
5107359, Nov 25 1988 RICOH COMPANY, LTD , A JOINT-STOCK COMPANY OF JAPAN Optical wavelength-divison multi/demultiplexer
5165104, Mar 01 1991 NETWORK PHOTONICS, INC Optical interconnecting device and method
5195161, Dec 11 1991 AT&T Bell Laboratories Optical waveguide comprising Bragg grating coupling means
5274657, Jun 10 1991 Matsushita Electric Industrial Co., Ltd. Phase lock type semiconductor laser
5357591, Apr 06 1993 Cylindrical-wave controlling, generating and guiding devices
5450511, Apr 29 1992 AT&T IPM Corp Efficient reflective multiplexer arrangement
5453871, Jun 14 1989 HEWLETT-PACKARD COMPANY, A CORP OF CA Temporal imaging with a time lens
5668900, Nov 01 1995 RPX CLEARINGHOUSE LLC Taper shapes for sidelobe suppression and bandwidth minimization in distributed feedback optical reflection filters
5768450, Jan 11 1996 Corning Incorporated Wavelength multiplexer/demultiplexer with varied propagation constant
5812318, Mar 13 1995 MIDDLEFIELD VENTURES, INC Apparatus and methods for routing of optical beams via time-domain spatial-spectral filtering
5830622, Feb 14 1994 The University of Sydney Optical grating
5887094, Sep 02 1996 II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC Band-pass filter in an optical waveguide
5907647, Feb 18 1997 FURUKAWA ELECTRIC NORTH AMERICA, INC Long-period grating switches and devices using them
5995691, Dec 04 1997 Hitachi Cable Ltd Waveguide type grating device
6011884, Dec 13 1997 AUXORA, INC Integrated bi-directional axial gradient refractive index/diffraction grating wavelength division multiplexer
6011885, Dec 13 1997 AUXORA, INC Integrated bi-directional gradient refractive index wavelength division multiplexer
6021242, Jul 23 1997 Sumitomo Electric Industries Diffraction grating type band-pass filter and method of making the same
6137933, Dec 13 1997 AUXORA, INC Integrated bi-directional dual axial gradient refractive index/diffraction grating wavelength division multiplexer
6144480, Feb 28 1996 Optical arrangement for processing an optical wave
6169613, Feb 26 1993 Yeda Research & Devel Co., Ltd. Planar holographic optical device for beam expansion and display
6169614, May 21 1999 PSC SCANNING INC Wedged-shape holographic collector
6243514, Feb 13 1998 RPX CLEARINGHOUSE LLC Optical multiplexer/demultiplexer
6266463, Jun 18 1997 PIRELLI CAVI E SISTEMI S P A Chirped optical fibre grating
6285813, Oct 03 1997 Georgia Tech Research Corporation Diffractive grating coupler and method
6323970, Sep 29 1999 Intel Corporation Method of producing switchable holograms
6408118, Aug 25 2000 BROADCOM INTERNATIONAL PTE LTD Optical waveguide gratings having roughened cladding for reduced short wavelength cladding mode loss
6473232, Mar 08 2000 Canon Kabushiki Kaisha Optical system having a diffractive optical element, and optical apparatus
6553162, Nov 16 1999 CHAIPARA PTE , L L C Optical multiplexer-demultiplexer with mutually intersecting sub-gratings
6603901, Mar 03 2000 Lucent Technologies Inc Optical fiber gratings with index matched polymer coating for cladding mode suppression
6678429, Aug 27 2001 OL SECURITY LIMITED LIABILITY COMPANY Amplitude and phase control in distributed optical structures
6702897, Mar 25 1999 Acme Grating Ventures, LLC Optical transmission systems and apparatuses including bragg gratings and methods of making
6718093, Nov 27 2000 Advanced Interfaces, LLC Integrated optical multiplexer and demultiplexer for wavelength division transmission of information
6768834, Jun 13 2003 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Slab optical multiplexer
6781944, Feb 25 1999 Hitachi, Ltd. Optical information processor with monolithically integrated light emitting device, light receiving devices and optics
6813048, Dec 17 2001 Dai Nippon Printing Co., Ltd. Computer-generated hologram fabrication process, and hologram-recorded medium
6823115, Mar 10 2003 OL SECURITY LIMITED LIABILITY COMPANY Optical structures distributed among multiple optical waveguides
6829417, Aug 27 2001 OL SECURITY LIMITED LIABILITY COMPANY Amplitude and phase control in distributed optical structures
6836492, Feb 15 2002 Oclaro Japan, Inc Laser-diode module, optical transceiver and fiber transmission system
6850670, Jun 28 2001 NeoPhotonics Corporation Method and apparatus for controlling waveguide birefringence by selection of a waveguide core width for a top clad
6859318, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Method for forming a holographic spectral filter
6876791, Sep 03 2001 SUMITOMO ELECTRIC INDUSTRIES, LTD Diffraction grating device
6879441, Mar 16 2000 Steyphi Services DE LLC Holographic spectral filter
6928223, Jul 14 2000 Massachusetts Institute of Technology Stab-coupled optical waveguide laser and amplifier
6961491, Mar 10 2003 OL SECURITY LIMITED LIABILITY COMPANY Optical structures distributed among multiple optical waveguides
6965464, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Optical processor
6965716, Aug 27 2001 Steyphi Services DE LLC Amplitude and phase control in distributed optical structures
6985656, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Temperature-compensated planar waveguide optical apparatus
6987911, Mar 16 2000 Steyphi Services DE LLC Multimode planar waveguide spectral filter
6990276, Mar 16 2000 Steyphi Services DE LLC Optical waveform recognition and/or generation and optical switching
6993223, Mar 16 2000 Steyphi Services DE LLC Multiple distributed optical structures in a single optical element
7003187, Aug 07 2000 ROSEMOUNT INC , A MINNESOTA CORPORATION Optical switch with moveable holographic optical element
7009743, Mar 16 2000 Steyphi Services DE LLC Optical processor
7016569, Jul 31 2002 Georgia Tech Research Corporation Back-side-of-die, through-wafer guided-wave optical clock distribution networks, method of fabrication thereof, and uses thereof
7049704, Jun 26 2001 Intel Corporation Flip-chip package integrating optical and electrical devices and coupling to a waveguide on a board
7054517, Mar 16 2000 Steyphi Services DE LLC Multiple-wavelength optical source
7062128, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Holographic spectral filter
7116453, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Optical processor
7116852, Dec 28 2000 KEIO UNIVERSITY Optical signal processing circuit and method of producing same
7120334, Aug 25 2004 OL SECURITY LIMITED LIABILITY COMPANY Optical resonator formed in a planar optical waveguide with distributed optical structures
7123794, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Distributed optical structures designed by computed interference between simulated optical signals
7181103, Feb 20 2004 OL SECURITY LIMITED LIABILITY COMPANY Optical interconnect structures incorporating sets of diffractive elements
7190859, Mar 16 2000 LIGHTSMYTH TECHNOLOGIES, INC Distributed optical structures in a planar waveguide coupling in-plane and out-of-plane optical signals
7194161, Jun 30 1999 Lawrence Livermore National Security LLC Wavelength-conserving grating router for intermediate wavelength density
7209611, Oct 08 2002 Infinera Corporation Transmitter photonic integrated circuit (TxPIC) chips utilizing compact wavelength selective combiners/decombiners
7224855, Dec 17 2002 Steyphi Services DE LLC Optical multiplexing device
7260290, Dec 24 2003 OL SECURITY LIMITED LIABILITY COMPANY Distributed optical structures exhibiting reduced optical loss
7286732, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Distributed optical structures designed by computed interference between simulated optical signals
7499612, Mar 16 2000 OL SECURITY LIMITED LIABILITY COMPANY Multimode planar waveguide spectral filter
20020071646,
20030011833,
20030039444,
20030067645,
20030068113,
20030117677,
20030185269,
20030206694,
20040047561,
20040076374,
20040131360,
20040170356,
20040173680,
20040179779,
20040208466,
20040258356,
20050018951,
20050063430,
20050078912,
20050135744,
20050135745,
20050135747,
20050152011,
20050163425,
20050196114,
20060023280,
20060139712,
20060177178,
20060193553,
20060210214,
20060233493,
20060256831,
EP310438,
GB2168215,
JP1031121,
JP4368901,
JP5019726,
WO2075411,
WO199956159,
WO2005054120,
WO9935523,
WO9956159,
WO2075411,
WO9935523,
WO9956159,
//////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 29 2007IAZIKOV, DMITRILIGHTSMYTH TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0256010247 pdf
Jan 29 2007MOSSBERG, THOMAS WLIGHTSMYTH TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0256010247 pdf
Jan 29 2007GREINER, CHRISTOPH MLIGHTSMYTH TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0256010247 pdf
Aug 14 2008LIGHTSMYTH TECHNOLOGIES, INC Steyphi Services DE LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0256010351 pdf
Mar 20 2009Steyphi Services DE LLC(assignment on the face of the patent)
Aug 26 2015Steyphi Services DE LLCOL SECURITY LIMITED LIABILITY COMPANYMERGER SEE DOCUMENT FOR DETAILS 0373470134 pdf
Date Maintenance Fee Events
Aug 25 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Aug 21 2018M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
May 31 20144 years fee payment window open
Dec 01 20146 months grace period start (w surcharge)
May 31 2015patent expiry (for year 4)
May 31 20172 years to revive unintentionally abandoned end. (for year 4)
May 31 20188 years fee payment window open
Dec 01 20186 months grace period start (w surcharge)
May 31 2019patent expiry (for year 8)
May 31 20212 years to revive unintentionally abandoned end. (for year 8)
May 31 202212 years fee payment window open
Dec 01 20226 months grace period start (w surcharge)
May 31 2023patent expiry (for year 12)
May 31 20252 years to revive unintentionally abandoned end. (for year 12)