The present invention provides means for automatically adjusting rollforming equipment to accommodate a range of different gauges of material such as sheet metal being formed. One rollforming roller (34) on each rollforming head (4A) is mounted on an eccentric so that a force supplied in the direction of material feed through the tooling rollers (33,34) will increase the tooling gap therebetween. An automatic gauge adjustor includes applying a source of substantially constant pressure sufficient to achieve the rollforming action against rotation about the eccentric while allowing movement of the rollforming roller also about the eccentric so that the roll will move against the pressure being provided in the direction of the material feed to accommodate the gauge of material within the working range set. This allows the rollforming head (4A) to adjust the rolling gap between rollers to accommodate varying gauges automatically and with minimal or no lead in damage while the rolls adjust to the new gauge of material.

Patent
   RE42417
Priority
Jan 19 1995
Filed
Nov 01 1995
Issued
Jun 07 2011
Expiry
Nov 01 2015
Assg.orig
Entity
unknown
1
9
EXPIRED
18. A method for adjusting rollforming equipment to accommodate varying gauges of formable material, said method comprising the steps of:
providing a rollforming roll station,
mounting a rollforming roll in the rollforming station on a rotatable eccentric mounting, and
applying a force sufficient to achieve the rollforming action against rotation of the rollforming roll about the eccentric mounting while allowing movement of the rollforming roll about the eccentric mounting so that the rollforming roll will move against the source of pressure in the direction of the material feed to automatically accommodate the gauge different gauges of material by automatically adjusting to increase a tooling gap between the rollforming roll and a further rollforming roll when the gauge of the formable material being formed is increased, while maintaining the required force to perform the rollforming operation to form a profile shape by transversely deflecting the formable material into a shape having a nonplanar cross-section.
0. 1. A rollforming station for a rollforming apparatus for forming profile shapes in a formable material, the rollforming station comprising:
a tooling pedestal including means for mounting the tooling pedestal on the rollforming apparatus,
a rollforming head mounted on said tooling pedestal, said rollforming head having
a first tooling roller rotatably mounted on a first shaft supported by said pedestal,
a second tooling roller rotatably mounted on a second shaft, said first and second tooling roller cooperating to form profile shapes by transversely deflecting said formable material into a shape having a nonplanar cross-section, and
means rotatable mounted on said pedestal for supporting the second shaft eccentrically with reference to the centre of the second tooling roller so that a force applied in the direction of material feed through the tooling rollers will increase a tooling gap between the first and second tooling rollers, and
an automatic gauge adjustor including means for resisting the movement of the second tooling roller to increase the tooling gap, said resisting means applying a force sufficient to achieve the rollforming action while allowing movement of the second tooling roller about the eccentric supporting means so that the second tooling roller will move against the resisting means in the direction of the material feed to accommodate the gauge of material being formed.
0. 2. A rollforming station as claimed in claim 1, wherein the automatic gauge adjustor resisting means comprises
a support fixed relative to the pedestal, and
a reaction element reacting to relative movement between the second tooling roller and the support.
0. 3. A rollforming station as claimed in claim 1, wherein the automatic gauge adjustor comprises
a support frame mounted on the tooling pedestal,
an abutment member carried on the eccentric supporting means and moveable relative to the support frame, and
a reaction element creating a force to resist movement between the abutment member and the support frame.
0. 4. A rollforming station as claimed in claim 1, wherein said automatic gauge adjustor includes a preload applicator to set the minimum tooling gap between the tooling rollers.
0. 5. A rollforming station as claimed in claim 2, wherein the reaction element comprises a compression block.
0. 6. A rollforming station as claimed in claim 5, wherein the compression block is formed from lurathane with a shore hardness of between about 70 to about 100.
0. 7. A rollforming station as claimed in claim 6, wherein the lurathane compression block has a shore hardness of about 90.
0. 8. A rollforming station as claimed in claim 2, wherein the reaction element comprises a spring.
0. 9. A rollforming station as claimed in claim 2, wherein the reaction element creates resistant pressure using fluid pressure.
0. 10. A rollforming station as claimed in claim 2, wherein the reaction element is a torsion resistant material mounted within the eccentric mounting means.
0. 11. A rollforming station as recited in claim 1, further comprising a carrier rotatably mounted on the tooling pedestal for supporting the rollforming head.
0. 12. A rollforming station as recited in claim 1, further comprising a carrier rotatably mounted on the tooling pedestal for supporting the rollforming head.
0. 13. A rollforming station as claimed in claim 1, wherein the resisting means applies a substantially constant force.
0. 14. A rollforming apparatus for forming profile shapes from formable material the rollforming apparatus comprising:
a frame;
a support bed on the frame;
a tooling pedestal having means for mounting the tooling pedestal to the frame;
a rollforming head mounted on the tooling pedestal, the rollforming head having
a first tooling roller rotatably mounted on a first shaft supported by the pedestal,
a second tooling roller rotatably mounted on a second shaft, said first and second tooling roller cooperating to form profile shapes by transversely deflecting said formable material into a shape having a nonplanar cross-section, and
means for rotatably mounting the second shaft on the pedestal eccentrically with reference to the centre of the second tooling roller so that a force applied in the direction of material feed through the tooling rollers will increase a tooling gap between the first and second tooling rollers; and
an automatic gauge adjustor having means for resisting the movement of the second tooling roller to increase the tooling gap, the resisting means applying a force sufficient to achieve the rollforming action while allowing movement of the second tooling roller about the eccentric mounting means so that the second tooling roller will move against the resisting means in the direction of the material feed to accommodate the gauge of material being formed.
0. 15. A rollforming station as claimed in claim 14, wherein the automatic gauge adjustor resisting means comprises
a support fixed relative to the pedestal, and
a reaction element reacting to relative movement between the second tooling roller and the support.
0. 16. A rollforming station as claimed in claim 14, wherein the automatic gauge adjustor comprises
a support frame mounted on the tooling pedestal,
an abutment member carried on the eccentric supporting means and moveable relative to the support frame, and
a reaction element creating a force to resist movement between the abutment member and the support frame.
0. 17. A rollforming station as claimed in claim 14, wherein said automatic gauge adjustor includes a preload applicator to set the minimum tooling gap between the tooling rollers.
19. A method for adjusting rollforming equipment as claimed in claim 18, further comprising the step of preloading the tooling roller to set the minimum tooling gap between the tooling roller and a second tooling roller on the rollforming station.
20. A method for adjusting rollforming equipment as claimed in claim 18, wherein the step of applying a source of pressure sufficient to achieve the rollforming action against rotation of the rollforming roll about the eccentric mounting, comprises applying a substantially constant force.
rotatably mounted on a shaft 18 also rotatably supported by the pedestal 12. The tooling roller 17 is mounted on the shaft 18 to one side with reference to the centre of the tooling roller 17 The axis of rotation of the tooling roller 17 is offset relative to the axis of rotation of the shaft relative to the pedestal, thus providing an eccentric mounting for the tooling roller 17. The eccentric mounting is arranged so that a force applied in the direction of material feed indicated by arrow 19 will increase the tooling gap between the rollers 14 and 17 and an automatic gauge adjuster is provided to control this movement. The shafts shaft 15 is connected to transmission and drive means 16 in the conventional way.

The automatic gauge adjuster in the tooling rollers illustrated in FIG. 3 incorporates a support frame 20 attached to the pedestal 12 and an abutment 21 attached to the tooling roller 17 shaft 18. The abutment is moveable about with the eccentric and moves relative to the support frame and a reaction means obscured in FIG. 3 resists this movement and thus controls the tooling gap between the rolls 14 and 17.

The rollforming station illustrated in FIG. 4 is typical of a later web station in the rollforming apparatus and has the tooling pedestal 22 supporting the first tooling roller 23 on a shaft 24 and the second tooling roller 25 eccentrically mounted on the shaft 26with the, a support frame 27, and abutment member 28which is moveable with the tooling roller 25. The reaction means 29 visible in this figure is a compression block which supplies substantially constant reaction force sufficient to achieve rollforming action while allowing movement of the rollforming head 25 about its eccentric mounting thus the roll 25 can move within its working range to accommodate the gauge of material being formed.

A yet further rollforming head 4a is illustrated in FIGS. 5-8 of the accompanying drawings. In this case the tooling pedestal 30 has a rotatable carrier 31 mounted therein and the carrier 31 rotatably supports the shafts 32 and 34 on which the tooling rollers 33 and 35 are mounted. The shaft 34 is eccentrically located in the tooling roller mounted in a similar manner to that above described. The gauge adjustor has the support frame 36 and the abutment 37 with the compression block 38 providing the resistance force. A particular feature about this rollforming head is that through use of the carrier 31 the positions of the rollforming heads at the station can be reversed and as will be seen in the drawings the tooling roller with the automatic adjustment gauge is located on the top. However the position can simply be reversed by disconnecting the drive unlocking and rotating the carrier 31 to change the top roller to be located as the bottom roller and relocking the carrier and reconnecting the drive.

The automatic gauge adjuster in all embodiments illustrated, may have a preload applicator which by use of a tightening nut or stud or by other suitable means can preload the compression block to set the minimum tooling gap between the tooling rollers. The preload applicator in FIG. 3 is illustrated at 39 and in FIG. 4 at 40 and in FIG. 8 at 41. Conveniently a connecting rod with a head at one end and thread at the other end passes through aligned apertures in the support frame, abutment member and compression block with a nut on the threaded end allowing for preloading. Other mechanical configurations to achieve the purpose of the automatic adjustor as set out above may also be used.

The reaction means in the illustrated examples of rollforming stations is shown as a compression block. This compression block must be selected to provide sufficient pressure during operation to achieve the rollforming and allow within the operating range movement of the eccentrically mounted tooling roller to increase the tooling gap when the gauge of metal being formed is increased.

A particularly suitable compression block material for such an auto gauging application is lurathane with a shore hardness of 90, a tensile strength of 31 and a tear strength of 63. It would be understood however that the desired characteristics may be found in a number of other materials. We have found that in many applications lurathane having a shore hardness from 70 to 100 is acceptable. The characteristics of the compression block must be such that they allow compression for the adjustment movement during the automatic gauging but provide a sufficient reaction pressure to allow effective rollforming. Other rubber material having an appropriate shore hardness to achieve the compression characteristics required could also be used, but from a practical point of view a material which has a long life in use should be selected.

While the reaction means is particularly conveniently delivered in the form of a compression block formed from suitable material, the present invention is not intended to be restricted thereto. FIG. 9 illustrates diagrammatically a series of alternative means of creating the reaction force required. In FIGS. 9a-e 42 represents the eccentrically mounted tooling roller, 43 represents the support means to resist the movement of the eccentric mounting eccentrically mounted tooling roller and 44 represents the tooling roller preloading means.

In FIG. 9a the reaction force is generated by an air cylinder or activator 45. In FIG. 9b the reaction force is generated by a hydraulic cylinder 46, in FIG. 9c the reaction force is generated by a sleeve of torsion resistant material 47 mounted within the eccentric mount. In FIG. 9d the action force is generated by a compression spring 48 and in FIG. 9e the reaction force is generated by a tension spring 49. Thus it will be appreciated that a number of different means can be used in the rollforming stations according to the present invention to provide the required reaction force.

As will be apparent from the forgoing description the present invention provides rollforming apparatus that has incorporated in the rollforming stations automatic adjustment means within the allowed tolerances for accommodating varying gauges of material being formed. The adjustment mechanism can be preloaded and the apparatus set to operate with a minimum of adjustment necessary during operation within the tolerances provided. This means there is no labour or complex servo equipment to achieve adjustment to a new gauged material and the automatic adjustment mounting is smooth thus not damaging the lead in search of a new gauge of material being formed.

Hayes, Thomas C.

Patent Priority Assignee Title
9174258, Dec 10 2007 DATA M SOFTWARE GMBH Apparatus and process for forming profiles with a variable height by means of cold rolling
Patent Priority Assignee Title
3077131,
3138979,
3577760,
3691810,
4019358, May 10 1973 Firm Josef Frohling Rolling mill
4109499, Feb 16 1977 Roll Forming Corporation Roll forming apparatus and method
4156453, Dec 17 1975 Vereinigte Osterreichische Eisen- und Stahlwerke - Alpoine Montan Driving roll stand
FR1380583,
WO9416839,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 01 1995Hayes International(assignment on the face of the patent)
Jul 26 1999HAYES PLANT LEASE LIMITEDHAYES PLANT LEASECHANGE OF NAME SEE DOCUMENT FOR DETAILS 0204420834 pdf
Jul 26 1999HAYES PLANT LEASEHayes InternationalMERGER SEE DOCUMENT FOR DETAILS 0204420839 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Jun 07 20144 years fee payment window open
Dec 07 20146 months grace period start (w surcharge)
Jun 07 2015patent expiry (for year 4)
Jun 07 20172 years to revive unintentionally abandoned end. (for year 4)
Jun 07 20188 years fee payment window open
Dec 07 20186 months grace period start (w surcharge)
Jun 07 2019patent expiry (for year 8)
Jun 07 20212 years to revive unintentionally abandoned end. (for year 8)
Jun 07 202212 years fee payment window open
Dec 07 20226 months grace period start (w surcharge)
Jun 07 2023patent expiry (for year 12)
Jun 07 20252 years to revive unintentionally abandoned end. (for year 12)