The invention relates to a spinal disc endoprosthesis. The endoprosthesis has a resilient body formed of one or more materials which may vary in stiffness from a relatively stiff exterior annular gasket portion to a relatively supple central nucleus portion. concaval-convex elements at least partly surround that nucleus portion so as to retain the nucleus portion and gasket between adjacent vertebral bodies in a patient's spine. Assemblies of endoprosthetic discs, endoprosthetic vertebral bodies, and endoprosthetic longitudinal ligaments may be constructed. To implant this endoprosthesis assembly, information is obtained regarding the size, shape, and nature of a patient's damaged spine. Thereafter, one or more prosthetic vertebral bodies and disc units are constructed in conformity with that information. Finally, the completed and conformed vertebral body and disc assembly is implanted in the patient's spine.

Patent
   RE42480
Priority
Nov 14 1994
Filed
Dec 14 2001
Issued
Jun 21 2011
Expiry
Nov 14 2014

TERM.DISCL.
Assg.orig
Entity
unknown
32
155
EXPIRED
19. A vertebral An intervertebral endoprosthesis comprising an integral disc unit, said unit including a pair of confronting l-shaped supports having concaval-convex shapes in given legs, a resilient body interposed between the supports, and a flexible seal extending from one support to the other and sealing the resilient body within the supports inside a substantially watertight compartment, further comprising a plurality of said integral disc units.
18. A vertebral An intervertebral disc endoprosthesis comprising a rounded, resilient nucleus body convex on all surfaces and concaval-convex elements, each concaval-convex element being of relatively constant cross-sectional thickness and having an outer convex surface for engaging adjacent bone structure which has been milled to mate with the concaval-convex element outer convex surface, and a corresponding inner concave surface for engaging the rounded resilient body, wherein lubricant is provided between the nucleus body and the concaval-convex elements.
17. A vertebral An intervertebral disc endoprosthesis comprising a resilient nucleus, first and second rigid concaval-convex elements at least partly surrounding the nucleus, first and second legs formed, respectively, with the first and second rigid concaval-convex elements, first and second means for affixing the respective legs to vertebral bodies adjacent the concaval-convex elements and nucleus, longitudinal ligament prosthesis means extending between the legs of the first and second concaval-convex elements to inhibit undesirable motion of the vertebral bodies relative to one another, and biodegradable washers positioned between the ligament prosthesis means and the respective legs.
1. A vertebral An intervertebral disc endoprosthesis, comprising a resilient body formed of materials varying in stiffness from a relatively stiff exterior portion to a relatively supple central portion; and concaval-convex elements at least partly surrounding the resilient body for retaining said resilient body in a position between the concaval-convex elements, and wherein said concaval-convex elements each comprise generally l-shaped supports, each support having a first concaval-convex leg, the first leg having an outer convex surface for engaging adjacent bone and a corresponding inner concave surface for retaining the resilient body, each support further having a second leg extending generally perpendicularly to the first leg and adapted for affixation to adjacent bone structures.
16. A vertebral An intervertebral disc endoprosthesis, comprising a resilient body formed of materials varying in stiffness from a relatively stiff exterior portion to a relatively supple central portion; and concaval-convex elements at least partly surrounding the resilient body between adjacent vertebral bodies for retaining the resilient body between adjacent vertebral bodies in a patient's spine, and wherein said concaval-convex elements each comprise generally l-shaped supports, each support having a first concaval-convex leg, the first leg having an outer convex surface for engaging adjacent bone and a corresponding inner concave surface for retaining the resilient body, each support further having a second leg extending generally perpendicularly to the first leg and adapted for affixation to adjacent bone structure, wherein at least the second leg is constructed of titanium.
2. A vertebral An intervertebral disc endoprosthesis according to claim 1 wherein said resilient body comprises an annular gasket and a nuclear central portion.
3. A vertebral An intervertebral disc endoprosthesis according to claim 2 wherein the gasket extends about the nuclear central portion to enclose it within a thin layer.
4. A vertebral An intervertebral disc endoprosthesis according to claim 3 wherein the gasket, and the nuclear central portion, and the thin layer are molded together as one piece.
5. A vertebral An intervertebral disc endoprosthesis according to claim 1 further comprising cannulated screw means for attaching the concaval-convex element supports to adjacent bone structure.
6. A vertebral An intervertebral disc endoprosthesis according to claim 5 wherein said cannulated screw means comprises a screw, and a screw anchor seatable within bone structure and adapted to threadably receive the screw.
7. A vertebral An intervertebral disc endoprosthesis according to claim 6 wherein the screws terminate in the anchor.
8. A vertebral An intervertebral disc endoprosthesis according to claim 6 wherein the anchor has an open end and the screw proceeds through the open end of the anchor and terminates in the bone of the vertebral body.
9. A vertebral An intervertebral disc endoprosthesis according to claim 1 further comprising a seal member attached to the concaval-convex elements and surrounding said resilient body.
10. A vertebral An intervertebral disc endoprosthesis according to claim 9 wherein said seal member comprises a flexible sheet material having a multiplicity of pores, the pores being from about 5 microns to about 60 microns in size.
11. A vertebral An intervertebral disc endoprosthesis according to claim 10 further including sealing means applied to said flexible sheet material to render said flexible sheet material substantially impervious to the passage of any fluid.
12. A vertebral An intervertebral disc endoprosthesis according to claim 11 wherein the sealing means is silicone.
13. A vertebral An intervertebral disc endoprosthesis according to claim 9 wherein said concaval-convex elements and said seal member collectively surround said resilient body with a watertight seal.
14. A vertebral An intervertebral disc endoprosthesis according to claim 2 wherein said annular gasket is relatively stiff and said nuclear central portion is relatively supple.
15. A vertebral An intervertebral disc endoprosthesis according to claim 1 wherein at least one of the second legs is hingedly attached to the respective first concaval-convex leg.
20. The vertebral intervertebral disc endoprosthesis according to claim 19 wherein each support includes a groove about its circumference.
0. 21. The intervertebral disc endoprosthesis according to claim 13, wherein the seal member comprises a flexible sheet secured to each of the concaval-convex elements.
0. 22. The intervertebral disc endoprosthesis according to claim 19, further comprising a plurality of said integral disc units.

This is a continuation-in-part of U.S. patent application Ser. No. 08/681,230, filed Jul. 22, 1996, now U.S. Pat. No. 5,674,296 and which is a continuation-in-part of U.S. patent application Ser. No. 08/339,490, filed Nov. 14, 1994, which is abandoned.

This invention relates generally to human prostheses, and especially to spinal column a vertebral an intervertebral disc endoprosthesis 18 is affixed between the adjacent natural vertebral bodies 12 and 14. Here this vertebral intervertebral disc endoprosthesis 18 comprises a resilient disc body 20 having a relatively stiff annular gasket exterior portion 22 and a relatively supple nuclear central portion 24. The annular gasket 22 can be formed from a suitable biocompatible elastomer in the range of approximately 70-90 durometer hardness and the nuclear central portion 24 can be formed from a softer biocompatible elastomeric polymer of approximately 30 durometer hardness. In an alternate embodiment, the gasket 22 can extend over and under the nuclear central portion 24 so as to fully enclose it within a thin layer. In a further embodiment, the nuclear central portion, the gasket, and the thin layer extension are molded together to form one piece having different durometer hardnesses.

Concaval-convex means 30 surround the resilient body 20 to retain the resilient body 20 between the adjacent natural vertebral bodies 12, 14 in a patient's spine 10. To this end, as shown in FIG. 3, the concaval-convex means 30 comprise two generally L-shaped supports 32 and 34. The supports 32, 34 each have confronting first concaval-convex legs 42, 44, each leg being of relatively constant cross-sectional thickness. Each leg 42, 44 has an outer convex surface 52, 54 for engaging the adjacent bone of the natural vertebral bodies 12, 14. Corresponding inner concave surfaces 62, 64 in confronting array retain the resilient body 20 in its illustrated compressive force shock-absorbing position. These supports 32 and 34 can undergo principle movement away from one another, but only limited secondary translational, rotational and distractional motion will occur. Each support 32, 34 has a second wing or leg 72, 74 extending generally perpendicularly to the first legs 42, 44 respectively, and adapted for affixation to the adjacent bone structure. To carry out aspects of the invention described below, this affixation is effectively accomplished by cannulated screw devices 82, 84 which may be of a biodegradable type manufactured by Zimmer of Largo, Fla. Each device 82, 84 comprises a screw 92, 94; and a screw anchor 102, 104 adapted to threadably receive the screw extends radially into and seats within the bone structure 12, 14 as especially shown in FIG. 3. The screws 92, 94 may terminate in the anchor or alternately proceed through an open ended anchor and terminate in the bone of the vertebral body 12, 14 directly. The anchors 102, 104 may be close-ended, open ended, or of the expansion type.

To discourage and prohibit migration of fluids between the endoprosthesis 18 and adjacent parts of the anatomy, a seal member 110 is attached to the supports 32, 34 so as to surround the resilient body 20 which is comprised of the gasket 22 and nucleus 24, in accordance with another aspect of the invention. Here, this seal member 110 comprises a flexible sheet material having a multiplicity of pores. Preferably, the pores are from about 5 microns to about 60 microns in size. A flexible, strong polymer sheet material from which this seal is formed can be a Kevlar-like material, or it can be Goretex-like material, expanded PTFE, or other appropriate biocompatible material, such as polyether, polyurethane, or polycarbonate urethane membranes, can be used. Kevlar material is offered by the E. I. DuPont de Nemours Company of Wilmington, Del. and Goretex material is offered by the W. T. Gore Company of Flagstaff and Phoenix, Ariz. The seal material may be lined on its interior surface, its exterior surface, or both surfaces with silicone or any suitable sealing material so as to render the flexible sheet material substantially impervious to the passage of any fluid. A watertight seal is perfected when the seal 110 is glued or otherwise affixed to the legs 42, 44 and mediate portions of the legs 72, 74 as suggested in FIGS. 1-3.

In the space beneath the seal member 110 and between the disc body 20 and the concave surfaces of legs 42, 44, a lubricant may be used. The lubricant used may be saline or an appropriate liquid or particulate material lubricant.

In an alternative embodiment, the watertight seal between the endoprosthesis 18 and adjacent parts of the anatomy can be provided by developing a groove 402 completely encircling the periphery of each of the legs 42, 44. In this embodiment, the legs 72, 74 may be attached to the circumferential groove member 402 by laser-welding or other suitable means. If the legs 72, 74 are of polymeric material, they may be attached by mechanical or adhesive techniques. Only one of the grooves is shown in FIG. 13. In this embodiment, the seal member 410 is provided with a beaded edge 412 for each groove. Additionally, a retaining band 415 is provided for each groove to retain the seal member 410 in groove 402. The retaining bands 415 can be in the form of a biocompatible monofilament wire of, for example, stainless steel or titanium, a synthetic polymer cable or a braided wire cable. As shown in FIG. 11, each retaining band is crimped anteriorly by a crimping sleeve 420. Of course, more than one crimping sleeve may be used, if necessary. Alternately, the retaining band is fastened by laser-welding. Although one sealing arrangement consisting of the groove, beaded edge and retaining band is shown in FIG. 14, it should be understood that the sealing arrangement on the concaval-convex leg of the other support is identical in design and function.

In use, the seal member 410 is placed about the concaval-convex means 30. The retaining bands 415 are then placed adjacent to the respective groove 402 and crimped anteriorly, thereby fitting the bands into the grooves. Each beaded edge 412 prevents the slipping of the seal member underneath the retaining band. Thus, the retaining band, the groove and the beaded edge all cooperate to provide a water-tight seal to prevent the migration of fluids between the endoprosthesis 18 and adjacent parts of the anatomy. Glue can also be used to affix the seal member to the concaval-convex means 30 as a supplemental means for perfecting the seal.

In a first embodiment, the first legs 42, 44 are formed as an integral piece with the respective second wings or legs 72, 74. In the alternate embodiment of FIG. 3, however, the first legs 42, 44 are hingedly attached to the respective second legs 72, 74. A hinge 43, 73 is provided at the point from which the second leg 72, 74 extends generally perpendicularly to the first leg 42, 44. The hinge is not intended to function as such after being installed, but only during installation so as to allow better alignment of the endoprosthesis with the biologically variable anterior surface of the respective vertebral body. Once the endoprosthesis is installed and affixed via the screw devices, the hinge will no longer move.

These hinges 43, 73 may take any of the several known forms. Each hinge can be a rod and socket hinge, a pin type hinge, or a slip joint fitting, or it can be a web or a membrane type hinge of metal or plastic.

The second wings or legs 72, 74 may be made of a suitable metal such as titanium or a polymeric material. Alternately, each leg 72, 74 including its associated hinge element, can be made of a biodegradable polymeric material. When the legs 72, 74 are made of biodegradable material, the screws 92, 94 used for affixing the legs to the adjacent bone structure may be of the standard shoulder screw type in order to maintain firm fixation to the screw anchors 102, 104 after biodegradation of the legs 72, 74.

Legs 72, 74 can be of a thin construction that allows some degree of flexibility so as to promote a better mating of the legs to the anterior aspect of the vertebral body 12, 14.

The legs can have a central closed oblong slot to accommodate a screw or other fixation device. Should a second endoprosthesis device be placed at an adjoining level, the leg 72, 74 would be placed on top of the corresponding leg from the adjacent device. The screw 92, 94 or other fixation device would then pass through the closed oblong slot of the overlapping legs 72, 74.

In accordance with another aspect of the invention, the supports 32, 34 are formed of a biocompatible metal which may contain chromium cobalt or titanium. Surface roughening or titanium beading 112, 114 on the exterior surfaces 52, 54 of legs 42, 44 encourages positive bonding between the adjacent bone and the convex surfaces 52, 54. Over time, bone fuses or grows into the surface roughening, thereby adhering to the legs 42, 44 in a rigid and strong manner.

As suggested in FIGS. 9 and 10, a prosthetic longitudinal ligament 250 can be connected between the screws 92, 94 to limit motions between elements of the spine 10 in the area where the endoprosthesis 18 is implanted. This strap 250 may be made of the Kevlar-like material or the Goretex-like material described above, or it may be made of any other strong biocompatible material. The ligament 250 may also be considered a spacer or cover for providing some degree of separation between overlying soft tissues in the body and the anterior-most surfaces of the device. However, it is not designed for restricting or preventing motion in the disc body. A biodegradable washer can be provided around the screws 92, 94 at a point between the strap 250 and the respective wing or leg 72, 74. When biodegradable washers are used, the screws 92, 94 used for affixing the legs to the adjacent bone structure may be of the standard shoulder screw type in order to maintain firm fixation to the screw anchors 102, 104 after biodegradation of the washers.

When a ligament is used in the embodiment of the device having hinged legs 92, 94, the prosthetic longitudinal ligament structure can comprise several parallel bands of material separated by approximately 10 mm.

In accordance with another aspect of the invention, multiple endoprosthetic disc units can be placed in series with a straddling interlock appendage providing stability and fixation as shown in FIG. 5. Entire portions of a patient's spine can be replaced by a series of interconnected endoprosthetic vertebral bodies and endoprosthetic disc units. FIGS. 6-8 show an upper natural vertebral body unit 312 to which an upper endoprosthetic body 308 has been attached. A lower natural vertebral body 314 has attached, at its upper end, an endoprosthetic disc unit 318. Between these endoprosthetic disc units 308 and 318 is an endoprosthetic vertebral body 320. As suggested by FIG. 7, the endoprosthetic vertebral body 320 need not be irregularly shaped in cross sectional aspect; rather, manufacturing processes may suggest that it have a circular cross-sectional shape. As show in FIGS. 6 and 8, this endoprosthetic vertebral body 320 comprises a titanium element 321, to which are attached the preformed upper and lower endoprosthetic vertebral body upper and lower concaval-convex elements 322, 324. Each concaval-convex element 322, 324 is attached to the prosthetic vertebral body 320, as shown in FIG. 7, by extending set screws 330 through the titanium vertebral body 321 into a stem-like projection 331 extending from each of the concaval-convex elements 322, 324. A hole 360 in the body 320 accommodates the stem-like projections 331 of the concaval-convex elements 322 and 324. The stem-like projection 331 of the concaval-convex elements 322 and 324 is used only in conjunction with a prosthetic vertebral body implant construction 320.

An ear 340 is affixed, as by weldments 341, to a leg 342 extending from a concaval-convex element 322 as illustrated in FIGS. 6 and 8. An anchor 352 can be threaded into the endoprosthetic vertebral body 320, and a screw 362 can be turned into the anchor 352 so as to rigidly assemble the leg 342 to a leg 354 extending from the lower endoprosthetic disc unit 318.

In an alternate embodiment, ear 340 could be replaced with a biodegradable washer around each of the screws 92, 94 at a point located between the strap 250 and the respective leg 72, 74. (FIG. 10.) The washer could be of a size to overlie and fix in place the interlocking wing leg from the adjacent intervertebral disc space. Alternately, ear 340 (FIG. 8.) may be eliminated in favor of screws 92, 94 having a head of increased diameter so that the screw head engages and fixes both the slotted leg 72, 74 and the interlocking tongue leg.

The upper disc endoprosthesis 308, the endoprosthetic vertebral body 320, and the lower disc endoprosthesis 318 can all be assembled and interconnected as a unit before implantation in a patient's body when indicated.

As also suggested in FIG. 6, the annular corners 372, 374 of natural vertebral bodies 312, 314 each can extend irregularly radially outwardly of the adjacent disc endoprosthesis 308, 318. However, the corners 382B, 384B of the prosthetic vertebral body 320 do not generally extend significantly outside those disc units 308, 318, thus discouraging vertebral body engagement with and consequent abrasion or other damage to adjacent portions of the patient's natural anatomy. Preferably the endoprosthetic vertebral body 320 is not exactly right cylindrical in shape, but is rather slightly biconical; that is, the endoprosthetic vertebral body 320 has a waist 390 of minimum radius R at an axial medial point as suggested in FIG. 6.

According to yet another aspect of the invention, novel surgical procedures permit effective and permanent installation of the endoprosthetic vertebral body 320 and associated parts. First, a surgeon or medical technician develops information about the size, shape and nature of a patient's damaged vertebral body or bodies from radiographs, CT and/or MRI scans, noting specifically the anterior-posterior and lateral dimensions of the end plate of each involved vertebral body and the vertical height of the anterior aspect of each involved vertebral and/or proximate vertebral body and vertical height of the mid portion of involved and proximate relatively normal intervertebral disc spaces. This information is transmitted by telephone, computer datalink or documentary transport to a specialized laboratory. That laboratory constructs one or more prosthetic assemblies of the sort shown in FIG. 6 in conformity with the received information and this disclosure. Each of the assemblies can include a prosthetic vertebral body 321, and at each body end is a prosthetic disc 308, 318. Each prosthetic disc unit comprises, in turn, the concaval-convex elements 30; the resilient body 20 interposed between the concaval-convex elements; and the seal unit 110 secured around the interior legs and resilient body. Thereafter, the completed and conformed assembly is implanted in the patient's spine 10.

When the unit or units have been received and the patient properly prepared, the damaged natural spinal disc or discs and vertebral body or bodies are removed and the adjacent spinal bone surfaces are milled or otherwise formed to provide concave surfaces to receive the confronting convex surfaces 52, 54. Thereafter, the disc units and vertebral body are installed in the patient's spine.

To accurately locate the concaval-convex surfaces in the patient's spine, holes 382A, 384A (FIG. 3) are precisely located and then formed in the bone structure using a measuring instrument centered in the evacuated natural intravertebral intervertebral disc space. These holes are then tapped to form female threads therein. When the threads have been formed, the anchors 102, 104 are implanted in the respective tapped holes, thereby creating an imaginary platform of reference points located precisely with respect to the patient's spine. After the holes have been formed and the anchors 102, 104 implanted, a bone surface milling jig (not shown) is affixed to the anchors 102, 104 and the desired concave surfaces of predetermined shape are formed on the inferior and superior surfaces of the opposing vertebral bodies using one of a selection of predetermined milling head or bit sizes. Thereafter, the bone milling jig is removed and the concaval-convex elements 52, 54 identical in shape to the milled surfaces 112, 114 are inserted between the distracted milled vertebral bodies 12, 14. The distraction device is then moved. The concaval-convex structures are then attached by the same anchors 102, 104 to the bone, thus insuring a precise and stable mate between the bone surfaces and the convex surfaces 52, 54.

If necessary, a damaged implanted nucleus and/or gasket 24 can be removed and replaced. This can be accomplished by slitting the seal 110; removing the annular gasket 24 and damaged nucleus 22, and replacing them with new, undamaged elements. Thereafter, the seal 110 can be re-established by suturing or gluing closed the slit seal.

Kunzler, Alex, Bryan, Vincent

Patent Priority Assignee Title
10016283, Apr 13 2012 Neuropro Technologies, Inc. Bone fusion device
10092422, Aug 09 2011 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
10098757, Mar 15 2013 NEUROPRO TECHNOLOGIES, INC Bodiless bone fusion device, apparatus and method
10111760, Jan 18 2017 NEUROPRO TECHNOLOGIES, INC Bone fusion system, device and method including a measuring mechanism
10159583, Apr 13 2012 NEUROPRO TECHNOLOGIES, INC Bone fusion device
10213321, Jan 18 2017 NEUROPRO TECHNOLOGIES, INC Bone fusion system, device and method including delivery apparatus
10292830, Aug 09 2011 NEUROPRO TECHNOLOGIES, INC Bone fusion device, system and method
10420654, Aug 09 2011 NEUROPRO TECHNOLOGIES, INC Bone fusion device, system and method
10575966, Mar 15 2013 Neuropro Technologies, Inc. Bodiless bone fusion device, apparatus and method
10682240, Nov 03 2004 Neuropro Technologies, Inc. Bone fusion device
10709574, Apr 13 2012 Neuropro Technologies, Inc. Bone fusion device
10729560, Jan 18 2017 NEUROPRO TECHNOLOGIES, INC Bone fusion system, device and method including an insertion instrument
10729562, Jan 18 2017 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
10736754, Aug 09 2011 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
10751194, Apr 29 2016 Xi'an Jiaotong University Bionic dislocation-proof artificial lumbar vertebrae and disc complex
10973657, Jan 18 2017 NEUROPRO TECHNOLOGIES, INC Bone fusion surgical system and method
11141289, Jan 18 2017 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
11399956, Mar 15 2013 Neuropro Technologies, Inc. Bodiless bone fusion device, apparatus and method
11432940, Aug 09 2011 Neuropro Technologies, Inc. Bone fusion device, system and method
11439517, Apr 13 2012 Neuropro Technologies, Inc. Bone fusion device
11452616, Aug 09 2011 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
11458029, Jan 18 2017 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
11497623, Jan 18 2017 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
11583414, Nov 03 2004 Neuropro Technologies, Inc. Bone fusion device
8292954, Sep 11 2009 ARTICULINX, INC Disc-based orthopedic devices
8764830, Sep 11 2009 Articulinx, Inc. Disc-shaped orthopedic devices
9155629, Jun 13 2002 NEUROPRO TECHNOLOGIES, INC Ankle and foot bone growth compositions and methods
9186262, Nov 03 2004 Neuropro Technologies, Inc. Bone fusion device
9358123, Aug 09 2011 NEUROPRO SPINAL JAXX, INC Bone fusion device, apparatus and method
9526525, Aug 22 2006 NEUROPRO TECHNOLOGIES, INC Percutaneous system for dynamic spinal stabilization
9532883, Apr 13 2012 NEUROPRO TECHNOLOGIES, INC Bone fusion device
9974665, Nov 03 2004 Neuropro Technologies, Inc. Bone fusion device
Patent Priority Assignee Title
2677369,
3486505,
3875595,
3876728,
4023572, Aug 06 1974 Milling tool for preparing a joint socket in the prosthetic replacement of a joint
4116200, Oct 01 1975 Aesculap-Werke Aktiengesellschaft vormals Jetter & Scheerer Milling tool for surgical purposes
4179810, Mar 31 1977 Device for milling slots in a jawbone for mounting an endossal device
4309777, Nov 13 1980 Artificial intervertebral disc
4349921, Jun 16 1980 Intervertebral disc prosthesis
4599086, Jun 07 1985 Spine stabilization device and method
4645507, Sep 02 1982 WALDEMAR LINK GMBH & CO Prosthesis
4714469, Feb 26 1987 PFIZER HOSPITAL PRODUCTS GROUP, INC Spinal implant
4743256, Oct 04 1985 DEPUY ACROMED, INC Surgical prosthetic implant facilitating vertebral interbody fusion and method
4757983, Feb 26 1985 HOWMEDICA OSTEONICS CORP Head and chin for face-down operations
4759766, Sep 04 1984 WALDEMAR LINK GMBH & CO Intervertebral disc endoprosthesis
4759769, Feb 12 1987 Health & Research Services Inc. Artificial spinal disc
4766328, May 26 1987 FAIRCHILD TAIWAN CORPORATION Programmable pulse generator
4777942, Oct 02 1986 SULZER BROTHERS LIMITED, A CORP OF SWITZERLAND Bone milling instrument
4800639, Feb 07 1985 Sulzer Brothers Limited Method of making a metal bone implant
4834757, Oct 04 1985 DEPUY ACROMED, INC Prosthetic implant
4863476, Aug 29 1986 ZIMMER TECHNOLOGY, INC Spinal implant
4863477, May 12 1987 Synthetic intervertebral disc prosthesis
4874389, Dec 07 1987 COLLINS, EILEEN E , BENEFICIARY Replacement disc
4878915, Oct 04 1985 DEPUY ACROMED, INC Surgical prosthetic implant facilitating vertebral interbody fusion
4887595, Jul 29 1987 DEPUY ACROMED, INC Surgically implantable device for spinal columns
4904260, Aug 20 1987 RAYMEDICA, LLC Prosthetic disc containing therapeutic material
4904261, Aug 06 1987 Surgicraft Limited Spinal implants
4908032, Mar 09 1987 Waldemar Link GmbH & Co. Reconstruction prosthesis
4908036, Jun 15 1987 Waldemar Link GmbH & Co. Endoprosthesis
4911718, Jun 10 1988 UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY, THE Functional and biocompatible intervertebral disc spacer
4917704, Jul 09 1987 Zimmer GmbH Intervertebral prosthesis
4932969, Jan 08 1987 Zimmer GmbH Joint endoprosthesis
4932975, Oct 16 1989 Vanderbilt University Vertebral prosthesis
4946378, Nov 24 1987 ASAHI KOGAKU KOGYO KABUSHIKI KAISHA, A CORP OF JAPAN Artificial intervertebral disc
4955908, Jul 09 1987 Zimmer GmbH Metallic intervertebral prosthesis
4978355, Jan 25 1985 Sulzer Brothers Limited Plastic bone implant having a reinforced contact surface
4997432, Mar 23 1988 Waldemar Link GmbH & Co Surgical instrument set
5002576, Jun 06 1988 GERHARD, FUHRMANN; ULRICH GROSS; KADEN, BERTRAM; KRANZ, CURT; SCHMITZ, HERMAN-JOSEF; FRITZ, THOMAS Intervertebral disk endoprosthesis
5015247, Jun 13 1988 Warsaw Orthopedic, Inc Threaded spinal implant
5035716, Dec 07 1987 COLLINS, EILEEN E , BENEFICIARY Replacement disc
5047055, Dec 21 1990 HOWMEDICA OSTEONICS CORP Hydrogel intervertebral disc nucleus
5059193, Nov 20 1989 ZIMMER SPINE, INC Expandable spinal implant and surgical method
5059194, Feb 12 1990 Warsaw Orthopedic, Inc Cervical distractor
5062845, May 10 1989 ZIMMER SPINE, INC Method of making an intervertebral reamer
5071437, Feb 15 1989 DEPUY ACROMED, INC Artificial disc
5080662, Nov 27 1989 Spinal stereotaxic device and method
5084048, Jul 12 1989 Zimmer GmbH Implant for vertebrae with spinal stabilizer
5108438, Jul 20 1987 ReGen Corporation Prosthetic intervertebral disc
5122130, Mar 23 1988 Waldemar Link GmbH & Co. Forceps for inserting intervertebral device
5123926, Feb 22 1991 Perumala Corporation Artificial spinal prosthesis
5171280, Apr 20 1990 Zimmer GmbH Intervertebral prosthesis
5171281, Aug 18 1988 UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY, THE Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
5176708, Mar 12 1990 SULZER BROTHERS LIMITED, A CORP OF SWITZERLAND Prosthetic implant
5192326, Dec 21 1990 HOWMEDICA OSTEONICS CORP Hydrogel bead intervertebral disc nucleus
5192327, Mar 22 1991 DEPUY ACROMED, INC Surgical prosthetic implant for vertebrae
5234431, Apr 03 1991 Waldemar Link GmbH & Co. Bone plate arrangement
5236460, Feb 12 1990 MIDAS REX, L P Vertebral body prosthesis
5258031, Jan 06 1992 SDGI Holdings, Inc Intervertebral disk arthroplasty
5261911, Jun 18 1991 Anterolateral spinal fixation system
5261913, Jul 26 1989 Aesculap AG Device for straightening, securing, compressing and elongating the spinal column
5306307, Jul 22 1991 Zimmer Dental, Inc Spinal disk implant
5306308, Oct 23 1989 Intervertebral implant
5314477, Mar 07 1990 SPINE SOLUTIONS, INC Prosthesis for intervertebral discs and instruments for implanting it
5314478, Mar 29 1991 KYOCERA CORPORATION, A CORP OF DE ; KABUSHIKI KAISHA BIOMATERIAL UNIVERSE, A CORP OF JAPAN Artificial bone connection prosthesis
5320644, Aug 30 1991 Zimmer GmbH Intervertebral disk prosthesis
5370697, Apr 21 1992 Sulzer Medizinaltechnik AG Artificial intervertebral disk member
5383933, Dec 02 1991 Waldemar Link GmbH & Co. Endoprosthesis
5401269, Mar 13 1992 Waldemar Link GmbH & Co Intervertebral disc endoprosthesis
5403314, Feb 05 1993 DEPUY ACROMED, INC Apparatus for retaining spinal elements in a desired spatial relationship
5425772, Sep 20 1993 DEPUY ACROMED, INC Prosthetic implant for intervertebral spinal fusion
5425773, Apr 05 1994 SDGI Holdings, Inc Intervertebral disk arthroplasty device
5443514, Oct 01 1993 DEPUY ACROMED, INC Method for using spinal implants
5456719, Sep 19 1991 Waldemar Link GmbH & Co Endoprosthesis with a prosthesis part made of viscoelastic synthetic resin
5458638, Jul 06 1989 ZIMMER SPINE, INC Non-threaded spinal implant
5458642, Jan 18 1994 Synthetic intervertebral disc
5484437, Jun 13 1988 Warsaw Orthopedic, Inc Apparatus and method of inserting spinal implants
5489307, Feb 10 1993 ZIMMER SPINE, INC Spinal stabilization surgical method
5489308, Jul 06 1989 ZIMMER SPINE, INC Spinal implant
5496318, Jan 08 1993 ENCORE MEDICAL, L P ; ENCORE MEDICAL IHC, INC ; Encore Medical Asset Corporation Interspinous segmental spine fixation device
5507816, Dec 04 1991 Synthes USA, LLC Spinal vertebrae implants
5514180, Jan 14 1994 Prosthetic intervertebral devices
5527315, Apr 21 1994 Aesculap AG Spinal osteosynthesis rod with three branches
5534028, Apr 20 1993 HOWMEDICA OSTEONICS CORP Hydrogel intervertebral disc nucleus with diminished lateral bulging
5534029, Dec 14 1992 Yumiko, Shima Articulated vertebral body spacer
5545229, Aug 18 1988 UNIVERSITY OF MEDICINE AND DENTISTRY OF NEW JERSEY, THE Functional and biocompatible intervertebral disc spacer containing elastomeric material of varying hardness
5556431, Mar 13 1992 Waldemar Link GmbH & Co Intervertebral disc endoprosthesis
5562738, Apr 05 1994 SDGI Holdings, Inc Intervertebral disk arthroplasty device
5575815, Aug 24 1988 Genzyme Corporation Local polymeric gel therapy
5593409, Jun 03 1988 Warsaw Orthopedic, Inc Interbody spinal fusion implants
5609636, May 23 1994 ZIMMER SPINE, INC Spinal implant
5645598, Jan 16 1996 HOWMEDICA OSTEONICS CORP Spinal fusion device with porous material
5649926, Jul 14 1994 Advanced Spine Fixation Systems, Inc. Spinal segmental reduction derotational fixation system
5658285, Oct 28 1994 Aesculap AG Rehabitable connecting-screw device for a bone joint, intended in particular for stabilizing at least two vertebrae
5662158, Feb 18 1994 Johnson & Johnson Professional, Inc. Self-lubricating implantable articulation member
5674294, Sep 14 1993 COMMISSARIAT A L ENERGIE ATOMIQUE; UNIVERSITE PIERRE ET MARIE CURIE PARIS VI Intervertebral disk prosthesis
5674295, Oct 17 1994 RAYMEDICA, LLC Prosthetic spinal disc nucleus
5674296, Nov 14 1994 MEDTRONIC SOFAMOR DANEK, INC Human spinal disc prosthesis
5683464, May 04 1992 Zimmer Dental, Inc Spinal disk implantation kit
5702450, Jun 28 1993 Intervertebral disk prosthesis
5713899, Apr 27 1995 Aesculap AG Cervical cage designed for the performance of intersomatic arthrodesis
5716415, Oct 01 1993 DEPUY ACROMED, INC Spinal implant
5720748, Feb 10 1993 ZIMMER SPINE, INC Spinal stabilization surgical apparatus
5722977, Jan 24 1996 DANEK MEDICAL, INC Method and means for anterior lumbar exact cut with quadrilateral osteotome and precision guide/spacer
5723013, Feb 06 1995 JBS S A Spacer implant for substituting missing vertebrae
5741253, Jun 13 1988 Warsaw Orthopedic, Inc Method for inserting spinal implants
5782830, Feb 20 1996 Warsaw Orthopedic, Inc Implant insertion device
5782832, Oct 01 1996 HOWMEDICA OSTEONICS CORP Spinal fusion implant and method of insertion thereof
5797909, Jun 13 1988 Warsaw Orthopedic, Inc Apparatus for inserting spinal implants
5824093, Oct 17 1994 RAYMEDICA, LLC Prosthetic spinal disc nucleus
5824094, Oct 17 1997 TLIF, LLC Spinal disc
5865846, Nov 14 1994 Human spinal disc prosthesis
5865848, Sep 12 1997 Artifex, Ltd.; BHC Engineering, L.P. Dynamic intervertebral spacer and method of use
5885300, Apr 01 1996 Asahi Kogaku Kogyo Kabushiki Kaisha Guide apparatus of intervertebral implant
5888197, Jul 01 1997 THOMPSON SURGICAL INSTRUMENTS, INC Cam-operated universal latch joint apparatus
5888226, Nov 12 1997 Intervertebral prosthetic disc
5897087, Mar 15 1994 THOMPSON SURGICAL INSTRUMENTS, INC CAM tightened universal joint clamp
5899942, Jan 27 1994 W L GORE & ASSOCIATES, INC Apparatus and method for protecting prosthetic joint assembly from wear deris
5902233, Dec 13 1996 THOMPSON SURGICAL INSTRUMENTS, INC Angling surgical retractor apparatus and method of retracting anatomy
5928284, Jul 09 1998 Disc replacement prosthesis
5947971, Feb 10 1993 ZIMMER SPINE, INC Spinal stabilization surgical apparatus
5976187, Jan 21 1997 Spinal Innovations, LLC Fusion implant
5984865, Sep 15 1998 THOMPSON SURGICAL INSTRUMENTS, INC Surgical retractor having locking interchangeable blades
5989291, Feb 26 1998 HOWMEDICA OSTEONICS CORP; HOWMEDICA OTEONICS CORP Intervertebral spacer device
6001130, Nov 14 1994 MEDTRONIC SOFAMOR DANEK, INC Human spinal disc prosthesis with hinges
6017008, Mar 15 1994 Thompson Surgical Instruments, Inc. Cam tightened universal joint clamp
6022376, Jun 06 1997 RAYMEDICA, LLC Percutaneous prosthetic spinal disc nucleus and method of manufacture
6033363, Jan 26 1999 Thompson Surgical Instruments Insulating sleeve for a table mounted retractor
6059790, Aug 29 1997 ZIMMER SPINE, INC Apparatus and method for spinal stabilization
6059829, Mar 08 1995 Synthes USA, LLC Intervertebral implant
6063121, Jul 29 1998 Vertebral body prosthesis
6066174, Oct 16 1995 SDGI Holdings, Inc Implant insertion device
6080155, Jun 13 1988 Warsaw Orthopedic, Inc Method of inserting and preloading spinal implants
6083228, Jun 09 1998 Warsaw Orthopedic, Inc Device and method for preparing a space between adjacent vertebrae to receive an insert
6086595, Aug 29 1997 ZIMMER SPINE, INC Apparatus and method for spinal stabilization
6096038, Jun 10 1991 Warsaw Orthopedic, Inc Apparatus for inserting spinal implants
6139579, Oct 31 1997 DEPUY ACROMED, INC Spinal disc
6156067, Nov 14 1994 MEDTRONIC SOFAMOR DANEK, INC Human spinal disc prosthesis
6162252, Dec 12 1997 DEPUY ACROMED, INC Artificial spinal disc
6179874, Apr 23 1998 Warsaw Orthopedic, Inc Articulating spinal implant
6228022, Oct 28 1998 Warsaw Orthopedic, Inc Methods and instruments for spinal surgery
6228026, Jan 23 1998 Rultract, Inc. Surgical support apparatus with splined coupling, cross bar support and head-to-toe extension for surgical retractor apparatus
6231609, Jul 09 1998 Disc replacement prosthesis
DE2263842,
DE2804936,
DE3023353,
DE3741493,
DE90000943,
EP560140,
EP176728,
RU1560184,
RU895433,
WO4839,
WO4851,
WO13619,
WO13620,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 14 2001Warsaw Orthopedic, Inc.(assignment on the face of the patent)
Oct 11 2002Spinal Dynamics CorporationMEDTRONIC SOFAMOR DANEK, INC MERGER AND CHANGE OF NAME0136690543 pdf
Jan 28 2005MEDTRONIC SOFAMOR DANEK, INC SDGI Holdings, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0156350232 pdf
Apr 28 2006SDGI Holdings, IncWarsaw Orthopedic, IncMERGER SEE DOCUMENT FOR DETAILS 0189290479 pdf
Apr 28 2006SOFAMOR DANEK HOLDINGS, INC Warsaw Orthopedic, IncMERGER SEE DOCUMENT FOR DETAILS 0189290479 pdf
Date Maintenance Fee Events


Date Maintenance Schedule
Jun 21 20144 years fee payment window open
Dec 21 20146 months grace period start (w surcharge)
Jun 21 2015patent expiry (for year 4)
Jun 21 20172 years to revive unintentionally abandoned end. (for year 4)
Jun 21 20188 years fee payment window open
Dec 21 20186 months grace period start (w surcharge)
Jun 21 2019patent expiry (for year 8)
Jun 21 20212 years to revive unintentionally abandoned end. (for year 8)
Jun 21 202212 years fee payment window open
Dec 21 20226 months grace period start (w surcharge)
Jun 21 2023patent expiry (for year 12)
Jun 21 20252 years to revive unintentionally abandoned end. (for year 12)