A bronchoscopy oxygenation system having a channel for inserting alternately an instrument or fluids and for delivering oxygen to a patient. The system being provided with pressure relief vent and a pressure relief valve for the relief of excessive oxygen pressure. The bronchoscopy oxygenation system may be used during bronchoscopy and with patient suctioning, bronchoalveolar lavage or biopsy. The bronchoscopy oxygenation system is intended to be used with a conventional bronchoscope.
|
0. 10. An open bronchoscopy system comprising:
a) an orifice for receiving a gaseous substance;
b) a pressure relief vent coupled between the orifice and a passage for the gaseous substance;
c) a stopcock coupled to the passage, and further coupled to an instrument passage to receive an instrument, wherein the stopcock is configured with a handle to control a flow through the passage and instrument passage, wherein the stopcock is configured such that the position of the stopcock is to permit the passage of either the gaseous substance or a non-gaseous substance to a patient.
1. An open bronchoscopy oxygenation system comprising,
a) an orifice for receiving oxygen joined with,
b) a reservoir housing containing a pressure relief valve, to prevent excessive oxygen pressure,
c) a stopcock attached to an oxygen passage for receiving oxygen and further attached to an instrument passage for receiving an instrument, and with the stopcock being supplied a handle controlling the flow through the oxygen passage and instrument passage, thus allowing for the passage of oxygen and/or an instrument through said oxygen passage and/or instrument passage, and
d) with the position of the stopcock allowing for the passage of either oxygen, an instrument or fluids to a patient such that the patient may be safely treated.
4. A method of performing bronchoalveolar lavage in a patient employing an open bronchoscopy oxygenation system comprising,
a) an orifice for receiving oxygen joined with,
b) a reservoir housing containing a pressure relief valve, to prevent excessive oxygen pressure,
c) a stopcock attached to an oxygen passage for receiving oxygen and further attached to an instrument passage for receiving an instrument, and with the stopcock being supplied with a handle controlling the flow through the internal passages, thus allowing for the passage of oxygen through the oxygen passage and/or the passage of an instrument through the instrument passage, and
d) with the stopcock being attached to a passage running front said stopcock allowing for the passage of either oxygen, an instrument or fluids to a patient such that the patient may be treated, and
e) with the method steps comprising the steps of supplying oxygen to the patient through said oxygen passage and turning the stopcock and performing bronchoalveolar lavage through said instrument passage.
8. A method of suctioning of a patient comprising employing an open bronchoscopy oxygenation system comprising,
a) an orifice for receiving oxygen joined with,
b) a reservoir housing containing a pressure relief valve, to prevent excessive oxygen pressure,
c) a stopcock attached to an oxygen passage for receiving oxygen and further attached to an instrument passage for receiving an instrument, and with the stopcock being supplied with a handle controlling the flow through the oxygen passage and instrument passage, thus allowing for the passage of oxygen and/or an instrument through said oxygen passage and/or instrument passage, and
d) with the position of the stopcock allowing for the passage of either oxygen, an instrument or fluids to a patient such that the patient may be safely treated, and
e) with the method steps comprising the steps of altemately supplying oxygen to the patient through said oxygen passage and turning the stopcock and performing suctioning through said instrument passage and in that way preventing hypoxemia in said patient while performing suctioning.
6. A method of obtaining a tissue specimen from a patient comprising employing a bronchoscopy oxygenation system comprising,
a) an orifice for receiving oxygen joined with,
b) a reservoir housing containing a pressure relief valve, to prevent excessive oxygen pressure,
c) a stopcock attached to an oxygen passage for receiving oxygen and further attached to an instrument passage for receiving an instrument, and with the stopcock being supplied with a handle controlling the flow through the oxygen passage and instrument passage, thus allowing for the passage of oxygen and/or an instrument through said oxynen passage and/or instrument passage, and
d) with the position of the stopcock allowing for the passage of either oxygen, an instrument or fluids to a patient such that the patient may be safely treated, and
e) with the method steps comprising the steps of alternately supplying oxygen to the patient through said oxygen passage and turning the stopcock to perform a biopsy through said instrument passage with a biopsy forcep and in that way preventing hypoxemia in said patient while said tissue specimen is obtained.
2. The open bronchoscopy oxygenation system of
3. The open bronchoscopy oxygenation system of
5. The method of
7. the method of
9. The method of
0. 11. The bronchoscopy system of claim 10, wherein said non-gaseous substance comprises an instrument or a fluid.
0. 12. The bronchoscopy system of claim 10, wherein said gaseous substance comprises oxygen.
0. 13. The bronchoscopy system of claim 10, wherein the stopcock includes a handle and a stop-tab arrangement to permit the stopcock to be turned in a direction allowing for passage of the gaseous substance or a direction allowing for the passage of a non-gaseous substance.
0. 14. The bronchoscopy system of claim 10, further comprising a reservoir coupled to the pressure relief vent and arranged to receive the gaseous substance.
0. 15. The bronchoscopy system of claim 14, wherein the reservoir comprises a pressure relief valve.
|
The herein disclosed invention finds applicability in the field of pulmonary medicine: for example in patient diagnosis, aspirating, sampling and therapeutic delivery.
Patients who have pulmonary (lung) symptoms may be candidates for bronchoscopies. There are two types of bronchoscopies; therapeutic and diagnostic. Therapeutic bronchoscopy is to provide a treatment or therapy, and diagnostic is to aid in the diagnosis of an underlying condition. The bronchoscope is attached to a light source and advanced through the nares or mouth of the patient. Some bronchoscopes allow the pulmonologist to view the placement of the tip of the bronchoscope on a monitor from a video chip, and other models have an eye piece for viewing. Local anesthetics are often administered through the bronchoscope as it is advanced through the posterior pharynx and into the lungs. With direct visualization and manipulation of the tip with directional control, the vocal cords are identified and the instrument advanced into the trachea. Because of protective airway reflexes and the unpleasant nature of the procedure, the patient is likely to have received sedative medications that will decrease the respiratory drive. The respiratory rate will be decreased and the depth will be shallow. Consequently, oxygen delivery to the patient is reduced.
Once the bronchoscope is within the pulmonary system, it is intermittently advanced and withdrawn with directional control to access desired portions of the patient's lung. Diagnostic modalities afforded by this procedure include visualization of the trachea, bronchi, and bronchioloes for identification of abnormal tissue or secretions, as well as the ability to obtain biopsy specimens for laboratory analysis of tissue identification. Biopsy specimens are obtained by passing a biopsy forceps though the channel and excising a piece of tissue. Fluoroscopic x-ray guidance can be used intermittently throughout this procedure to aid in confirmation of the placement of the tip of the instrument.
The problem that is addressed with the new device of this invention is the problem of hypoxemia in patients who are having bronchoscopies. Hypoxemia is defined as reduced levels of oxygen in the blood and can be determined, measured, and quantified by pulse oximitry. Pulse oximitry is a standard monitor that measures the saturation of the oxygen carrying hemoglobin molecule.
In view of the problem of hypoxemia, there is a need in the medical field for a bronchial oxygenating system which is easy and safe to use; and when used along with a bronchoscope will provide oxygen through a channel of the bronchoscope when that channel is not in use.
Patent Literature
Lorenzen (U.S. Pat. No. 5,735,271) teaches a closed ventilation system apparatus which allows multiple access to the respiratory system through one or more access ports to ventilate the lungs with a gas or gases; to aspirate, oxygenate and visually inspect the respiratory system and/or take tissue samples. The herein disclosed system is unique in being an open, rather than a closed ventilation system. In addition Lorenzen does not show a pressure sensitive relief valve or a method of reducing standard hospital pressure through a controlled venting prior to patient application.
Bayron (U.S. Pat. No. 5,746,199) teaches a device with an endotracheal tube having attached thereto having several entry ports.
Urrutia (U.S. Pat. No. 5,817,068) teaches a plurality of feeds to a main conduit. Urrutia is directed to the use of fluids rather than oxygen.
Wood (U.S. Pat. No. 5,766,211) is for a device with a canal with a three-way valve for feed into the canal. Wood is directed to the use of fluids rather than oxygen, and does not show a pressure relief valve or a method of reducing standard hospital pressure through a controlled venting prior to patient application.
Akiba (U.S. Pat. No. 6,425,535) is for a fluid supplying apparatus for a cleaning the observation window of an endoscope.
Socaria (U.S. Pat. No. 5,329,921) discloses an endotracheal device allowing for the performance of various medical procedures while maintaining continuity of respiration.
A main object of the invention is to produce a bronchoscopy oxygenation system that is simple and easy to use.
A further object of the invention is to produce a device which is easy for the pulmonologist who may also be providing conscious sedation to use.
An important object of this invention is to produce a device which is able to safely supply oxygen to the patient and is safe for the doctor to use.
Another important object of the invention is to produce a device which can be conveniently used along with a conventional bronchoscope.
These and other objects of the present invention will become apparent from a reading of the following specification taken in conjunction with the enclosed drawings.
The herein disclosed invention is directed to a new bronchoscopy oxygenation system, the goal of which is to deliver oxygen directly to the lungs of patients during therapeutic and diagnostic bronchoscopy in order to reduce hypoxia or hypoxemia during the procedure. Hypoxia is derived from three main causes: First, during bronchoscopy, patients are given sedative medications which decrease their respiratory effort, so less oxygen is delivered to the lung. Second, the size of the bronchoscope which may be large compared to the size of the opening between the vocal cords can create a mechanical obstruction impeding oxygen delivery. The third and most significant cause of hypoxia is the elimination of air and oxygen from the lungs during suctioning performed to remove secretions and improve visualization as well as suctioning for bronchoalveolar lavage. These factors combine to place these patients at risk for complications related to depressed levels of oxygen in their blood.
The bronchoscopy oxygenation system of this invention is particularly useful in those surgical situations in which the patient is susceptible of receiving reduced oxygen during the procedure. Surgical procedures in which the system can be used are for example:
Bronchoalveolar lavage which is a technique that can be both diagnostic and therapeutic in nature. In this process, fluid is administered through the channel into the lung airways and then recovered and collected with the use of suction which is attached to the channel of the bronchoscope. This process can be of diagnostic value as the fluid will contain cells from the patient's lung which can be analyzed in the laboratory for tissue identification. In addition, bronchoalveolar lavage can be a therapeutic technique by removing excess and harmful secretions that are found in the bronchoalveolar system. Improved flow and respiratory gas exchange can result following this technique.
Obtaining of tissue specimens. Biopsy specimens are obtained by passing a biopsy forceps through the channel and excising a piece of tissue. Fluoroscopic x-ray guidance can be used intermittently throughout this procedure to aid in confirmation of the placement of the tip of the instrument.
Suctioning to remove fluids for laboratory analysis or to remove secretions that interfere with visualization. Suctioning is performed to obtain fluid and secretions as determined by the needs of diagnostic modalities or treatment options. In addition, suctioning is intermittently and frequently performed throughout the procedure to facilitate visualization by the pulmonologist, as excess secretions within the lung can obscure visualization during the procedure. This suctioning actively removes oxygen from within the lung, further leading to reduced oxygen delivery to the respiratory gas exchange membranes and resulting in hypoxemia.
In using the bronchoscopy oxygenation system of the invention along with a bronchoscope, the functions of the bronchoscope are not impeded. The primary intent of the design of the bronchoscopy oxygenation system of this invention is to utilize the single channel of a bronchoscope to provide oxygen at times when the primary channel is not otherwise in use. This channel can be accessed through the biopsy valve and currently has three functions. It can be used to obtain tissue biopsies by passing a biopsy forceps down the channel. The channel can be used to administer fluids such as saline into the lungs to combine with the fluid and secretions in the lung for bronchoalveolar lavage. The channel can be used for suctioning to remove fluids for laboratory analysis or to remove secretions that interfere with visualization. The invention proposes using this channel for the purpose of administering oxygen. Most of the time during bronchoscopy, this channel is not used for biopsies, lavage or suctioning. This provides an opportunity to pass oxygen through the bronchoscope to be delivered directly into the lungs at the distal tip of the instrument. The bronchoscopy oxygenation system of the invention is an open system rather than a closed system. A closed system is one in which there is a seal preventing communication between the system and the atmosphere. The closed system is generally used when patient can no longer breathe on his own. In the open system, no sealing is present between the patient's respiratory system and the oxygen supply means.
The simplicity of the brochoscopy oxygenation system of the invention is advantageous in all settings. The new design bronchoscopy oxygenation system utilizes a means that will allow for the safe administration of oxygen and still allow biopsies, lavage or suctioning. The system allows for a shared function of the channel in a bronchoscope. Oxygen can be administered from a standard oxygen flow meter and delivered to patient from the distal tip of the device. The oxygen flow can be interrupted when necessary for bronchoalveolar lavage or to obtain a biopsy specimen, but could continue during suctioning. The oxygen flow can be interrupted by turning the stopcock, which allows access to the biopsy valve for the other purposes. Interruption of oxygen flow creates a safety hazzard, as the oxygen supply tubing will be holding pressure equal to the oxygen outlet pressure of 50 psi. When this pressure is allowed to access a syringe, the plunger becomes a forceful projectile that is of concern for personnel. If the pressure is allowed to pass through the bronchoscope, it may cause patient harm from barotrauma. This safety issue has been resolved by the use of a pressure relief vent designed to reduce standard hospital pressure (50 psi) to a level that would be safe for patient application, and an additional backup safety pressure relief valve built into the device. The pressure relief valve is set at 40 cm of water which will provide safety to the patient from any surge in pressure. The invention could consist essentially of the system as herein defined.
Referring to
There are two possible positions of the stopcock.
The instrument access position (
The standard position (oxygen) (
Referring to
With reference to
The pressure relief vent 14 and pressure relief valve will function in both the access and standard positions to prevent excessive oxygen pressure build-up within the system.
With reference to
With reference to
With reference to
In
There is another theoretical position of the stopcock shown in
Detailed Description of Use
The procedure for using the bronchoscopy oxygenation system will be to insert the device into the biopsy port of a bronchoscope. The oxygen tubing will be connected from an oxygen flow meter to the device. The flow meter will be adjusted to approximately 10 liters of oxygen per minute. The stopcock position will initially be in the standard position (oxygen) (
The bronchoscopy oxygenation system can be employed with the stopcock in the standard or access positions as described. The standard position would be in use in the majority of times. This position allows for delivery of oxygen through the bronchoscope and would have the third access port of the stopcock closed. This position can also be utilized during suctioning.
In the suctioning mode, the suction is connected to a bronchoscope in a continuous fashion. This port has an internal connection to the single channel of the bronchoscope and is made to be continuous when the pulmonologist depresses a button on the bronchoscope. When this button is not depressed, the reduced barometric pressure of the suction is isolated from the single channel. This configuration allows the suction to be used with the bronchoscopy oxygenation system of this invention in either the standard or access positions.
The access position is employed while obtaining tissue biopsies, during bronchoalveolar lavage, or when other fluids such as local anesthetics are administered. In this position there is no oxygen flow through the channel. In practical use, the percentage of total procedural time in this position is minimal.
In both the standard and access positions the pressure relief vent and the backup safety pressure relief valve will ensure a safe environment for both the patient and medical team.
Advantages to using the system of the invention are:
The system can be used during many pulmonary medicine procedures involving the lungs or bronchi where there is reduced oxygen at the respiratory gas exchange membranes in patients having bronchoscopies. The bronchoscopy oxygenation system of this invention will solve this problem by administering oxygen through the channel directly into the lungs. This oxygen delivery will be independent of reduced patient respiratory drive from intravenous medications, and also independent of the mechanical obstruction at the vocal cords created by the bronchoscope.
The bronchoscopy oxygenation system has taken into consideration safety and has built-in safety features. Barotrauma to the lungs is a potentially serious consideration. The system has to be able to deliver an adequate flow of oxygen through a bronchoscope so as to aid in oxygenation of the patient, while limiting the pressure of delivered gasses to avoid barotrauma. This required knowledge of oxygen utilization and pulmonary physiology. These considerations were inherent in the final design and a redundant system for pressure relief was engineered. An additional consideration was the safety of personnel. The wall source of oxygen is delivered at a pressure of 50 pounds per square inch. This source needed to be adapted so oxygen could be delivered to the patient in a manner that was safe for both the patient and health care personnel.
Obviously, many modifications may be made without departing from the basic spirit of the present invention. Accordingly, it will be appreciated by those skilled in the art that within the scope of the appended claims, the invention may be practiced other than has been specifically described herein.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2162242, | |||
3774604, | |||
5003963, | Sep 28 1987 | James Roger, Bullard | Laryngoscope |
5183031, | May 13 1991 | Fiberoptic intubating laryngoscope | |
5329921, | Mar 01 1993 | Endotracheal tube | |
5354267, | Sep 20 1993 | General Electric Company | Irrigation and suction apparatus |
5735271, | Feb 28 1995 | CITIBANK, N A | Multiple access adaptors for monitoring, sampling, medicating, aspirating, and ventilating the respiratory tract of a patient |
5746199, | Aug 21 1996 | Respiratory valve | |
5766211, | Aug 24 1994 | Medical device for allowing insertion and drainage into a body cavity | |
6425535, | Aug 02 1999 | Fuji Photo Optical Co., Ltd. | Fluid supplying apparatus for endoscope |
6652453, | Mar 30 1999 | Portable video laryngoscope | |
20040206354, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Aug 29 2011 | REM: Maintenance Fee Reminder Mailed. |
Jan 22 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 28 2014 | 4 years fee payment window open |
Dec 28 2014 | 6 months grace period start (w surcharge) |
Jun 28 2015 | patent expiry (for year 4) |
Jun 28 2017 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 28 2018 | 8 years fee payment window open |
Dec 28 2018 | 6 months grace period start (w surcharge) |
Jun 28 2019 | patent expiry (for year 8) |
Jun 28 2021 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 28 2022 | 12 years fee payment window open |
Dec 28 2022 | 6 months grace period start (w surcharge) |
Jun 28 2023 | patent expiry (for year 12) |
Jun 28 2025 | 2 years to revive unintentionally abandoned end. (for year 12) |